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Finite-size and finite bond dimension effects of tensor network renormalization
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We propose a general procedure for extracting the running coupling constants of the underlying field theory
of a given classical statistical model on a two-dimensional lattice, combining tensor network renormalization
(TNR) and the finite-size scaling theory of conformal field theory. By tracking the coupling constants at each
scale, we are able to visualize the renormalization group flow and demonstrate it with the classical Ising and
three-state Potts models. Furthermore, utilizing this methodology, we reveal the limitations due to finite bond
dimension D on TNR applied to critical systems. We find that a finite correlation length is imposed by the
finite bond dimension in TNR, and it can be attributed to an emergent relevant perturbation that respects the
symmetries of the system. The correlation length shows the same power-law dependence on D as the “finite
entanglement scaling” of the matrix product states.
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I. INTRODUCTION

The universality of critical phenomena is one of the most
intriguing and important concepts in statistical physics. The
renormalization group (RG), proposed by Wilson [1–3], pro-
vides a conceptual framework to comprehend and characterize
this universality.

In the RG framework, a universality class of critical phe-
nomena is governed by an RG fixed point in the “theory
space.” Theory space is the abstract space of all possible
models or theories that can describe a physical system. Each
point in this space represents a unique combination of the
parameters of the theory or, more concretely, the correspond-
ing Hamiltonian or action. In the context of the RG, we
explore this “theory space” by starting from a specific point in
the theory space and applying the RG transformations. These
transformations effectively move us through the theory space,
changing the values of the parameters as we coarse grain
the system. Importantly, models within the same universal-
ity class converge to an identical position through the RG
transformations. This allows for diverse critical phenomena to
be comprehended in terms of perturbations to the fixed-point
Hamiltonian and their respective scaling behavior.

This theoretical approach has directly facilitated the de-
velopment of concrete schemes for the calculation of critical
exponents. A prime example is the ε expansion for the φ4

theory in 4 − ε dimensions [4,5]. While the practical utility of
such a scheme for calculating critical exponents may appear
to be limited, it is imperative to underscore that the RG frame-
work establishes the conceptual foundation for understanding
the universality of critical phenomena.

*aueda@issp.u-tokyo.ac.jp

In particular, the fixed point displays conformal invariance
in two dimensions, thereby simplifying the associated theory
which is described by a conformal field theory (CFT). The
effective Hamiltonian near the RG fixed-point Hamiltonian,
denoted ĤCFT, can be expressed as follows:

Ĥ = ĤCFT +
∑

j

g j

∫ L

0
dx �̂ j (x). (1)

In this expression, �̂ j (x) represents a scaling operator with
a scaling dimension x j , and g j denotes the corresponding
coupling constant. In two dimensions, the running coupling
constants g j are renormalized as g j ∝ L2−x j as functions of a
scale l = ln(L/a). In general, there are only a few RG-relevant
coupling constants with x j < 2, which increase as the scale
l increases.

There also exists RG-irrelevant coupling constants with
x j > 2 that decrease as the scale l increases. Despite their
occasional significance, the principal characteristics of criti-
cal phenomena can be outlined primarily by considering the
limited number of RG-relevant coupling constants. Differen-
tial equations, termed RG equations, frequently describe the
evolution of these running coupling constants as functions of
the scale l . Field theory methods frequently serve as the basis
for deriving these RG equations.

However, it is worth noting that the exact determina-
tion of RG equations may not always be feasible when
the corresponding field theory is not solvable. Moreover,
the application of RG to lattice models has generally been
challenging for quantitative calculations. While offering an in-
tuitive understanding of RG, the “block-spin transformation”
method falls short as a practical computational method for
lattice models. Overall, early RG schemes for lattice models
saw limited success, the notable exception being Wilson’s
numerical renormalization group for impurity problem [3].
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Subsequently, density matrix renormalization group
(DMRG) [6] emerged as a highly effective numerical
algorithm for one-dimensional quantum many-body systems.
Despite its name, DMRG is typically employed as a numerical
algorithm with less emphasis on RG flows in the “theory
space.”

More recently, the development of tensor network renor-
malization (TNR) [7–12] opened a way to implement
numerical schemes for a wide range of lattice models in a
manner more faithful to the original concept of RG. Notably,
it is possible to obtain a fixed-point tensor after multiple
iterations of TNR steps. This fixed-point tensor encapsulates
critical information about the infrared (IR) fixed point, includ-
ing conformal data.

Regarding RG flow, there have been numerous previous
studies [8,10,11,13,14]. Yet, a generic and quantitative frame-
work for calculating RG flows remains elusive, primarily
due to challenges in maintaining the correlation between the
changes in numerically obtained tensor networks and the RG
flow within the theory space.

In this paper, we first propose an efficient and quantita-
tive scheme to extract the RG flow numerically from TNR,
discussed in Sec. III. This involves comparing the finite-size
spectrum of the transfer matrix with CFT. Concrete examples,
such as the numerical results of the Ising and three-state Potts
models, are employed to validate the theoretical predictions.
Our method also provides an efficient and accurate estima-
tion of the critical point, extending the “level spectroscopy”
technique previously developed for Berezinskii-Kosterlitz-
Thouless (BKT) transitions [15,16].

Leveraging this methodology, we uncover the effects of
finite bond dimension D on TNR at criticality in Sec. IV. The
finite-bond approximation of tensors constrains the effective
correlation length, preventing the attainment of a “true fixed-
point tensor” corresponding to a nontrivial RG fixed point
through repeated TNR procedures. While this phenomenon
was reported in earlier studies [7–12], it has been often over-
looked. Our numerical results suggest that the finite bond
dimension effects can be attributed to an emergent relevant
perturbation that respects the symmetry of the lattice model.
Furthermore, we demonstrate that the finite correlation length
that is imposed by the finite bond dimension scales in the same
way as in matrix product states (MPS).

We note that some of the methods and observations dis-
cussed in this paper were previously reported in our earlier
publication [16], where they were applied to the classical
XY model. The goal of this paper is to illustrate the more
widespread applicability of this approach and deliver a more
comprehensive analysis of the finite bond dimension effects.

Sample codes necessary to reproduce the figures presented
in this paper, along with introductory reviews on TRG and
TNR, are accessible via Jupyter notebooks at the GitHub
repository [17].

II. REVIEW ON TENSOR NETWORK
RENORMALIZATION AND CONFORMAL FIELD THEORY

A. Tensor network renormalization

The tensor network is a numerical technique used to repre-
sent the partition function of statistical models. The partition

FIG. 1. A schematic picture of the tensor network renormaliza-
tion. The effective local Boltzmann weight at nth RG step T (n) is
decomposed into the two three-leg tensors and recombined as T (n+1).
The effective system size enlarges by

√
2 each RG step. The typical

bond dimension and the maximum number of RG steps employed in
this paper are D � 40, and RG steps � 30, respectively.

functions of two-dimensional statistical models with a system
size of L can be expressed through the contraction of L2

tensors. Each tensor represents a local Boltzmann weight, and
its dimensions correspond to physical degrees of freedom. For
instance, the local tensor of the Ising model on the square lat-
tice is a four-leg tensor T (1)

i jkl = eβ(sis j+s j sk+sksl +sl si ). The tensor
network representation often provides an efficient method for
simulating complex systems.

However, the exact contraction of L2 tensors is generally
impracticable for larger system sizes due to the constraints
imposed by the high-dimensional Hilbert space. TNR aims to
circumvent this issue by utilizing the principles of renormal-
ization group theory. During each step of the RG process, T (n)

is coarse grained to T (n+1) via a series of decompositions and
recombinations, as illustrated in Fig. 1. Starting from the local
tensor T (1), we can simulate a system size of L = √

2
n

after
n RG steps. The process of coarse graining in TNR involves
numerical truncation, reducing the number of degrees of free-
dom while preserving essential physics. Consequently, TNR
facilitates efficient numerical simulation of complex systems.

B. Critical phenomena under conformal invariance

The following sections mainly discuss the Ising and three-
state Potts models on the square lattice. The energies (classical
Hamiltonian) of the Ising and three-state Potts models are

EIsing = −
∑
〈i, j〉

sis j − h
∑

i

si, (2)

EPotts = −
∑
〈i, j〉

δsi,s j , (3)
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where si = ±1 (Ising) and si = 0, 1, 2 (three-state Potts). The
first terms and h represent the nearest-neighbor interactions
and the magnetic field. Employing the temperature T , the
Boltzmann weight is defined as e−E/T , where we set the
Boltzmann constant to unity. Our primary focus in the main
text is the Ising model, while a detailed discussion of the
three-state Potts model is provided in the Appendix. The Ising
model reaches its critical point at (T, h) = (Tc, 0), where Tc =
2/ ln (1 + √

2). At this criticality, physical quantities like the
spin-spin correlation function are governed by the Ising CFT,
which comprises three primary operators: the identity opera-
tor I , magnetic operator σ , and energy operator ε.

In the context of the lattice model, a shift from the critical
temperature and the application of a magnetic field correspond
to the perturbative insertion of ε and σ into the effective
Hamiltonian. As a result, σ is odd in the Z2 spin flip, while I
and ε are even. Given the operator structure of the CFT, certain
quantities are consequently fixed.

The two-point correlation function is defined as

〈�i(ri )� j (r j )〉 = δi, j

|ri − r j |2xi
,

where �i represents a primary operator, and xI = 0, xσ = 1
8 ,

and xε = 1 are the scaling dimensions. In a similar vein,
the three-point correlation function adopts a universal form,
represented as

〈�i(ri )� j (r j )�k (rk )〉 = Ci jk

|ri − r j |�k
i j |r j − rk|�i

jk |rk − ri|� j
ki

,

where Ci jk is an operator product expansion (OPE) coefficient,
and �k

i j = xi + x j − xk . The nonzero OPE coefficients are
given as follows:

CIII = CIσσ = CIεε = 1, (4)

Cσσε = 1
2 . (5)

The permutation of the indices does not change the OPE
coefficients.1 (For further details of CFT, we suggest readers
see Ref. [18].) The collection of information on the scaling
dimension xi and Ci jk , referred to as the CFT data, is crucial to
understanding critical phenomena. As such, determining the
CFT from a numerical standpoint is of paramount importance.

III. COMPUTATION OF FIELD-THEORY DATA AND RG
FLOW FROM TNR

A. Scaling dimensions

For simplicity, let us consider a classical statistical model
on the square lattice with nearest-neighbor interactions only.
Then the local Boltzmann weight can be represented by a
tensor T with four open indices, and the partition function
is given by contraction of a tensor network which consists of
the tensor T .

More specifically, the partition function Z (Lx, Ly) for the
system of the size Lx × Ly is given by the contraction of the
network of Lx × Ly identical tensors T .

1The combination of the indices in nonzero Ci jk preserves Z2

symmetry.

Under a single step of TNR, the length scale represented
by a single tensor is renormalized by

√
2. After N steps,

the renormalized tensor becomes T (L), which represents the

length scale L = √
2

N
. As T (L) is equivalent to the L × L

contracted tensor network up to truncation errors, contrac-
tions of the horizontal and vertical legs yield the partition
function Z (L, L) in periodic boundary condition (PBC). Sim-
ilarly, contracting only the legs in the x direction gives the
L stacks of the transfer matrix in y-direction. Since one can
regard the transfer matrix as the imaginary-time evolution
operator of corresponding one-dimensional quantum systems,
its eigenvalues λn(L) are related to the energy levels En(L)
of the quantum system as λn(L) = exp[−LEn(L)]. For conve-
nience, we define the rescaled energy levels xn(L) by En(L) −
E0(L) = 2πxn(L)/L2 to obtain

λn(L)

λ0(L)
= exp[−2πxn(L)]. (6)

Exactly at the criticality, this rescaled energy level xn(L) co-
incides with the scaling dimension xn in the thermodynamic
limit (L → ∞) [19–21].

If the system is off-critical and without a spontaneous
symmetry breaking, the rescaled energy level of the “first
excitation” is asymptotically proportional to the system size
as �L/(2π ), where � is the inverse correlation length
(excitation gap) in the thermodynamic limit.

Summarizing these observations, naively speaking, we can
judge whether the system is critical or not by looking at the
asymptotic behavior of the rescaled energy levels xn(L). If
they grow linearly in L, the system is off-critical. If they
approach to constants, the system is critical, and the scaling
dimensions of the operators can be read off from the asymp-
totic values of xn(L) in the thermodynamic limit. While this
can be a useful guide, there are corrections from RG-irrelevant
perturbations and, more importantly, due to the limitation of a
finite bond dimension, as we will discuss later.

B. Operator product expansion coefficients

Operator product expansion is another fundamental con-
cept in field theory and statistical mechanics [22,23]. Since
OPE coefficients determine the structure of the field theory,
their computation is quite important. Numerical computation
of OPE coefficients [24,25] has not been so straightforward
compared to that of scaling dimensions. Here, we present a
simpler way to compute them, which is applicable to TRG
[7], HOTRG [26], and Loop-TNR [10].

As explained in the previous section, the renormalized
tensor T (N ) contracted in the x direction is a transfer ma-
trix in the y direction. While the eigenvalues of the transfer
matrix correspond to the energy or scaling dimension of the
primary operators, the eigenvectors thereof are the wave func-
tions of the corresponding “primary states” |ψn(L)〉. This is

2In the classical systems, the characteristic velocity v, playing the
role of the speed of light, is unity because the system invariant under
the exchange of the x and y axes.
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TABLE I. The numerically obtained OPE coefficients of the
Ising CFT from TRG. The bond dimension and the system size are
D = 56 and L = 16

√
2(9 RG steps), respectively.

ψα ψβ,ψγ Cαβγ 22�β+2�γ −�α Aαβγ /AIII

I σ, σ 1 0.8938
σ σ, I 1 0.9473
I ε, ε 1 0.9966
ε ε, I 1 0.9968
ε σ, σ 0.5 0.5007
σ σ, ε 0.5 0.2705

graphically represented below.

Note that the tensor has been rotated for ease of viewing. We
do not change the contracted index. Likewise, we can compute
the wave functions of the system size 2L as depicted below.

|ψn(L)〉 and |ψn(2L)〉 are one-leg and two-leg tensors, re-
spectively. Thus, one can calculate the overlaps |ψα (2L)〉 and
|ψβ (L)〉 ⊗ |ψγ (L)〉 by contracting the indices.

In CFT, the overlap 〈ψα (2L)|ψβ (L)ψγ (L)〉 is proportional
to the “pants diagram” of path integrals [27–29], and the OPE
coefficient and the overlap are related as

Aαβγ

AIII
= 2�α−2�β−2�γ Cαβγ , (7)

where Aαβγ , �, and I are 〈ψα (2L)|ψβ (L)ψγ (L)〉, the scaling
dimension, and the identity operator, respectively. In most
cases, the identity operator corresponds to the ground state.
We benchmark our method by the critical Ising model. Table I
shows the numerically obtained OPE coefficients by TRG [7]
at L = 16

√
2 and D = 56. Naturally, there are finite-size cor-

rections to Eq. (7). Since Eq. (7) is exact in the thermodynamic
limit, using a very large system size L might appear desirable.
However, as we will discuss later in Sec. IV, corrections due to
the finite bond dimension effect appear for system sizes larger
than a correlation length ξ (D).3 As reported in Ref. [29], the
finite-size effects are significant for Cσσε and CεεI . Neverthe-
less, even with the moderate size L = 16

√
2, the obtained

values CIεε = 0.9966 and Cεσσ = 0.5007 are rather close to
exact CFT results. While we tested our method by the simplest
algorithm, Levin and Nave’s TRG, the method for calculating

3This effect is even stronger and nontrivial for TRG.

OPE is straightforwardly applicable to other TRG and TNR
algorithms, such as HOTRG [26].

C. Level spectroscopy

As we have mentioned earlier, the rescaled energy levels
xn(L) in Eq. (6) would be independent of the scale L and
give the scaling dimensions of the corresponding operators,
if the system were exactly described by a CFT. However, the
rescaled energy levels of a lattice model generally depend on
the system size L, as the effective Hamiltonian of the system
contains perturbations to the CFT as in Eq. (1).

The rescaled energy levels in a finite-size perturbed CFT
are given as [19,20]

xn(L) = xn + 2π
∑

j

Cnn jg j (L), (8)

where g j (L) scales as ∝L2−x j . Comparing Eq. (6) from TNR
and Eq. (8) from the conformal perturbation theory, we can
obtain the running coupling constants gj (L) at each scale from
the finite-size effect δxn(L) = xn(L) − xn.

An immediate application of this observation is an accurate
determination of the critical point. While such a framework
is dubbed “level spectroscopy” was developed for BKT tran-
sition, which is notoriously difficult for standard finite-size
scaling analysis, first for quantum spin systems in one di-
mension [15] and recently extended for classical statistical
systems in two dimensions using TNR [16], the basic idea is
also applicable to more conventional critical phenomena such
as in the Ising model.

The RG fixed point for the two-dimensional Ising model
has two relevant operators, the energy density ε and the
magnetization density σ . The coupling constant gε for ε is
proportional to the deviation of the temperature from the
critical point, and also scaled ∼L in the small coupling limit
gε 
 1 because xε = 1. Thus,

gε (L) ∼ α(T − Tc)L, (9)

when gε (L) 
 1. Likewise, the coupling gσ is proportional to
the magnetic field h and scaled ∼L15/8 because xσ = 1

8 .
Although the Ising critical phenomena are mostly de-

scribed by the two relevant coupling constants gε and gσ ,
more accurate description can be obtained by including irrele-
vant perturbations. Including the leading irrelevant operators,
namely, the irrelevant operators with the smallest scaling di-
mension permitted by the symmetries, we obtain

H = H∗
Ising +

∫ L

0
dx[gσ σ (x) + gεε(x)

+ gT 2 T 2
cyl(x) + gT̄ 2 T̄ 2

cyl(x)], (10)

where Tcyl and T̄cyl are the holomorphic and antiholomorphic
parts of stress tensor on a cylinder [20]. The holomorphic
part Tcyl of the stress tensor on a cylinder is related to that
on the infinite plane Tzz(z) via the conformal mapping z =
e2πw/L, where w = τ + ix and 0 � x < L. More explicitly,
Tzz(z) transforms as

Tcyl(w) =
(

2π

L

)2(
z2Tzz(z) − c

24

)
. (11)
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TABLE II. The finite-size scaling dimension of the Ising model.
α is a constant determined from the second-order perturbation. Since
gT 2 and gT̄ 2 decay in the same manner, we write them as g.

Model Operator Rescaled energy level

Ising model xσ (L) 1
8 + ασ

σ g2
σ + πgε + αε

σ g2
ε − 7

768 πg
xε (L) 1 + ασ

ε g2
σ + αε

ε g2
ε + 7

48 πg

This leads to

Tcyl(x) = 2π

L

( ∞∑
n=−∞

Lne2π ix/L − c

24

)
, (12)

where c is the central charge characterizing the CFT, and Ln’s
are generators of the Virasoro algebra defined by

Tzz(z) =
∞∑

n=−∞

Ln

zn+2
, (13)

in terms of the holomorphic part Tzz of the energy-momentum
tensor on the infinite plane. Inserting the above Tcyl and inte-
grating over 0 � x < L with an appropriate regularization, the
gT 2 term of the perturbation is given as [30]∫

dx T 2
cyl(x) = L2

0 − c + 2

12
L0 + 2

∞∑
n=1

L−nLn + c(22 + 5c)

2880
.

Only the first and second terms affect the energy levels,
and the contributions to xσ (L) and xε (L) are calculated to
be − 7

768 gT 2 and 7
48 gT 2 , respectively. The computation of the

contributions from T̄ 2 is exactly the same, and we denote their
sum as g. These operators are the leading irrelevant operators
for the Ising model on the square lattice. Although they break
the continuous rotation symmetry (which corresponds to the
Lorentz invariance in the Minkowski space-time), they are
allowed on the square lattice, which is invariant only under
the discrete C4 rotation. The calculation of xσ (L) and xε (L) is
straightforward, and they are shown in Table II.4

While the exact critical point is known for the Ising model
on the square lattice, let us demonstrate the determination of
the critical point from the TNR spectrum without using prior
knowledge of the critical point (but utilizing the CFT data,
assuming that we identify the universality class). Since we are
interested in the critical point at zero magnetic fields, we can
set gσ ∝ h = 0. The simplest way to determine the critical
point is to look at the lowest rescaled energy level xσ (L) in
the lowest order of the relevant coupling constant gε , ignor-
ing the irrelevant perturbation g. Within this approximation,
the shift δxσ (L) = xσ (L) − xσ vanishes at the critical point
T = Tc where gε = 0. Away from the critical point, δxσ (L)
is nonzero and grows proportionally to L because gε (L) scales
as L. Because of this, we can identify the critical point with
the temperature where δxσ (L) = 0 is observed in the TNR
spectrum. However, this estimate suffers from the corrections
due to the leading irrelevant perturbations T 2

cyl and T̄ 2
cyl. Since

4As T 2
cyl and T̄ 2

cyl are not primary operators, we need to pay special
attention. The details are discussed in the Appendix.

FIG. 2. Example of estimating the transition temperature using
loop-TNR. We set T − = 2.66 and T + = 2.68 as an initial estimate.
The level-crossing temperature T ∗(L) is linearly fitted to extrapolate
the transition temperature. The insert shows how we compute T ∗(L)
for various system sizes.

they have scaling dimension 4, the corresponding coupling
constant is renormalized as g ∝ L−2. This leads to an error
of O(L−2) in the naive estimate of the critical point using
δxσ (L) = 0.

We can improve the accuracy by removing the effects of
the leading irrelevant perturbation g. This can be done by
combining the shifts of the rescaled energy levels δxσ (L) and
δxε (L) as

δxcmb ≡ δxσ (L) + 1
16δxε (L)

= πgε + (
ασ

σ + 1
16ασ

ε

)
g2

σ + (
αε

σ + 1
16αε

ε

)
g2

ε . (14)

Note that the first-order correction in the irrelevant coupling
g is canceled out. Now we can identify the critical point by
finding the temperature for which δxcmb ∝ gε (L) = 0. Having
eliminated the effects of the leading irrelevant perturbation
T 2

cyl, T̄ 2
cyl, the dominant error is now caused by the next-leading

irrelevant operator with scaling dimension 6 and thus should
be scaled as L−4.

In practice, the determination of the critical point can be
efficiently implemented as follows. First, we pick up one
temperature from each phase: T + > Tc and T − < Tc, and
calculate the combined shift δxcmb at these temperatures.
The phase of the system can be confirmed by observing the
growth of δxcmb as the system size increases because it in-
creases (decreases) if the system is in the high-temperature
(low-temperature) phase (if the initial choice of the tempera-
ture turns out to be wrong, change the temperature and restart
the process). Next, linear interpolations of the combined shift
between the two temperatures T ± are made, and the crossing
of the lines for system sizes L and

√
2L is found, as shown in

the insert of Fig. 2. We denote the temperature where the two
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FIG. 3. (Left panel) The system-size dependence of δxcmb = δxσ + δxε/16 for h = ±10−5 (purple and green), T = 1.0001Tc (red), and
T = 0.9999Tc (blue). The purple and green dots are on top of each other, and “+” denotes the data with a negative sign. After removing the
L−2 irrelevant perturbations, the next-leading L−4 perturbation shown with a blue dotted line appears. The data were obtained via loop-TNR
with a bond dimension of D = 24, which was deemed sufficient for the finitely correlated systems being considered. (Right panel) The resulting
renormalization group flow. Only data after six steps are exhibited, where the L−4 perturbations disappear.

lines cross as T ∗(L). Because of the second-order contribution
O(gε

2) in Eq. (14), the crossing temperature T ∗(L) obtained
by the linear interpolation deviates from the true critical
point Tc as T ∗(L) − Tc ∝ gε ∝ L, when gε 
 1.5 The critical
point Tc is estimated by fitting T ∗(L) by a linear function
of L as T ∗(L) ∼ Tc + const L. While the “extrapolation” to
L = 0 used here might look unusual, this procedure is done
to remove the effect of the nonlinearity due to O(gε

2) in
Eq. (14), and the condition δxcmb = 0 itself is accurate for Tc

up to the error of O(L−4) due to the next-leading irrelevant
perturbations. An example of the estimate of Tc with the
above procedure with the choice of the temperatures T + =
2.68 and T − = 2.66 and with system sizes 16 � L < 64 is
depicted in Fig. 2. The final estimate of the critical point is
T est

c = 2.269 177. Remarkably, even with the choice of two
temperatures differing by 10−2 and the relatively low bond di-
mension D = 20, the estimated critical point is quite accurate:
T est

c − Tc = −8.11 × 10−6. This is thanks to the suppression
of the error to O(L−4) by eliminating the contributions from
the leading irrelevant operators. Once the critical point is
estimated with good accuracy with this procedure, the ac-
curacy can be further improved by choosing T ± closer to
the estimated critical temperature and then applying the same
procedure.

D. Renormalization group flow

The comparison between the TNR spectrum (6) and the
conformal perturbation theory (8) can also be used to extract

5It is proportional to L2−xthermal , where xthermal is the scaling dimen-
sion of the thermal operator.

running coupling constants and their scale dependence, en-
abling a visualization of the RG flow. While this was shown
for the BKT transition in the XY model [16], here let us
demonstrate the method for the Ising model. This will also be
useful to investigate the finite bond dimension effects in detail,
as we will discuss in Sec. IV. The extraction of running cou-
pling constants in the Ising model is again based on the shifts
of the rescaled energy levels in Table II, and it is useful to
consider the combined shift (14) also for this purpose. Given
gσ and gε are small in the vicinity of criticality, we neglect
g2

ε for h = 0 and redefine two relevant coupling constants as

gt = πgε and gh =
√

(ασ
σ + 1

16ασ
ε )gσ for convenience. In this

way, the combined shift (14) simply gives gt when h = 0 and
gh

2 when T = Tc, in the lowest order of gt , gh. Using these
relations, we can read off the relevant coupling constants gt

or gh from the TNR data, as shown in Fig. 3(b). As we have
discussed in the previous subsection, the effects of the leading
irrelevant perturbations T 2

cyl, T̄ 2
cyl with scaling dimension 4 are

eliminated in the combined shift (14), and thus the finite-size
correction is now of O(L−4), due to the next-leading irrelevant
operators with scaling dimension 6. This O(L−4) scaling is
indeed observed in Fig. 3 near the critical point for small
system size L when relevant perturbations are still negligible.
Since it is safe to say that these contributions disappear after
five RG steps, we can conclude that the origin of gt and gh is
purely from ε and σ after six steps.

The right panel illustrates the scale dependence of the
coupling constants gt and gh. It is nothing but the RG flow
of the Ising critical point, and we conclude that we succeed in
calculating the RG flow of the celebrated Ising fixed point.

There is one thing to note on the left panel of Fig. 3.
While the combined shift (14), which is an estimator for |gh|2,
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scales as L3.75 at L < 103, it starts to flatten and scales as L
at L > 103. This behavior has a rather simple origin. Since
the magnetic perturbation is relevant, the system has a finite
correlation length or, equivalently, a nonzero gap �. This
implies that the rescaled energy levels are proportional to
L for sufficiently large system size L 
 �−1, as mentioned
in Sec. III A. As a consequence, the shift (14) also grows
proportionally to L. In this regime, the conformal perturbation
theory breaks down (higher-order contributions are impor-
tant), and we no longer identify the shift (14) with |gh|2.
This should be distinguished from the L-linear behavior of
the combined shift (14) observed for L > 10 with h = 0 and
T �= Tc, which corresponds to the renormalization of gt ∝ L
because of xε = 1. The L-linear behavior due to the gap is
observed in the nonperturbative regime δxε,σ 
 xε,σ , whereas
the L-linear behavior due to the scaling is observed in the
perturbative regime δxε,σ 
 xε,σ .

IV. FINITE BOND DIMENSION EFFECTS

Let us examine the impacts of a finite bond dimension D on
TNR from the perspective of our method. In any computation
that employs tensor networks, it is necessary to restrict the
bond dimension to a finite value D due to the increasing
storage requirements and computational costs associated with
larger bond dimensions. The finiteness of the bond dimen-
sion inevitably leads to a loss of information in each step of
renormalization after a certain number of iterations. Although
TNR can nominally handle arbitrary large systems, and the
TNR-type calculations are often used to study extremely large
systems, we have to be careful about the limitations due to the
finite bond dimension.

The limitation of the finite bond dimension D on the MPS
is characterized by the finite (maximum) correlation length
ξ (D) of the MPS [31–33]. The correlation length of MPS is
known to obey the scaling law

ξ (D) ∼ Dκ , (15)

κ = 6

c(1 +
√

12
c )

. (16)

While the TNR-type calculation of two-dimensional statistical
systems appears rather different from the MPS applied to
one-dimensional quantum systems, the emergence of the finite
correlation length ξ (D) obeying the similar scaling law (15)
was reported in Ref. [34] for a HOTRG calculation of the
critical Ising model in two dimensions. The exponent κ for
the Ising model was estimated to be approximately 2, which is
close to the MPS exponent (16) κ = 2.034 25 . . . for the Ising
CFT with central charge c = 1

2 . A similar emergence of the
finite correlation length ξ (D) was also reported in our TNR
finite-size scaling study of the two-dimensional XY model
[16], with the MPS exponent (16) for c = 1.

In the following, using our TNR finite-size scaling method-
ology, we will demonstrate that the emergence of the finite
correlation length due to the finite bond dimension in TNR can
be attributed to an emergent relevant perturbation (Sec. IV A).
Furthermore, we present evidences for the scaling (15) with

FIG. 4. Shift |δxσ (L)| for the Ising model at T = Tc, h = 0 com-
puted by loop-TNR with D = 32. There is little finite-D effect for
small system sizes L < 256. The emergent perturbations of ε and σ

appear at L ∼ 256 and L ∼ 104, scaling as L and L15/4. The induced
gap by finite D goes towards constant at L > 105 as denoted with the
purple dotted line.

the MPS exponent (16) in TNR of Ising and three-state Potts
models (Sec. IV B).

A. Emergent relevant perturbation

If a finite correlation length emerges in the TNR, it
would be natural to identify the renormalized tensor with a
Hamiltonian for the system away from the critical point, that
is, an RG fixed-point (CFT) Hamiltonian perturbed with rele-
vant operators

HFB(D) = H∗
CFT +

∑
i

∫ L

0
dx gi(D, L)�i(x, D), (17)

where HFB is the effective Hamiltonian of the finite-D system
and �i(x, D) are the scaling operators representing the per-
turbations. In this view, we expect relevant perturbations to
emerge in order to mimic the finite correlation length imposed
by the finite bond dimension.

To demonstrate the emergence of the relevant perturbation,
we investigate the system-size dependence of the shift in the
rescaled energy levels δxσ . In Fig. 4, we show the absolute
value of the shift |δxσ | as a function of the system size L used
in calculating the transfer matrix spectrum in TNR exactly at
the critical point h = 0, T = Tc. The conformal perturbation
theory in Eq. (8) implies that the shift xσ contains contri-
butions from the irrelevant perturbations. Since the leading
irrelevant operators at the critical points are T 2

cyl and T̄ 2
cyl with

scaling dimension 4, we expect δxσ (L) decays as L−2. [This
is to be contrasted with Eq. (14) and Fig. 3, in which the
contributions from T 2

cyl and T̄ 2
cyl are eliminated.] The expected

L−2 behavior in the shift δxσ (L) is indeed observed for small
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FIG. 5. (a) The scaling of the shift δxσ in TNR of the Ising model at the critical point, for various bond dimensions D = 4, . . . , 28. The
vertical axis is scaled as L2δxσ so that it is constant when L 
 ξ (D). When L 
 ξ (D), the shift is dominated by the emergent relevant
perturbation ε; this is confirmed by the scaling L2gε ∝ L3. The horizontal axis is scaled as L/ξ (D), where the correlation length ξ (D) is
hypothesized as in Eqs. (15) and (16). The collapse of the data for different bond dimensions is strong evidence of the hypothesized scaling of
the correlation length ξ (D). The blue dotted line indicates L/ξ (D) = 1. We set ξ (D) = 2.0Dκ so that L/ξ (D) = 1 becomes the crossover scale
between the finite-size scaling regime and the finite-D scaling regime. (b) Similar scaling analysis of the shift δxε in TNR of the three-state
Potts model at the critical point, for various bond dimensions D = 16, . . . , 40 with ξ (D) = 0.067Dκ . The scaled shift L0.8δxε behaves as a
constant in the finite-size scaling regime L/ξ (D) < 1, whereas it scales as L3.2 in the finite-D scaling regime L/ξ (D) > 1, as expected from
the CFT analysis (see Appendix for details). The data for different bond dimensions collapse again, giving compelling evidence for the scaling
of the correlation length (15) and (16).

system sizes L < 256. For larger system sizes, however,
|δxσ (L)| starts to increase, deviating from the conformal per-
turbation theory scaling L−2. We identify the finite bond
dimension D effects as the origin of this deviation. More
remarkably, we can observe a clear scaling behavior of the
deviation. That is, the shift |δxσ (L)| scales with the system
sizes as L and L15/4 for 256 < L < 104 and 104 < L, re-
spectively. Compared with the off-critical cases in Fig. 3, we
realize that these scalings are identical to those induced by
the thermal and magnetic perturbations. In other words, the
relevant perturbations emerge in the TNR calculation.

Let us first discuss the L15/4 scaling of the shift, observed
for L > 104. This can be understood as the effect of an
emerging magnetic perturbation h. Although the magnetic
perturbation h is forbidden by the Z2 spin-flip symmetry, the
symmetry could be broken by the limitations in the machine
precision. Once the spin-flip symmetry is broken, the mag-
netic field h, which is a relevant perturbation, is effectively
generated. Even if the effective magnetic field h is extremely
small, it will be enhanced at each RG step and eventually
dominates the system at sufficiently large length scales. This
is what we observe for L > 104. This phenomenon should be
related to machine precision and not intrinsic to the algorithm.
If we are interested in a Z2 symmetric system, we can impose
the symmetry at each step of TNR in order to avoid this effect.

In contrast, the L scaling observed for 256 < L < 104 is
more intrinsic. The most relevant perturbation allowed under

the Z2 symmetry to the critical Ising fixed point is the ther-
mal operator. Thus, we expect that the finite bond dimension
effect can be mimicked by the thermal perturbation ε to the
fixed-point Hamiltonian H∗

CFT. If this is the case, the effective
coefficient gε grows proportionally to L as the system size L
is increased because the thermal operator ε has the scaling di-
mension 1. According to Eq. (8), this will lead to a correction
proportional to L in the rescaled energy level δxσ (L). This is
indeed supported by the numerical result shown in Fig. 4.

In general, the finite-D effect in TNR would be described
in terms of the emergence of relevant perturbation(s) to the
fixed-point Hamiltonian, which induces the finite correlation
length ξ (D). In addition to the emergence of the relevant op-
erator ε in the critical Ising model discussed above, a similar
emergence of the relevant operator is observed in the critical
three-state Potts model, as demonstrated in the Appendix.

B. Scaling of the emergent correlation length

Now let us demonstrate that the finite correlation length
ξ (D) induced by the finite bond dimension D in TNR obeys
the same scaling (15) and (16) as in the MPS, as suggested in
Refs. [16,34].

In Fig. 5, we demonstrate the scaling of the correlation
length induced by the finite bond dimension in TNR of the
critical Ising and the three-state Potts models. In Fig. 5(a), we
plot the shift δxσ in the Ising model obtained by the TNR of
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the Ising model at the critical point, which was also studied in
Fig. 4, with several different bond dimensions D = 4, . . . , 28.
Here, we rescaled the vertical axis as L2δxσ so that the con-
stant behavior is observed for system size smaller than the
correlation length, where the leading irrelevant perturbation
(which causes δxσ ∝ L−2) is dominant. The deviation from
the constant at larger system sizes L can be attributed to
the emergent relevant perturbation ε induced by the finite
bond dimension D, as discussed in the previous subsection.
This is confirmed by the L3 scaling (L2 times δxσ ∝ gε ∝ L).
Most importantly, the horizontal axis is the rescaled system
size L/ξ (D) using the hypothesized correlation length ξ (D) =
aDκ given by Eqs. (15) and (16). The collapse of the data for
different bond dimensions strongly supports our hypothesis on
the correlation length. Note that we roughly fit the prefactor a
so that the crossover occurs at L = ξ (D).

In order to confirm the finite-D scaling of the correlation
length and its universality, we have also studied the three-
state Potts model at the critical point. As an example, in
Fig. 5(b), we plot the shift of the rescaled energy level cor-
responding to the energy operator ε in the three-state Potts
model. For this shift δxε , the contribution from the leading
irrelevant operator is ∼L−4/5, and the dominant contribution
from the emergent relevant perturbation ε is expected to be
proportional to gε

2 ∝ L12/5. (See the Appendix for details.)
We rescaled the vertical axis as L0.8δε so that it is constant in
the finite-size scaling regime L < ξ (D). The horizontal axis is
again the rescaled system size L/ξ (D), with the correlation
length ξ (D) defined in Eqs. (15) and (16) with the central
charge c = 4

5 for the three-state Potts model. The data for
different bond dimensions again show a collapse, providing
compelling evidence for our hypothesis on the correlation
length scaling. For L/ξ (D) > 1, the data fit well the expected
behavior L0.8 × gε

2 ∝ L0.8 × L2.4 = L3.2.

V. CONCLUSION AND DISCUSSION

In the first part of the paper, we discussed a method for
computing the coupling constants using renormalized tensors
based on the finite-size scaling theory of CFT. By plotting the
resulting values at each scale, we were able to visualize the
RG flow, and we confirmed that the theoretical RG flows, as
shown in Fig. 3, are consistent with the Ising and XY models.
Our method has the advantage of being able to extract both
ultraviolet and infrared information, making it a valuable tool
for investigating gapped and crossover systems.

In the second part of the paper, applying the methodology
developed in the first part, we explored the impact of finite
bond dimension D on the RG flow. The finiteness of the
bond dimension results in a finite correlation length ξ (D) or,
equivalently, in a nonzero gap in the energy spectrum of the
corresponding one-dimensional quantum system. We find that
this gap formation can be attributed to the emergence of a
relevant perturbation enforced by the finite bond dimension.
This is demonstrated by the RG flow of the emergent relevant
coupling.

The finite-size scaling of TNR shows a crossover at
L ∼ ξ (D), above which the system is governed by the finite
correlation length. The correlation length ξ (D) induced by the
finite bond dimension in TNR shows the same scaling (15),

FIG. 6. (Left panel) A schematic picture of the reduced density
matrix ρA for a bipartition of the system in the path-integral pic-
ture. The uncontracted legs correspond to the indices of the reduced
density matrix. (Right panel) Each of the four quadrants of the space-
time in the left panel may be replaced by the renormalized tensor in
TNR with appropriate boundary conditions.

(16) as the correlation length of MPS. While such scaling in
TNR was suggested earlier in Refs. [16,34], in this paper, we
presented more convincing evidence.

Although we do not have a mathematical proof for the
scaling of ξ (D) in TNR at this point, it may be natural from
the following point of view. Aside from the construction of
the transfer matrix by contracting horizontal legs, the renor-
malized tensor obtained in TNR can give the corner transfer
matrix by contracting the upper and left legs. The same finite-
D scaling (15), (16) as in MPS was observed in corner transfer
matrix renormalization group (CTMRG) [35–37]. Moreover,
the entanglement spectrum for the half-bipartition of the sys-
tem of length 2L can be related to a contraction of four
renormalized tensors of linear size L [38], as shown in Fig. 6.
These relations are suggestive of the identical scaling of ξ (D)
in MPS, CTMRG, and TNR as we have observed.

Our study highlights the importance of considering the im-
pact of the finite bond dimension in the TNR-type approach.
In particular, a direct study of the thermodynamic limit with
TNR would be prone to errors due to the finite correlation
length ξ (D) imposed by the finite bond dimension. As a res-
olution of this problem, we have demonstrated that accurate
data for the thermodynamic limit can be extracted by finite-
size scaling of TNR spectra obtained for system sizes smaller
than ξ (D), combined with conformal field theory. Even with
this limitation, the tractable system size is greatly increased
from ∼ log D with exact diagonalization to ξ (D) ∼ Dκ in
TNR.

Note added. Recently, a closely related work [39] based
on a HOTRG study of the Ising model appeared. It is quite
similar in spirit to this work, combining finite-size scaling
and HOTRG. Their estimate of the correlation length ξ from
the transfer matrix eigenvalue, and the determination of the
critical point based on the finite-size scaling of ξ , are essen-
tially equivalent to our analysis of δxσ discussed in Sec. III C.
Utilizing the knowledge of Ising CFT, we have further im-
proved the accuracy by analyzing δxcmb which removes the
effects of the leading irrelevant operators. The error in the
estimated transition temperature T est

c we obtained in Sec. III C
is about 10−5, which is larger than theirs (10−7 ∼ 10−6). How-
ever, our estimate is based on the data at two temperatures

024413-9



ATSUSHI UEDA AND MASAKI OSHIKAWA PHYSICAL REVIEW B 108, 024413 (2023)

T ± separated by 10−2 and can be further improved by taking
more data points. The MPS scaling (15) and (16) of the corre-
lation length in TNR we have discussed is also supported by
them.
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APPENDIX: FINITE-ENTANGLEMENT SCALING OF THE
THREE-STATE POTTS MODEL

1. Model

We can further verify the emergence of relevant pertur-
bations by applying it to the three-state Potts model. It is a
natural extension of the Ising model to the Z3 symmetry, and
the Hamiltonian is

H = −
∑
〈i, j〉

δsi,s j , (A1)

where si takes 0, 1, and −1. It has a phase transition of
Z3 symmetry breaking at Tc = 1/ log(1 + √

3). The critical
theory of the three-state Potts model is another type of the
minimal model M(6, 5) with c = 4

5 [18,40]. A set of primary
operators are shown in Table III.

As opposed to the Ising model, there are off-diagonal op-
erators as � 2

5 , 7
5
, � 7

5 , 2
5
, and �3,0, �0,3 (currents). Let us first

examine the RG flow in a gapped system. Similar to the Ising
model, the phase transition is identified by spontaneous sym-
metry breaking. The high-temperature phase is a trivial phase,
whereas the low-temperature region is Z3 symmetry-breaking
phase. Thus, the fixed-point tensor is a stacking of three states
with their Z3 charge 0, −1, and 1.

2. Construction of the effective Hamiltonian

The RG flow can be seen by investigating the scaling
dimensions. For instance, we can take the spin operator σ =

TABLE III. A set of primary operators of the three-state
Potts model.

Symbol Dimension Meaning

I 0 Identity
ε 2

5 Thermal op.

σ 1
15 Spin

X 7
5

Y 3

Z 2
3

� 1
15 , 1

15
and plot the value of δxσ = xσ (L) − 2

15 . Similarly, as
in the Ising model, there is competition between irrelevant
and relevant operators: X = � 7

5 , 7
5

and ε = � 2
5 , 2

5
. The thermal

operator separates the Z3 symmetry-breaking phase from the
trivial one. The finite-size corrections of X and ε to xσ are
L−0.8 and L1.2, respectively. The fusion rules are σ × σ =
1 + ε + σ + X + Y + Z , ε × ε = 1 + X , and ε × σ = σ +
Z . Hence, δxσ has the following form:

δxσ = 2πcσσX gX

(
L

2π

)−0.8

+ 2πcσσεgε

(
L

2π

)1.2

. (A2)

On the other hand, the perturbation of ε appears as a second-
order term for δxε because the fusion rule says ε × ε = 1 + X .
Consequently, δxε can be computed as

δxε = 2πcεεX gX

(
L

2π

)−0.8

+ αg2
ε

(
L

2π

)2.4

, (A3)

where α is a constant determined from the second-order cal-
culation.

Figure 7 shows the computed δxσ by TNR. As expected,
it exhibits the competition between irrelevant and relevant
operators. The sign of gε is the opposite between two phases,
which is a manifest indication of the RG flow in the op-
posite direction due to the thermal operator. xσ has doubly
degenerate states with Z3 charge ±1. In the low-temperature
phase, these two states flow to xσ (L) → 0, and the fixed-point
tensor becomes threefold degenerate. As for the irrelevant
perturbation, there seems to be a discrepancy between δxσ in
Fig. 7 and Eq. (A2). The data points are scattered for small
system sizes and not precisely on the fitting lines. This is
due to the leading irrelevant operator we have not considered.
We can identify it as T 2

cyl + T̄ 2
cyl as following. Just as we did

in the left panel of Fig. 3, the contributions from gX can be
eliminated by combining δxσ and δxε . The OPE coefficients
for the three-state Potts model are known, and the ratio of
the two OPE coefficients is cεεX /cσσX = 36 [41–45]. Thus,
the origin of the “scattering” shall be observed by plotting
36δxσ − δxε .

Figure 8 displays the result for the high-temperature phase.
It is now obvious that the scattering of Fig. 7 comes from the
L−2 perturbation denoted with the red dotted line. Also, it has
a conformal spin s because it flips a sign at each step and s ≡ 4
(mod 8).6 As a result, we can conclude the irrelevant operator
has the conformal weights as (h, h̄) = (4, 0) and (0,4), which
are T 2

cyl and T̄ 2
cyl. Finally, the effective Hamiltonian of the

critical three-state Potts model on the square lattice can be
constructed as

H = H∗
Potts +

∫ L

0
dx

[
gX � 7

5 , 7
5
(x) + gT

(
T 2

cyl + T̄ 2
cyl

)]
. (A4)

6For each iteration, the lattice rotates by 45◦, and it corresponds
to the conformal transformation w = e

iπ
4 z on a complex plane. As

the irrelevant perturbations T 2
cyl and T̄ 2

cyl have a conformal spin 4 and

−4, they get an additional factor (e
iπ
4 )4 = (e

iπ
4 )−4 = −1 for an odd

number of steps. We can see this by plotting the data from even steps
(original) and odd steps (tilt) separately.
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FIG. 7. The size dependence of the (a)δxσ and (b)δxε at T = 0.999995Tc and T = 1.000005Tc. The pink and green dotted lines denote
L−0.8, (a)L1.2, and (b)L2.4 fittings respectively. For the low-temperature phase, the sign of δxσ is negative at L > 100. The dip on the left panel
around L ∼ 102 corresponds to the zero point of Eq. (A2). (b) The finite-size effect to the xε suffers less from T 2

cyl + T̄ 2
cyl in amplitude. The

scaling of Eq. (A3) is clearly observed.

3. Finite-entanglement scaling

At the critical temperature of the Ising model, the finite-D
effect proves to be a perturbation from the thermal operator.
Let us verify it for the critical three-state Potts model. Due
to the irrelevant perturbations from T 2

cyl + T̄ 2
cyl, the finite-D

FIG. 8. 36δxσ − δxε for the high temperature phase. “+” is used
when the sign is negative. The red dotted line denotes the L−2 fitting
while the light green one is just a relevant L1.2 contribution from ε.
Loop-TNR rotates the lattice by π

4 at each RG step, and the tilted
system is plotted with the blue dots.

effects are clearer for xε (L) as seen in Fig. 7(b). This is shown
in Fig. 5 of the main text. Here, we demonstrate that δxσ (L)
also shows the universal behavior with L/ξ (D). Figure 9
shows the rescaled correction to δxσ (L). For L > ξ (D), the

FIG. 9. Rescaled δxσ by ξ (D) = Dκ at the critical temperature.
The resulting data collapse onto a universal function that is indepen-
dent of L/ξ (D). If L/ξ (D) < 1, the system is in the FSS region, while
if L/ξ (D) � 1, it is in the FES region. In the FES region, the scaling
of the first-order and second-order perturbations are indicated by a
gray and pink line, respectively. xσ is computed as an average value
of the first and second excitation energy.
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perturbation grows as L2 denoted by a gray line, which means
that the emergent perturbation scales as L1.2. Compared with
Eq. (A2), it is clear that the emergent perturbation is from
the thermal operator. However, as the system size increases,

the second-order perturbation becomes predominant as shown
with a pink line. As ε is the most relevant operator that is
permitted by symmetry, it supports our conjecture stated in
the main text.
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