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Climbing the anisotropy barrier of single-molecule magnets with spin-vibron interaction
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Using the master equation approach, we look for fingerprints of the interaction between the localized spin S of
a nanomagnet coupled to spin-polarized leads and its quantized vibrational modes. We find that the stationary and
transient currents are sensitive to vibron-assisted transitions of the molecular spin on both sides of the anisotropy
barrier. Such transitions are associated with vibron-dressed states and triggered under resonant conditions.
Transport calculations are presented for two antiparallel configurations of the spin-polarized electrodes. In the
first configuration, and far from a resonance point, a blockade is imposed on both the electronic and molecular
spins via their exchange interaction. When sweeping the magnetic field through resonance, the spin-vibron
interaction removes this blockade and allows the indirect reading of resonant transitions as the molecular spin
climbs the left side of the anisotropy barrier. In the second configuration, the anisotropy barrier is overcome
but the vibron-assisted transitions on the right side of the anisotropy barrier “delocalize” the molecular spin and
do not allow the complete current-induced magnetic switching −S → S. In both configurations, the stationary
current increases on resonance, due to additional transport channels triggered by the spin-vibron coupling.
Therefore, the switching of the spin-vibron coupling could be detected in future transport experiments.
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I. INTRODUCTION

The magnetic and transport properties of single-molecule
magnets (SMMs) have been investigated and measured for a
long time and are by now well understood [1,2]. Fe4 SMMs,
manganese clusters, and lanthanide-based nanomagnets be-
have like giant molecular spins interacting with magnetic
fields, itinerant electrons, or vibrational modes. Therefore,
they serve as a workbench for investigations on the dynamics
of localized magnetic moments.

A common feature of molecular nanomagnets is the so
called anisotropy energy barrier of height DS2, where D is
the axial magnetic anisotropy coefficient. At very low tem-
peratures, this barrier prevents transitions to excited states
with spin quantum numbers |Sz| < S [3]. Additionally, trans-
verse anisotropy terms allow underbarrier transitions between
the states of the lowest energy doublet Sz = ±S, through
quantum tunneling of magnetization (QTM). This switching
mechanism is extensively studied in view of applications to
spintronics and manipulation of molecular spin qubits (see the
recent review [4] and references therein).

Operating the 2S + 1 spin states as molecular qubits in
scalable architectures remains a timely endeavor [5,6]. For
example, Godfrin et al. [7] reported the successful implemen-
tation of the Grover algorithm using the nuclear spin states of
a TbPc2 molecular magnet. In the case of single-ion magnets
(e.g., Gd3+), coherent transitions between the 2S + 1 states
were measured and could be used to implement multiple-qubit
protocols [8]. A theoretical study showed that the spin states
of this S = 7/2 nanomagnet can be manipulated as molecular
qudits [9].

To probe their excited states and magnetic anisotropy
effects [10,11], the single-molecule magnets are attached
to source and drain electrodes such that electrons tunnel

sequentially on the lowest unoccupied molecular orbital
(LUMO). Then the system is pushed to a charged
configuration (i.e., a state containing one extra electron).
Now, in typical transport measurements on SMMs, various
interactions are activated and coexist: (i) the exchange
interaction between the localized magnetic moment and the
electronic spin (see the sketch in Fig. 1); (ii) the coupling
between the charge and the vibrational modes of the system
leading to a Franck-Condon blockade [12,13]; and (iii) the
spin-mechanical coupling associated with intrinsic or external
quantized vibrational modes (i.e., vibrons).

Up to now, the effects of the spin-vibron interaction were
only identified in hybrid SMM-nanoresonator systems, where
the nanomagnet is rigidly attached to a vibrating conductor
(e.g., a conducting carbon nanotube supporting longitudinal
stretching modes) [14,15].

On the theoretical side, one finds that the interactions men-
tioned above are investigated rather separately. For example,
density-functional theory (DFT) calculations describe either
the electric control of a Fe4 molecule [16,17], the effects of
the charge-vibron interaction [18], or the many-body transport
properties [19]. Vibronic effects on the quantum tunneling of
magnetization have been analyzed in a recent work [20].

Similarly, the role of the exchange interaction in the trans-
port process has been mostly discussed in the absence of
vibrational modes. An important result is that if the ex-
change coupling is not purely axial [see the discussion of
Eq. (2) below], the charged states acquire a mixed spin struc-
ture that triggers a sequence of transitions to excited spin
states [21] and even leads to the so called current-induced
magnetic switching (CIMS) when at least one electrode is
spin-polarized [22–24]. The main features of the CIMS are
also presented in the review [25].

2469-9950/2023/108(2)/024416(12) 024416-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7722-1467
https://orcid.org/0000-0001-9193-0163
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.024416&domain=pdf&date_stamp=2023-07-20
https://doi.org/10.1103/PhysRevB.108.024416


V. MOLDOVEANU AND R. DRAGOMIR PHYSICAL REVIEW B 108, 024416 (2023)

FIG. 1. A schematic picture of the SMM connected to spin-
polarized electrodes with chemical potentials μL,R. The quasi-
antiparallel configuration corresponds to a fully spin-down polarized
left electrode and a mostly spin-up polarized right electrode. The
localized spin S and the electronic spin tunneling on the molecu-
lar orbital are coupled by the exchange interaction of strength J .
Also, the N vibrons of frequency ω0 generated along the tunnel-
ing processes by the charge-vibron interaction are coupled to the
molecular spin.

Recently, it was shown that the effect of the exchange
interaction on the spin-dependent conductance allows the
electric reading of the electronic spin [26]. On the other
hand, spin-vibron coupling effects on the transport properties
have been discussed in connection to Kondo effects [27],
vibrational cooling by a spin-polarized current [28,29], and
vibron-induced renormalization of the anisotropy parameters
[30]. To the best of our knowledge, the mechanically assisted
magnetic switching in a SMM that is directly coupled to
electrodes has been addressed only in Ref. [31], within a
semiclassical model.

In this work, we investigate theoretically whether, and
under what conditions, the spin-vibron coupling induces
significant changes on the transport properties of a single-
molecule nanomagnet coupled to spin-polarized electrodes
(the system is sketched in Fig. 1). The numerical simula-
tions reveal the effects of the vibron emission/absorption
processes on the transient and stationary current, as well as
on the electronic spin accumulation in the SMM. We focus
on the transitions induced by the spin-vibron coupling be-
tween the fully polarized molecular configurations of spin
Sz = ±(S + 1/2) and the next-nearest-neighbor excited states
Sz = ±(S − 3/2), but the analysis could be extended to other
transitions as well.

The calculations presented in this work complement our
previous study on spin-vibron coupling effects on the trans-
port properties of a nanoelectromechanical system (NEMS)
with a grafted SMM [32]. Let us stress that in such an indirect
transport setting [3,14,15], electrons do not tunnel through the
molecular orbitals, and therefore the exchange interaction is
expected to be rather small and its effect negligible; nonethe-
less, the theoretical study [33] considered such a coupling.
More importantly, in the presence of the exchange interaction,
the states of the composed system (i.e., the localized spin and
the molecular orbital) cannot be described by a single pair

of spin quantum numbers {sz, Sz} and they acquire a mixed
structure.

The paper is organized as follows: in Sec. II we present
the model and the transport formalism, Sec. III collects the
numerical results, and Sec. IV is left for conclusions.

II. FORMALISM

In this work, the single-molecule magnet will be described
by the so called giant-spin model [1], in which all constituting
ions and the exchange and spin-orbit interactions between
them are replaced by an effective Hamiltonian of a localized
spin S. Detailed DFT analysis confirms that this model re-
mains valid even in the presence of the electrodes [16].

A. The model Hamiltonian

The lowest electronic orbital of the SMM and its localized
molecular spin are described by the Hamiltonian

HSMM =
∑

σ

εσ c†
σ cσ + Un̂↑n̂↓ − DŜ2

z + E
(
Ŝ2

x − Ŝ2
y

)

−
∑

i

Jiŝi · Ŝi + gμBBŜt
z. (1)

In Eq. (1), εσ denotes the spin-degenerate energy of the
lowest unoccupied molecular orbital, and c†

σ (cσ ) are the
corresponding creation (annihilation) operators. Also, n̂σ =
c†
σ cσ is the number operator for electrons with spin orien-

tation σ =↑,↓, and U is the Coulomb repulsion parameter.
The electronic spin operators ŝi (i = x, y, z) are also ex-
pressed in terms of creation and annihilation operators as
ŝi = 1/2

∑
σ,σ ′ c†

σ σ i
σσ ′cσ ′ , where σ i are the Pauli matrices.

Apart from its localized spin, the SMM is described by the
easy-axis and transverse anisotropy terms. More precisely, D
and E denote the anisotropy coefficients, and Ŝi are the com-
ponents of the giant spin operator. Note that the z-component
has eigenvalues Sz with quantum numbers Sz = −S, . . . , S
such that Ŝz|Sz〉 = Sz|Sz〉. Additionally, the exchange inter-
action [i.e., the fifth term in Eq. (1)] induces simultaneous
spin-flip processes for the electronic and molecular spins. In
general, it is described by a tensor Ji j . As in other theoretical
approaches [22,28], we shall neglect for simplicity the off-
diagonal components and use the simplified notation Jii := Ji.
In this case, the exchange Hamiltonian reads

∑
i

JiŜiŝi = J−
4

(Ŝ+ŝ+ + Ŝ−ŝ−)

+ J+
4

(Ŝ+ŝ− + Ŝ−ŝ+) + JzŜzŝz, (2)

where Ŝ± = Ŝx ± iŜy are jump operators for the molecular
spin, and we introduced the coupling constants J± := Jx ± Jy.
From Eq. (2) one infers that the simultaneous flip of the
electronic and molecular spins is due to the transverse com-
ponents of the exchange interaction Jx and Jy. The exchange
coupling associated with the z-axis is spin-conserving and
can only induce spin-dependent energy shifts (this feature is
used in Ref. [26] to read the electronic spin from conductance
measurements). In the isotropic case Jx = Jy = Jz, the above
equation simplifies considerably [i.e., one is left only with
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the second line of Eq. (2)]. Another intermediate regime is
defined by Jx = Jy � Jz, and in particular the purely axial
coupling corresponds to Jx = Jy = 0. This case, which does
not allow for the spin-flip process, has been considered in a
recent theoretical work [34].

The last term in Eq. (1) represents the Zeeman energy as-
sociated with a perpendicular magnetic field along the z-axis,
and the total spin operator is given by Ŝt

z = Ŝz + ŝz; clearly, the
eigenvalues of Ŝt

z are m = −S − 1/2, . . . , S + 1/2. Finally,
μB is the Bohr magneton and g is the gyromagnetic factor (we
consider that g = 2).

In the following, we shall assume for simplicity that the
electronic and molecular spins are coupled to a single quan-
tized vibrational mode of frequency ω0, with a† and a being
the harmonic-oscillator operators acting on the N-vibron Fock
states |N〉. The electron-vibron coupling depends on the
strength λ and on the local charge on the molecular orbital
and is given by

Hel-vb = λ
∑

σ

c†
σ cσ (a† + a). (3)

If the z-axis of the SMM is perpendicular to the direction
of the electronic flow, the small torsional oscillations around
this axis will induce a change of the transverse anisotropy
term E (Ŝ2

x − Ŝ2
y ) in Eq. (1) (see [1]). The corresponding spin-

vibron coupling acquires the form [32,35]

Hsp-vb = −iαE (Ŝ2
+ − Ŝ2

−)(a† + a), (4)

and it shows that the vibron exchange involves molecular
states whose spins differ by �Sz = ±2. α denotes the dimen-
sionless coupling strength. Then the Hamiltonian of the hybrid
SMM-vibron system reads

HS = HSMM + h̄ω0a†a + Hel-vb + Hsp-vb

:= HS,0 + Hel-vb + Hsp-vb. (5)

The electron-vibron interaction can be eliminated by perform-
ing the well-known unitary Lang-Firsov (LF) transformation
ULF = eλ/h̄ω0N̂S (a†−a), where N̂S = ∑

σ c†
σ cσ is the total charge

operator. The fermionic and bosonic operators transform as
follows:

c̃σ = U †
LFcσULF = cσ e−λ(a†−a)/h̄ω0 := cσ �̂, (6)

ã = U †
LFaULF = a + λ

h̄ω0
N̂S. (7)

Then by straightforward manipulations one obtains the trans-
formed Hamiltonian:

H̃S = U †
LFHSULF = H̃S,0 + Hsp-vb, (8)

where

H̃S,0 = HS,0 − λ2N̂S/h̄ω0 + 2i
λ

h̄ω0
αE (Ŝ2

+ − Ŝ2
−)N̂S. (9)

Let us stress that the exchange term is quadratic in fermionic
operators and therefore does not change under the LF trans-
form. The last term in Eq. (9) arises from the LF transform of
the spin-vibron term. It can be regarded as an additional trans-
verse anisotropy coupling between the charged states, and it
conserves the vibron number. However, we have checked that

it brings negligible effects in the numerical calculations as
long as α � h̄ω0

λ
.

Since the Hamiltonian H̃S,0 commutes with the vibron
number operator N̂V = a†a, its eigenstates assume a factor-
ized form |φQ,ν ; N〉 = |φQ,ν〉|N〉, where |φQ,ν〉 are the eigen-
functions of the renormalized SMM Hamiltonian H̃SMM :=
H̃S,0 − h̄ω0a†a, and the index ν counts the available molec-
ular states with electronic occupation Q = 0, 1, 2. There are
2S + 1 empty molecular states (i.e., Q = 0) and 2(2S + 1)
single-particle (or charged) states (i.e., Q = 1). We shall as-
sume a strong Coulomb interaction U such that for a suitably
chosen bias the double occupancy of the molecular orbital is
forbidden. Then the two-electron states |φ2,ν ; N〉 will not con-
tribute to the transport, and their explicit form is not needed
here. The empty and charged states |φQ,ν〉 are expressed as
linear combinations:

|φ0,ν〉 =
∑

Sz

A(ν)
Sz

|0, 0, Sz〉, (10)

|φ1,ν〉 =
∑
Sz,σ

B(ν)
σ,Sz

|1, σ, Sz〉, (11)

where |Q = 0, sz = 0, Sz〉 denote the “empty” states with
molecular spin Sz, and |1, σ, Sz〉 are the “single-charged”
states of the Hamiltonian H̃SMM(J = 0, E = 0), sz = ±1/2
being the projection of the electronic spin. In Eq. (11) it is
understood that the spin orientations σ =↑,↓ correspond to
the quantum numbers sz = ±1/2.

The “delocalization” of the molecular spin of a state |φQ,ν〉
over more components |Sz〉 of the molecular spin is controlled
by the coefficients A(ν)

Sz
and B(ν)

sz,Sz
. The empty molecular states

contain only spin components with the same parity. For the
single-particle states |φ1,ν〉 this delocalization is due to both
the exchange coupling and the transverse anisotropy term. If
E = 0, the coefficients B(ν)

sz,Sz
can be calculated analytically

(see [21,24]). Note that the states |Q, sz, Sz〉 contributing to
|φQ,ν〉 are described by the same charge occupation Q. There-
fore, the coefficients A(ν)

Sz
and B(ν)

σ,Sz
do not depend on Q.

To sum up, one has

H̃S,0|φQ,ν , N〉 = EQ,ν,N |φQ,ν , N〉, (12)

and the eigenvalues EQ,ν,N read

EQ,ν,N = EQ,ν + Nh̄ω0, (13)

where EQ,ν is an eigenvalue of the LF transformed
Hamiltonian H̃SMM.

We shall now introduce a more convenient notation for
the eigenfunctions |φQ,ν〉, which is valid as long as the mag-
netic field is chosen away from the degeneracy points B =
−D(Sz + S′

z )/gμB in the spectrum of H̃SMM(J = 0, E = 0).
In this case, the mixing of the states |0, 0, Sz〉 induced by the
transverse anisotropy is negligible, and one finds a majority
spin component Sz such that the coefficients of the empty
molecular states obey the condition |A(ν)

Sz
|2 � |A(ν)

S′
z
|2 for all

projections S′
z 	= Sz. Consequently, there is a one-to-one cor-

respondence between the index ν and the majority component
Sz such that we can replace |φ0,ν〉 → |φSz

〉, and as long as the
transverse anisotropy effects are negligible one can approxi-
mate |φSz

〉 ≈ |0, 0, Sz〉.
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A similar argument holds for the single-electron states
|φ1,ν〉, the difference in this case being that the dominant com-
ponent m refers to a specific value of the total spin quantum
number St

z, such that one has |B(ν)
m |2 � |B(ν)

m′ |2 for any m′ 	= m.
It is not difficult to check that the set of 2(2S + 1) single-
charged states {|φQ=1,ν〉} can be labeled as {|φ±

m 〉, |φ±(S+1/2)〉},
where m = −S + 1/2, . . . , S − 1/2.

The states with spin St
z = ±(S + 1/2) are not mixed by

the exchange interaction, such that |φS+1/2〉 = |1,↑, Sz〉 and
|φ−S−1/2〉 = |1,↓,−Sz〉. For the intermediate states |φ±

m 〉 it
turns out that in the expansion given by Eq. (11) there are only
two coefficients associated with a dominant total magnetic
number m such that one can write

|φ±
m 〉 ≈ B±

↓,m+1/2|1,↓, m + 1/2〉 + B±
↑,m−1/2|1,↑, m − 1/2〉.

(14)

The last equation also shows that the majority spin compo-
nents of the empty and single-charged states have different
parities. We shall also use the new notation for the correspond-
ing eigenvalues of the LF-transformed Hamiltonian H̃SMM,
more precisely E0,ν → ESz

and {E1,ν} → {E±
m , E±(S+1/2)},

where the index ± of the energy branches is assigned such
that E+

m > E−
m . These eigenvalues cannot be calculated ana-

lytically unless the anisotropy term vanishes (i.e., E = 0). In
that case, the total molecular m spin is conserved and one has
(see Ref. [24])

E±
m = εσ + gμBBm + J

4
− D

(
m2 + 1

4

)
± �E (m), (15)

where �E (m) = [D(D − J )m2 + (J/4)2(2S + 1)2]1/2. This
expression could still be used as a good approximation as
long as the ratio E/D � 1. In particular, it suggests that the
eigenvalues of H̃SMM acquire Zeeman shifts which depend
on the dominant molecular component m. Equation (15) also
shows that, when represented as a function of the dominant
quantum number m, each energy branch defines a parabola
and a corresponding anisotropy barrier. The energies of the
empty molecular states ESz

≈ −DS
2
z + gμBBSz lie as well on

a parabola.
The same simplified notation applies to the eigenvalues of

H̃S,0, which are now written as follows:

ESz,N = ESz
+ Nh̄ω0, E±

m = E±
m + Nh̄ω0. (16)

Finally, the eigenfunctions |ψQ, j〉 of H̃S can be found by nu-
merical diagonalization, by truncating the number of vibronic
states to N0. Note that the spin-vibron coupling allows only
the conservation of the electronic charge Q on the molecular
orbital, whereas the electronic and molecular spins, as well as
the vibron number, are no longer conserved. The eigenstates
|ψQ, j〉 are then written as linear combinations of “free” states
of H̃S,0:

|ψQ=0, j〉 =
∑
Sz,N

C( j)
Sz,N

|φSz
; N〉, (17)

|ψQ=1, j〉 =
∑

m,N,p=±
C( j)

m,N,p|φp
m; N〉. (18)

In Eq. (18) the branch index p = ± if m corresponds to the
intermediate states and is absent for the fully spin-polarized
states with m = ±(S + 1/2).

B. The transport setting

The single-molecule magnet is connected to source (left)
and drain (right) leads described as noninteracting particle
reservoirs with chemical potentials μL,R (see Fig. 1). The
Hamiltonian of the open system reads

H (t ) = H̃S + HL + H̃T (t ), (19)

where H̃T is the tunneling Hamiltonian in which the cre-
ation and annihilation operators were transformed according
to Eq. (6) and H.c. denotes the Hermitian conjugate:

H̃T (t ) =
∑

α=L,R

∑
σ

∫ π

0
dqαχα (t )(V σ

α c†
σ �†cqασ + H.c.). (20)

The parameter V σ
α is the hopping amplitude between the or-

bital level of the SMM with energy εσ and the electronic
spin states in the lead α with momentum qα . We assumed
spin-conserving tunneling processes, that is, the electron does
not flip its spin when tunneling between the molecule and
the particle reservoirs. Then we denote V ↑

α = V ↓
α := Vα . In

the tight-binding representation of the leads that we use here,
one obtains a simple expression for the energy of the incident
electron, that is, εq = 2tL cos q (with tL being the hopping
constant on the leads). Note that the Hamiltonian HL of the
noninteracting leads does not change under the LF transfor-
mation.

In the partitioning approach to quantum transport [36,37],
the two switching functions χL,R(t ) simulate the coupling
of the nanomagnet to the leads. For simplicity, we consider
that the coupling to the leads is established at instant t = 0
and that χL,R(t ) = θ (t ), where θ (x) is the step function.

The spin polarization of the lead α is defined as

Pσ
α := (

Nσ
α − Nσ

α

)
/
(
Nσ

α + Nσ
α

)
, (21)

where Nσ
α and Nσ

α are the density of states for the majority
(σ ) and minority (σ ) spin in the lead α. We shall use this
notation to introduce various spin-polarized configurations
of the leads. We consider that the two leads have the same
total density of states ND, that is, N↑

α + N↓
α = ND. If N↑

α = 0,
the lead α is magnetic (i.e., fully polarized) and carries only
spin-down electrons, i.e., P↓

α = 1. Partially polarized leads are
defined by intermediate polarizations Pσ

α ∈ (0, 1). In addition,
a nonmagnetic lead is described by equal spin densities, that
is, N↑

α = N↓
α , from where it follows that P↑

α = P↓
α = 0.

Within the Markov approximation, the master equation for
the reduced density operator ρ of the hybrid system takes the
form (see Ref. [37])

ρ̇(t ) = − i

h̄
[H̃S, ρ(t )] − Lleads[ρ(t )] − Lκ [ρ(t )], (22)

where Lleads takes into account the contribution of the particle
reservoirs (i.e. the leads):

Lleads = 1

h̄2

∫ ∞

0
dsTrleads{[H̃T , [H̃T,I (−s), ρ(t )ρleads]]},

(23)
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where Trleads{·} denotes the partial trace with respect to the
leads, ρleads is their equilibrium statistical operator, and H̃T,I (t )
stands for the interaction picture with respect to the unitary
evolution of the decoupled Hamiltonian, that is, H̃T,I (t ) =
e

i
h̄ t H̃S e

i
h̄ tHL H̃T e− i

h̄ t H̃S e− i
h̄ tHL . For computational purposes, one

has to replace the two tunneling Hamiltonians in Eq. (23) and
then generate several terms associated with various tunneling-
in or -out processes. For example, the tunneling of an electron
with spin σ from the electrode α to the molecular orbital
changes the configuration of the SMM from an empty molec-
ular state |ψQ=0, j〉 to a charged state |ψQ=1, j′ 〉. Using the fully
interacting basis of H̃S , one finds that the corresponding term
in the Lindblad equation is (see Ref. [32])

Tασ, j′ j = fα (Ẽ1, j′ − Ẽ0, j )
√

Nσ
α Vα〈ψ1, j′ |c†

σ�†|ψ0, j〉. (24)

The last term Lκ in the master equation describes the dis-
sipation processes due to a thermal reservoir, nB being the
Bose-Einstein distribution. The Lang-Firsov transformation
leads to the following form of Lκ [38]:

Lκρ(t ) = (nB + 1)Dκ [a]ρ(t ) + nBDκ [a†]ρ(t )

+
(

λ

h̄ω0

)2

(2nB + 1)Dκ [N̂S]ρ(t ), (25)

where we introduced the notation

Dκ [X ]ρ(t ) = κ

2
(X †Xρ + ρX †X − 2XρX †), (26)

and the operator X = a, a†, N̂S . The master equation is solved
with respect to the basis of fully interacting states {ψQ, j},
while the statistical averages can be also calculated with
respect to the basis of H̃S,0, using the unitary transforma-
tion which connects it to the fully interacting basis [see
Eqs. (17) and (18)]. It is also useful to discuss the occupation
of the molecular configurations with dominant spin compo-
nents Sz and m, calculated by collecting the contributions
from the N-vibron states |φSz,N 〉 and |φm,N 〉. For example,
the population of the intermediate single-particle state |φ±

m 〉 is
calculated as

P±
m (t ) =

∑
N

〈φ±
m ; N |ρ(t )|φ±

m ; N〉 :=
∑

N

P±
m,N (t ). (27)

Note that the integer and half-integer values of m distinguish
between the empty and charged SMM states. The statistical
average of the localized spin is calculated as

〈Sz〉(t ) = Tr{ρ(t )Ŝz}, (28)

where the trace is taken over all states of the hybrid sys-
tem. Similarly, one can compute the average number of
vibrons 〈NV 〉(t ) := Tr{ρ(t )a†a} and the total electronic
charge QS = Tr{ρ(t )eN̂S} (e denotes the electron charge). The
time-dependent currents JL,R in the two leads are identified
from the continuity equation:

d

dt
QS (t ) = eTr

{
N̂S

d

dt
ρ(t )

}
= JL(t ) − JR(t ). (29)

In the long-time limit, the system evolves towards a station-
ary state characterized by the stationary current JL = JR :=
JS . Let us point out that most studies on transport through
single-molecule magnets rely on stationary Markovian master

equations (see Refs. [11,18,30,33]). Markovian calculations
for a system of N spins on a metallic surface were also
presented in Ref. [39]. Notably, this system is described by
the Lipkin-Meshkov-Glick (LMG) model [40]. However, to
capture the information backflow in helical quantum rings
coupled to non-Markovian magnonic baths, one has to rely
on alternative methods [41].

III. NUMERICAL RESULTS AND DISCUSSION

Let us consider a single-molecule magnet described by a
localized spin S = 2. For the numerical simulation we used
D = 0.056 meV, corresponding to a rather small anisotropy
energy barrier DS2 = 0.224 meV. The transverse anisotropy
coefficient E is fixed by the ratio E/D = 1/15, and the ex-
change interaction is assumed to be isotropic, Jx = Jy = Jz :=
J , with the strength J = 0.25 meV. The electron-vibron and
spin-vibron coupling strengths are set to λ = 0.5 meV and
α = 0.15. The energy of the spin-degenerate molecular orbital
ε↑ = ε↓ := ε0 can be conveniently tuned by a gate voltage; the
calculations were performed for ε0 = 1 meV. The loss coeffi-
cient is κ = 0.05 µeV, and the temperature of the environment
is T = 50 mK. The strength of the Coulomb interaction is set
to U = 2.5 meV.

The Markovian master equation is solved numerically by
taking into account up to N0 = 15 vibron states. We found that
this cutoff ensures the convergence of the numerical results,
that is, the mean vibron number, the current, and the average
molecular spin do not change significantly when N0 increases.

A. Removal of the spin blockade

In this section, we consider that the left electrode pro-
vides only spin-down electrons (i.e., P↓

L = 1), while the right
(i.e., drain) electrode carries mostly spin-up electrons, that
is, N↑

R > N↓
R . This quasi-antiparallel configuration, denoted in

the following by ↓L↑R, is also depicted in Fig. 1; the fully
antiparallel configuration corresponds to P↓

L = P↑
R = 1. The

numerical simulations were performed for the initial density
matrix ρ(t = 0) = |φ−2; 0〉〈φ−2; 0|, which corresponds to the
lowest energy of the system. We emphasize here that the
constant perpendicular magnetic field along the z-axis leads
to Zeeman shifts and removes the degeneracy between the
lowest doublet with spins S = ±2. Therefore, the transverse
anisotropy induces a negligible mixing of the empty molec-
ular states, since E � D. The chemical potentials of the
electrodes are μL = 3 meV and μR = −3 meV; for these
values, the double occupancy of the LUMO is forbidden.

In the absence of the spin-vibron coupling, the energies of
the empty and charged molecular states of H̃S,0 [see Eq. (16)]
can be represented as points lying on different parabolas as
a function of their integer (Sz) and half-integer (m) dominant
spin components. Three such branches are shown in Fig. 2:
the lowest inverted parabola corresponds to ESz,N , the other to
charged molecular energy levels E+

m,N and E+
m,N+1. The lowest

energy branch E−
m,N is not represented.

First, it is not difficult to observe that the energy gaps
between the next-nearest-neighbor levels E±

−1/2 and E−5/2

have a linear dependence on the transverse magnetic field;
this feature is also predicted by the Zeeman terms in Eq. (15).
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FIG. 2. Energy branches, sequential tunneling processes (black
arrows), and vibron-assisted transitions on the left side of the
anisotropy barrier for a SMM described as localized spin S = 2.
The spins involved in the tunneling processes are represented with
colored arrows. The wavy line indicates vibron-assisted transitions
associated with the resonant condition E−5/2,N+1 = E+

−1/2,N .

Secondly, since E−5/2,N+1 − E±
−1/2,N = E−5/2 − E±

−1/2 + h̄ω0,
one expects that the spin-vibron coupling induces
vibron-assisted transitions between the states |φ−5/2; N + 1〉
and |φ±

−1/2; N〉 as the magnetic field sweeps the resonant
values h̄ω0 = E±

−1/2 − E−5/2. These transitions should play
a role both in the population dynamics and in transport. In
this section, we shall focus on the vibron-assisted transitions
associated with the positive energy branch. Taking into
account the calculated values of E+

−1/2 and E−5/2, we set the
frequency of the vibrational mode to h̄ω0 = 0.85 meV [42].

The resonant condition E−5/2,N+1 = E+
−1/2,N is expected to

enhance the role of the spin-vibron coupling. As a conse-
quence, the leftmost fully spin-polarized state |φ−5/2, N + 1〉
and the intermediate state |φ+

−1/2, N〉 turn into a pair of vibron-
dressed states [see Eq. (18)]. In Fig. 3(a) we plot the magnetic
field dependence of the energies corresponding to four such
dressed states of the fully interacting Hamiltonian H̃S . The en-
ergy spectrum showed in Fig. 3(a) has features encountered in
the Jaynes-Cummings (JC) model in quantum optics [43,44]:
(i) at some value of the magnetic field (i.e., B = 150 mT),
there is an avoided crossing point for each pair of energies;
(ii) the energy gap at the resonance point increases with the
vibron number N ; and (iii) the spectral branches for N = 0
and 1 are roughly separated by the single-vibron energy h̄ω0.

Figure 3(b) also shows the weights of the “free” states
|φ−5/2, 1〉 and |φ+

−1/2, 0〉 in the lowest-energy dressed state.
Again, as in the JC model, these weights vary smoothly
between 0 and 1, being nearly equal at resonance. Obviously,
far away from the avoided crossing point (i.e., in the
off-resonant regime) one recovers the “free” states and
their corresponding eigenvalues E−5/2,N=1,2 and E+

−1/2,N=0,1
[indicated in Fig. 3(a)] as the spin-vibron coupling becomes
inactive. Let us stress that the charged states |φ±

m , N〉 with
dominant molecular spin m 	= −5/2,−1/2 are not mixed
by the spin-vibron coupling. Nonetheless, they contribute
significantly to the transport process.

For example, the black arrows in Fig. 2 indicate tunneling
processes between the empty state |φ−2; N〉 and the neighbor
single-charged states |φ−5/2; N ′〉 and |φ+

−3/2; N ′〉, where

FIG. 3. (a) The magnetic field dependence of the N = 0 and
1 energy doublets associated with pairs of dressed states made of
|φ−5/2, N + 1〉 and |φ+

−1/2, N〉 “free” states. (b) The weights of the
“free” states in the lowest-energy dressed state.

N ′ = N, N + 1. It is clear that |φ−2; N〉 and |φ−5/2; N ′〉
are connected by tunneling of spin-down electrons. Then,
tunneling-in processes lead to heating if N ′ > N , while for
vibron emission associated with tunneling-out events one
has N ′ < N . Vibron absorption processes (i.e., cooling) are
defined in a similar way. The number of vibrons emitted in
the tunneling processes depends on the chemical potentials
of the leads. In fact, we find that the energy spectra of the
Hamiltonians H̃S and H̃S,0 [see Eqs. (8) and (9)] are quite
close. Then from Eq. (24) it follows that the emission of
(N ′ − N ) vibrons requires that μα > E−5/2,N ′ − E−2,N . Also,
corroborating the mixed spin structure of the intermediate
states [i.e., |φ±

−3/2〉 ≈ B±
↓,−1|1,↓,−1〉 + B±

↑,−2|1,↑,−2〉—
see Eq. (14)] and the spin selection rules, one infers that they
can be populated only by tunneling of a spin-up electron from
the left contact.

It is important to observe that in the off-resonant regime,
electrons are allowed to tunnel only to the state |φ−5/2; N〉,
while the excited molecular states |φ±

−3/2; N〉 are not avail-
able. This happens because the fully polarized left electrode
prevents the tunneling process involving the component |Q =
1, σ =↑, Sz = −2〉 of the charged states |φ±

−3/2; N〉. More-
over, the molecular spin is pinned to Sz = −2 due to the selec-
tion rules for tunneling. In other words, the antiparallel con-
figuration ↓L↑R does not allow the climbing of the anisotropy
barrier in the off-resonant regime and also imposes a simulta-
neous blockade on the electronic and molecular spins. Note,
however, that electrons tunnel to the drain electrode by the
depletion of the state |φ−5/2; N〉, as long as P↑

R < 1.
In Fig. 4(a), we present the steady-state current as a func-

tion of the magnetic field and for several polarizations P↑
R

of the drain electrode. As stated above, in the off-resonant
regime the current is due to the cumulative “background”
contribution of the N-vibron states |φ−5/2; N〉 and shows only
a weak dependence on the magnetic field. As one enters the
resonant regime, a symmetric peak develops for all values of
P↑

R . The height of these peaks decreases if the polarization
P↑

R is reduced, whereas the background off-resonant current
increases. This amplification of the stationary current in the
resonant regime could be observed in typical transport mea-
surements and witnesses the activation of the spin-vibron
coupling and the corresponding transitions. Let us note that
the difference between the off-resonant and resonant station-
ary currents is sizable [for P↑

R = 0.7 it goes up to 15 pA—this
is better seen in Fig. 5(a) below].
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FIG. 4. (a) The stationary current JS as a function of the
magnetic field. (b) The average molecular spin. (c) The spin oc-
cupations N↑ and N↓. The removal of the spin blockade around
the resonance point B = 150 mT coincides with the enhance-
ment of charge transport. The amplitude of the correlated peaks
of the current and molecular spin depends on the spin polariza-
tion P↑

R in the right electrode. Other parameters: VL = 25 µeV,
VL = 10 µeV.

FIG. 5. (a) The transient current JR(t ) for several values of the
magnetic field. (b) The short-time dynamics of the molecular spin
〈Sz〉(t ). (c) The vibron number 〈NV 〉(t ). (d) The time-dependent
populations of relevant charged configurations in the resonant regime
(i.e., for B = 150 mT). Other parameters: P↑

R = 0.7, VL = 25 µeV,
VR = 10 µeV.

The dependence of the stationary average molecular spin
〈Sz〉 on the magnetic field is shown in Fig. 4(b). One notices
the removal of the spin blockade in the resonant regime. More
precisely, around resonance 〈Sz〉 displays a series of peaks as
a function of P↑

R , while in the off-resonant regime 〈Sz〉 ≈ −2.
The obvious correspondence between the peaks in Figs. 4(a)
and 4(b) also allows the reading of changes in the molecular
spin from the enhancement of the stationary current in the res-
onant or nearly resonant regime. The increase of the molecular
spin at the resonance point indicates that excited molecular
states with dominant spin number |m| < 2 must come into
play. As for the mean vibron number 〈NV 〉, we find that a
smooth dip develops as the magnetic field sweeps the resonant
value (not shown).

Now let us discuss the electronic spin accumulation in the
SMM. From Fig. 4(c) one notices that away from resonance
the occupation N↑ of the spin-up state almost vanishes if the
drain electrode is highly polarized (i.e., for P↑

R = 0.9 and 0.7).
Conversely, N↓ ≈ 1, because the depletion of the spin-down
electron is strongly prohibited. As the system approaches the
resonant regime, the electronic spin blockade is lifted. More
precisely, N↑ reaches a maximum on resonance for all val-
ues of P↑

R , while N↓ develops a dip that is enhanced as P↑
R

decreases. Note that if P↑
R = 1, the molecular orbital is fully

occupied and the stationary current vanishes (not shown).
Additional information on the spin-vibron effects is also

provided by the transient currents, which are presented in
Fig. 5(a) for several values of the magnetic field and P↑

R = 0.7.
The transient current displays Rabi oscillations that are more
pronounced at resonance (i.e., for B = 150 mT) and almost
disappear in the off-resonant regime (e.g., for B = 200 mT).
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Even in the resonant case, the oscillations are damped by
the tunneling processes, which act as dissipative channels.
It is important to emphasize here the role of the asymmetric
coupling to the leads, VL > VR. In this case, the tunneling rate
to the drain electrode decreases and favors the observation
of several Rabi oscillations. Although for symmetric cou-
pling we find fewer oscillations, the changes of the stationary
currents when passing through the resonance point remain
important.

Figure 5(b) shows that around resonance, the average
molecular spin also develops oscillations; in contrast, away
from resonance, the spin evolves smoothly towards the steady-
state value. We find similar damped oscillations for the
average vibron number [see Fig. 5(c)]. These oscillations are
clearly associated with absorption and emission of vibrons
during molecular spin transitions between states |φ−5/2; N +
1〉 and |φ+

−1/2; N〉. On the other hand, the smooth increase
of 〈NV 〉 towards the stationary regime reflects the heating of
the system via tunneling processes. In Figs. 5(a)–5(c) one
notices that the oscillation period decreases as the magnetic
field varies. This behavior is again explained in the frame-
work of the JC model, which predicts that the period of
the Rabi oscillation decreases as a function of the detuning,
E+

−1/2 − E−5/2 − h̄ω0.
The time-dependent populations of the single-particle spin

configurations which participate to transport in the resonant
regime are displayed in Fig. 5(d). Each population col-
lects contributions from all vibrational states, as indicated in
Eq. (27). Note that for m = −3/2,−1/2 we represent the to-
tal occupation, Pm(t ) = P+

m (t ) + P−
m (t ). Both P−5/2 and P−1/2

exhibit Rabi oscillations in the early transient regime, con-
firming once again the presence of the spin transitions induced
by the spin-vibron coupling. We have checked that the pop-
ulation of the states |φ−

−1/2; N〉 does not exhibit oscillations,
as the corresponding energies are detuned. In contrast, P−3/2

only emerges at some later times and increases uniformly. We
stress that in the off-resonant regime (e.g., for B = 250 mT),
P−3/2 and P−1/2 are vanishingly small (not shown), while
P−5/2 does not develop Rabi oscillations. Now, each of the
single-particle states |φ±

m ; N〉 with m = −3/2,−1/2 is cou-
pled to empty molecular states via sequential tunneling-in or
-out processes. For instance, the depletion of the states with
m = −1/2 and −3/2 is mostly due to spin-up tunneling pro-
cesses to the right electrode. This leads in turn to nonvanishing
populations of the empty molecular states |φ−1〉 and |φ−2〉
both in the transient and stationary regimes (not shown). Also,
by looking at the spin structure of the single-particle states,
one infers that the “chain” of sequential tunneling processes
leading to magnetic switching cannot be completed. Indeed,
we find that configurations with molecular spin m > 0 are
not available, because spin polarization of the left electrode
does not allow the tunneling-in process of spin-up electrons
|φ0〉 → |φ±

1/2〉. This also explains why at resonance the sta-
tionary average value of the molecular spin goes only up to
〈Sz〉 ≈ −1.5 [see Fig. 4(b)].

The analysis presented in this section proves that the un-
pinning of the electronic spin and the amplification of the
stationary current in the resonant regime result from the
interplay of the spin-vibron and the exchange interaction.
The former allows resonant transitions to the excited states

|φ+
−1/2; N〉, whereas the latter imposes the mixed spin structure

of this state, according to Eq. (14). As shown in Fig. 5(d), the
increase of the spin-up occupation N↑ is clearly related to the
activation of more excited states with energies on the left side
of the anisotropy barrier. On the other hand, these states allow
the tunneling of both spins to the drain electrode. Therefore,
the resonant transitions activate additional transport channels
which add up to the off-resonant background current. Let us
stress that all these processes are also active when the left lead
is nonmagnetic (i.e., if P↑

L = P↓
L = 0). In this case, the spin

blockade is not set and the states |φ±
−3/2, N〉 are populated even

in the off-resonant regime. This reduces the visibility of the
Rabi oscillations in the transient current.

B. Current-induced magnetic switching

In this subsection, we shall consider that the left electrode
injects only spin-up electrons (i.e., P↑

L = 1), while the right
electrode carries mostly spin-down electrons, such that P↓

R >

0. This configuration, denoted by ↑L↓R, prevents the tunneling
to the fully spin-polarized state |φ−5/2〉 and allows the occu-
pation of the states |φ±

−3/2〉. On the other hand, the dominant
depletion of the spin-down electrons to the right electrode
favors the empty molecular states with increasing spin. In the
steady-state regime, this sequence of tunneling processes ends
up in current-induced magnetic switching S → −S, such that
the system is described only by the fully polarized states |φ5/2〉
and |φ2〉 (see Ref. [24]).

We stress that the magnetic switching is due to the ex-
change interaction between the electronic and molecular
spins, which causes a strong mixing of the states |Q =
1, σ, Sz〉. Since the electron-vibron coupling conserves both
the electronic and molecular spins, one expects that the same
switching mechanism should still be at work if λ 	= 0.

To check the effect of the spin-vibron interaction in the
↑L↓R configuration, we select a frequency of the vibrational
mode which activates transitions on the right side of the
anisotropy barrier, namely between the fully polarized states
|φ5/2; N〉 and the excited molecular states |φ+

1/2; N − 1〉. For
B = 150 mT and J = 0.25 meV we find that the resonant
frequency of the vibrational mode is given by h̄ω0 = E+

1/2 −
E5/2 = 0.78 meV. In this section, we consider symmetric cou-
pling to the leads, VL = VR = 25 µeV, while keeping μL =
3 meV and μR = −3 meV.

Transport calculations were performed for different po-
larizations P↓

R of the right electrode. In fact, the values of
P↓

R are varied from the nonmagnetic case (P↓
R = 0) to the

fully spin-down polarization P↓
R = 1. The transient currents

in the resonant (B = 150 mT) and off-resonant (B = 300 mT)
regimes are shown in Fig. 6(a). A clear enhancement of the
stationary current is noticed in the resonant case. More pre-
cisely, the difference between the resonant and off-resonant
stationary currents increases from 50 pA for P↑

R = 0.4 to
almost 80 pA for P↑

R = 0.7. Also, the transient currents show
that the evolution towards the steady-state regime is faster in
the presence of molecular spin transitions. In the resonant
case, the currents reach a constant value around t = 5 ns,
whereas in the off-resonant regime a longer time is needed
(i.e., t ≈ 15 ns).
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FIG. 6. (a) The transient currents JR(t ) for two values of the
polarization P↓

R in the resonant regime (on-R), solid lines; and the
off-resonant regime (off-R), dashed lines. (b) The spin-dependent
electronic occupations in the resonant and off-resonant regimes for
P↓

R = 0.7.

Figure 6(b) illustrates the effects of the spin-vibron cou-
pling on the spin-dependent electronic occupations Nσ . In
both resonant and off-resonant cases, the spin accumulation
is much faster up to t ∼1.5 ns, and it corresponds to the
abrupt increase of the transient currents in Fig. 6(a). Then
the evolution of the spin occupations displays fingerprints
of the vibron-assisted transitions. In the off-resonant regime,
the orbital is spin-up polarized (i.e., N↓ ≈ 0) but not fully
occupied (N↑ ≈ 0.82); this happens because in the stationary
regime the tunneling process involves only the fully polarized
state |φ5/2〉 = |Q = 1,↑, Sz = 2〉. When the spin-vibron cou-
pling comes into play, the spin-down occupation no longer
vanishes whereas the spin-up occupation decreases consider-
ably. Also, the total charge occupation N↑ + N↓ decreases in
the resonant regime, which explains the current enhancement
seen in Fig. 6(a). Since the state |φ5/2〉 is spin-up polarized,
the accumulation of spin-down electrons suggests that other
intermediate molecular states participate to transport in the
resonant regime.

Let us stress that in this antiparallel configuration of
the electrodes there are no visible Rabi oscillations of the

FIG. 7. Steady-state occupations as a function of P↓
R in the reso-

nant and off-resonant regime. (a) The occupations Pm of the charged
states. (b) The occupations PSz

of the empty molecular states.

transient currents. Nonetheless, the results in Fig. 6 show
that the spin-vibron coupling still imposes sizable changes
on the stationary transport properties. To explain these fea-
tures, we recall that at resonance (or close to it) the pairs of
states {|φ5/2; N〉, |φ+

1/2; N − 1〉} merge into “dressed” states.
This mixed structure implies nonvanishing occupations of
the state |φ+

1/2, N〉 even in the steady-state, as long as the
vibron number 〈NV 〉 	= 0. Also, the occupation of the excited
states |φ+

1/2, N〉 triggers sequential tunneling-out processes to
empty-molecular states |φ1, N〉 and |φ0, N〉. The intermedi-
ate charged states with m = 3/2 can also be populated via
tunneling-in processes.

To prove this scenario, we now discuss the steady-state
populations of the relevant empty and charged molecular
states. Figure 7 shows that in the off-resonant case the system
is mostly described by states with the reverse molecular spin,
namely |φ5/2, N〉 and |φ2, N〉, such that P2 + P5/2 > 0.9 for
all values of P↓

R (the much smaller occupation of the states
|φ±

3/2, N〉 was not shown). On the other hand, at resonance, all
configurations with positive quantum numbers achieve sub-
stantial populations as long as P↓

R < 0.7. As the polarization
of the right electrode increases, the occupations of states with
dominant spin number m > 0 and Sz > 0 decrease. Eventu-
ally, for the fully antiparallel configuration P↑

L = P↓
R = 1 the

system ends up in the polarized state, and P5/2 ≈ 1 both in the
resonant and off-resonant regimes.

Figure 8 adds to the analysis of the stationary properties
by showing their dependence on the polarization of the right
electrode. Figure 8(a) allows a comparison of the resonant
and off-resonant steady-state currents. A small difference
(around 6.5 pA) between the two currents is noticed even
for nonmagnetic drain electrode (i.e., for P↓

R = 0). As P↓
R

increases, both currents decrease but at different slopes and
eventually vanish in the fully antiparallel configuration P↓

R =
1, when the spin-up occupation N↑ = 1 both in the resonant
and off-resonant regimes [see Fig. 8(b)]. The mean average
spin 〈Sz〉 is shown in Fig. 8(c). In the off-resonant regime,
the spin reversal is rather efficient for all values of P↓

R (e.g.,
〈Sz〉 > 1.85 even in the nonmagnetic case P↓

R = 0). In turn,
the significant occupation of the charged and empty molec-
ular states with Sz 	= 2 strongly affects the spin reversal at
resonance. The mean vibron number presented in Fig. 8(d)
decreases as the right electrode becomes magnetic. One no-
tices that in the resonant regime, 〈NV 〉 ≈ 0.2 when P↓

R = 1,

024416-9



V. MOLDOVEANU AND R. DRAGOMIR PHYSICAL REVIEW B 108, 024416 (2023)

FIG. 8. Steady-state quantities as functions of P↓
R in the resonant

and off-resonant regimes. (a) The current JR. (b) The spin-dependent
electronic occupations Nσ . (c) The average molecular spin. (d) The
mean vibron number NV .

whereas in the off-resonant regime the vibron number almost
vanishes.

In this case, we have checked that when P↓
R = 1, the oc-

cupation P5/2 shown in Fig. 7(a) reduces to the occupation
of the state |φ5/2; N = 0〉. On the other hand, in the resonant
case we find nonvanishing populations for several excited
states |φ5/2, N > 0〉. We emphasize that the behavior shown
in Figs. 6(a) and 8(a) could be, in principle, reproduced in
future experiments, at least for nonmagnetic or weakly po-
larized drain electrodes. Also, the left electrode could be a
magnetized tip as in the spin-polarized scanning tunneling
microscopy (SP-STM) setup.

Our analysis shows that although the polarization of the
left electrode allows the spin to overcome the anisotropy
barrier, the current-induced magnetic switching is damaged
if the resonant regime couples the states |φ5/2; N + 1〉 and
|φ+

1/2; N〉. This fact is not beneficial for efficient spin manipu-
lation schemes, but the spin-vibron effects on the transient and
stationary currents can be used to probe indirectly the resonant
transitions as the molecular spin climbs down the anisotropy
barrier.

In contrast, if the resonant condition favors transitions be-
tween states on different sides of the anisotropy barrier, we
find that the effect of the spin-vibron coupling on the CIMS is
very small. For example, if we tune the frequency of the vibra-
tional mode to the transitions |φ+

−3/2; N + 1〉 → |φ+
1/2; N〉, the

molecular spin switches to 〈Sz〉 = 2 and we only notice small
differences in the transient curves corresponding to resonant
and off-resonant regimes (not shown). The negligible effect
of the spin-vibron coupling in this case can be explained by
the CIMS mechanism (see [24,25] and references therein):
the asymmetric spin-dependent tunneling processes push the
system towards the rightmost single-particle and empty states
having Sz = 2 (i.e., |φ5/2〉 and |φ2〉), while the other interme-
diate spin states will eventually be depleted.

For completeness, we also discuss the case in which the
hybrid system carries a nonpolarized charge current, which

FIG. 9. Steady-state current JS as a function of the exchange
interaction strength J . Inset: the resonant energies h̄ω0 calculated
for E = 0 (solid line) and for E/D = 1/15 (filled circles). Other
parameters: P↓

R = 0.7.

corresponds to the equal spin densities in both leads such
that Pσ

L = Pσ
L = 0. As shown in previous papers [22,25],

this configuration will not lead to a complete spin reversal.
Performing numerical calculations for the same initial state
|φ−2; 0〉, we find that the average spin increases only up to
the steady-state value 〈Sz〉 = 0. This feature persists even if
the spin-vibron coupling activates spin transitions between the
states |φ+

−3/2; N + 1〉 and |φ+
1/2; N〉. Again, slight differences

between the resonant and off-resonant cases are noticed only
in the transient regime (not shown).

Finally, we also inspected whether the signatures of the
spin-vibron interaction on the steady-state currents can still
be detected at smaller values of the exchange interaction J .
Although for specific molecules J could be calculated by
ab initio methods, in theoretical works that rely on the
giant-spin effective Hamiltonian it is considered as an input
parameter. In Ref. [26] the strength of the exchange interac-
tion is denoted by aμB, where a = −3.9 T; therefore, J :=
|aμB| ≈ 0.23 meV, in agreement with the value considered in
our simulations.

In Fig. 9 we present the stationary currents JS in the
resonant and off-resonant regimes as functions of J . We
stress that for each value of J , the frequency ω0 of the
vibrational mode is adjusted such that the resonant condi-
tion E+

1/2 − E5/2 = h̄ω0 corresponds to the same value of
the magnetic field B = 150 mT. In fact, if the transverse
anisotropy E = 0, the gap E+

1/2 − E5/2 can be calculated from
Eq. (15). The corresponding resonant energies h̄ω0 shown
in the inset of Fig. 9 are close to the calculated values in
the presence of the transverse anisotropy. One notices that
as the exchange interaction decreases, the resonant transi-
tions correspond to lower frequencies. This also means that
the system enters the strong-coupling regime with respect
to the electron-vibron coupling, as the ratio λ/h̄ω0 > 1 for
J < 0.12 meV.

Most importantly, Fig. 9 proves that the difference be-
tween the stationary currents in the two regimes remains
significant when J covers a wide range of values. Notably,
one could still detect the presence of the resonant transitions
even if J is comparable to the easy-axis anisotropy coefficient
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(D = 0.056 meV). As the coupling strength decreases, the
two currents drop and reach the same value for J = 0. This
behavior can be explained by considering the effect of the
exchange coupling on the spin-dependent transport. As the
polarization of the left electrode is P↑

L = 1, a nonvanishing
spin-down component of the current requires some exchange-
induced spin-flip processes in the system. We find that as
J decreases, the mixing of the spin states [see Eq. (14)] be-
comes negligible. Accordingly, at J = 0 the occupation N↓
vanishes in both regimes. Then the current is carried only by
spin-up electrons and is limited by the polarization of the right
electrode. At larger values of J , the stationary current slowly
decreases, because at higher frequencies ω0 the ratio λ/h̄ω0

becomes smaller and affects the tunneling matrix elements
[see Eqs. (24) and (6)].

We conclude our study by discussing the role of vibron
relaxation. For the small values of the loss parameter κ con-
sidered in this work, the corresponding relaxation time is
indeed long enough to discern the effects of the spin-vibron
coupling. By further increasing the loss coefficient κ , the av-
erage number of vibrons in the stationary state will eventually
decrease, and therefore the effects of the spin-vibron coupling
are less visible. Nonetheless, the number of vibrons generated
via tunneling processes would further increase by increasing
the strength of the electron-vibron coupling or the coupling to
the leads.

IV. CONCLUSIONS

In this work, we studied theoretically the interplay between
the spin-vibron, charge-vibron, and exchange interactions in
a single-molecule magnet coupled to spin-polarized leads.
The SMM is described by an effective giant-spin Hamiltonian
associated with a localized spin S = 2. In spite of its
simplicity, this model allows us to predict specific and sizeable
effects of the spin-vibron coupling on the transport properties.
The transient and stationary quantities were calculated
numerically from the master equation, this approach being
most suitable for weak molecule-electrode coupling. To
detect the vibron-assisted transitions of the molecular spin
on both sides of the anisotropy barrier, we considered two
quasi-antiparallel configurations of the electrodes, namely
↓L↑R and ↑L↓R. All results are conveniently explained using
the vibron-dressed states picture and the Jaynes-Cummings
model from quantum optics.

We find that the antiparallel configuration ↓L↑R induces
a spin-blockade in the off-resonant regime. In contrast, the

resonant regime allows the indirect reading of the spin transi-
tions on the left side of the anisotropy barrier. The numerical
results predict an enhancement of the steady-state current in
the resonant regime and periodic or quasiperiodic Rabi oscil-
lations of the transient current. More precisely, the stationary
current develops a peak as the magnetic field applied on the
easy-axis of the SMM sweeps the resonance. The observa-
tion of such peaks in future experiments would confirm the
existence of transitions induced by the spin-vibron coupling,
and it provides a useful investigation tool, given the fact that
the vibrational modes or the strengths of the exchange and
spin-vibron interactions for specific molecules are not easy to
compute.

In the second configuration, ↑L↓R, the spin-vibron cou-
pling induces transitions on the right side of the anisotropy
barrier which compete with the magnetic switching due to tun-
neling processes. Although in this case the Rabi oscillations in
the transient regime cannot be discerned anymore, we find that
the resonant transitions still induce an important amplification
of the stationary currents for a wide range of the polarization
parameters of the drain electrode.

Let us stress that in previous experiments [14,15], the ef-
fects of the spin-vibron coupling were identified by reversing
the molecular spin via the mechanism of quantum tunneling
of magnetization in an indirect transport setting, i.e., when the
molecule is not connected to electrodes but rigidly attached
to a conducting nanoresonator. Our results provide insight
into a new facet of the spin-vibron interaction and predict
that its effects could also be observed in the direct transport
configuration. In this setup, the vibron-assisted spin transi-
tions and the exchange interaction between the localized spin
and electrons tunneling through the molecular orbitals can-
not be disentangled. Each of these two interactions plays an
important role in transport. The exchange interaction allows
the climbing of the anisotropy barrier via the current-induced
magnetic switching, whereas the spin-vibron coupling brings
in additional transitions of the molecular spin. On the other
hand, the resonant transitions and therefore the spin-vibron
coupling can be conveniently switched-on and -off by varying
the magnetic field.
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[25] M. Misiorny and J. Barnaś, Phys. Status Solidi B 246, 695

(2009).
[26] C. Godfrin, S. Thiele, A. Ferhat, S. Klyatskaya, M. Ruben, W.

Wernsdorfer, and F. Balestro, ACS Nano 11, 3984 (2017).
[27] F. May, M. R. Wegewijs, and W. Hofstetter, Beilst. J.

Nanotechnol. 2, 693 (2011).
[28] J. Brüggemann, S. Weiss, P. Nalbach, and M. Thorwart, Phys.

Rev. Lett. 113, 076602 (2014).

[29] J. Brüggemann, S. Weiss, P. Nalbach, and M. Thorwart, New J.
Phys. 18, 023026 (2016).

[30] A. Kenawy, J. Splettstoesser, and M. Misiorny, Phys. Rev. B
97, 235441 (2018).

[31] L. Cai, R. Jaafar, and E. M. Chudnovsky, Phys. Rev. Appl. 1,
054001 (2014).

[32] V. Moldoveanu and R. Dragomir, Phys. Rev. B 104, 075441
(2021).

[33] K. Hymas and A. Soncini, Phys. Rev. B 99, 245404 (2019).
[34] K. Hymas and A. Soncini, Phys. Rev. B 102, 045313 (2020).
[35] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev.

B 72, 094426 (2005).
[36] C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J.

Phys. C 4, 916 (1971).
[37] V. Moldoveanu, A. Manolescu, and V. Gudmundsson, Entropy

21, 731 (2019).
[38] D. W. Utami, H.-S. Goan, and G. J. Milburn, Phys. Rev. B 70,

075303 (2004).
[39] J. S. Ferreira and P. Ribeiro, Phys. Rev. B 100, 184422

(2019).
[40] H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188

(1965).
[41] M. Kaczor, I. Tralle, P. Jakubczyk, S. Stagraczyński, and L.
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