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The Curie-Weiss law is widely used to estimate the strength of frustration in frustrated magnets. However,
the Curie-Weiss law was originally derived as an estimate of magnetic correlations close to a mean-field phase
transition, which—by definition—is absent in spin liquids. Instead, the susceptibility of spin liquids is known
to undergo a Curie-law crossover between two magnetically disordered regimes. Here, we study the generic
aspect of the Curie-law crossover by comparing a variety of frustrated spin models in two and three dimensions,
using both classical Monte Carlo simulations and analytical Husimi tree calculations. Husimi tree calculations
fit remarkably well the simulations for all temperatures and almost all lattices. We also propose a Husimi ansatz
for the reduced susceptibility χT , to be used in complement to the traditional Curie-Weiss fit to estimate the
Curie-Weiss temperature θcw. Applications to materials are discussed.
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I. INTRODUCTION

The Curie-Weiss law is a simple and useful tool to estimate
the behavior of the susceptibility χ for conventional magnets
at high temperatures [1–5],

χ = C

T − θcw
, (1)

with C the Curie constant, and θcw the Curie-Weiss temper-
ature. In a Landau mean-field treatment [6], |θcw| represents
the transition temperature. The sign of θcw indicates dominant
ferromagnetic (θcw > 0) or antiferromagnetic (θcw < 0) inter-
actions, while the limit θcw → 0 represents the susceptibility
of a paramagnet, given by the Curie law, χ = C/T . For more
details about the calculation of the Curie-Weiss law in suscep-
tibility measurements, we refer the reader to the recent tutorial
by Mugiraneza and Hallas [5].

In frustrated magnets, the Curie-Weiss temperature is often
used to measure the “frustration index” [7],

f = |θcw|
T ∗ , (2)

by comparing the transition, or freezing, temperature of a
material, T ∗, to its mean-field expectation, |θcw|, for an unfrus-
trated system. Large values of f account for strong frustration
in the system. For a spin liquid where T ∗ → 0+ theoretically,
the frustration index diverges. Being a priori readily accessi-
ble to experiments, this quantity f has become a convenient
tool to gauge how frustrated a system is.

But as with many successful, broadly used indicators, a
few shortcomings are inevitable. Deviations from the standard
Curie-Weiss law have been studied in a variety of magnetic
systems, such as spin glasses [8,9], the pyrochlore molyb-
date Y2Mo2O7 [10], the valence bond glass Ba2YMoO6 [11],
or Kitaev materials with strong spin-orbit coupling [12], to
cite but a few. For example, in anisotropic lattices, the high-
temperature Curie constant and low-temperature transition

temperature may be set by different energy scales, giving rise
to an artificially large parameter f even when the system is
barely frustrated [13,14].

In spin liquids, this deviation has been rationalized as the
onset of a Curie-law crossover [15,16] between the universal
high-temperature Curie law and a low-temperature, model-
specific, spin-liquid Curie law [16–19]. The problem is that
fitting the susceptibility of spin liquids with a Curie-Weiss
law always gives an answer, but not necessarily the right one,
as illustrated for the Ising kagome antiferromagnet in Fig. 1.
Beyond the traditional difficulties to measure the Curie-Weiss
temperature [5,12], frustration precisely prevents the phase
transition in spin liquids that would justify the Curie-Weiss
fit as a mean-field approximation of a scaling law with critical
exponent γ = 1. Equation (1) is only valid at high temperature
as a first-order perturbation of the Curie law. And whether
this high-temperature regime is accessible to experiments then
becomes an important question [5,12]. Internal energy scales
such as a single-ion crystal field, a band gap, the structural
distortion of the lattice, or even the melting of the materi-
als might prevent access to the necessary high temperatures.
In that case, the values of the Curie constant and Curie-
Weiss temperature strongly depend on the temperature range
of the fitting procedure [16,20]. The latter can even change
sign when the exchange coupling is particularly small (see,
e.g., Refs. [21,22] for Dy2Ti2O7). And as a high-temperature
expansion of the susceptibility, the Curie-Weiss fit is not de-
signed to capture the spin-liquid behavior at low temperatures.

To summarize the issue, applying the Curie-Weiss fit to
frustrated magnets means applying a method that has been de-
rived around a mean-field critical point, to a class of systems
where this critical point is absent by definition.

Our goal in this paper is to rationalize this conceptual
divergence of viewpoints and to build a generic understanding
of the Curie-law crossover in spin liquids. Is it possible to
quantify how the magnetic susceptibility deviates from the
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FIG. 1. Curie-law crossover in spin liquids. Both panels compare
susceptibility results from Monte Carlo (MC) simulations of the
Ising antiferromagnet on the kagome lattice [Eq. (5) and Fig. 2(b)]
(open black circles) to their corresponding results on the Husimi
tree “HT(3,2)” [Eq. (C19) and Fig. 3(a)] (solid red line). (a) In-
verse susceptibility 1/χ on a linear temperature scale. The Curie
Weiss fit has been obtained from fitting data for 2 < T/J < 10 (blue
dashed line), giving θfit

cw ≈ −5.6J different from the known exact
value of −4J [red dashed line, obtained from a Curie-Weiss fit of
the HT(3,2) curve]. (b) Same results are plotted for the reduced sus-
ceptibility χT on a semilogarithmic plot. The Husimi tree “HT(3,2)”
result matches quantitatively with MC simulations, and shows the
crossover between two different Curie constants at high-T (C∞ = 1
in paramagnetic phase) and low-T (C0 = 0.2 in spin-liquid phase),
corresponding to two different Curie laws. If the fit is done in the
intermediate crossover region (2 − 10|J|), which is typically the
region accessible to experiments (see Sec. VI), then the resulting
Curie-Weiss law quickly deviates from simulations.

Curie-Weiss law, not just for a specific model but for frustrated
magnets in general? In particular, can we identify generic fea-
tures? Practically, understanding the limits of the Curie-Weiss
fit will help estimate the appropriate temperature window to
measure the Curie-Weiss temperature, and what to do when
this window is not experimentally available.

II. SUMMARY OF RESULTS

Since our goal is to build a generic picture of the Curie-law
crossover for spin liquids, we will study a variety of frustrated
lattices in two and three dimensions (Fig. 2), first considering
Ising spins, then extending the analysis to include continuous
Heisenberg spins, anisotropic exchange, and finally analyz-
ing experimental data of materials with quantum spins. Our
motivation here is not to study each model individually. That
has already been done extensively in the literature; see, e.g.,
the following references for the two-dimensional triangu-
lar [18,23,24], kagome [19,25], square-kagome [13,26,27],

checkerboard [28,29], and ruby [30] lattices, and for the three-
dimensional trillium [31], hyperkagome [32], and pyrochlore
[16,17,33–35] lattices. Instead, we will compare these models
together, understand why similarities appear between some of
them, and build an overall intuition for the phenomenon of the
Curie-law crossover in spin liquids.

On the theoretical front, comparing unbiased classical
Monte Carlo simulations to the analytical Husimi tree ap-
proximation shows that thermodynamic quantities are, to a
large extent, independent of the lattice dimension, and even
of the structure of the lattice beyond the minimal frustrated
unit cells (Fig. 5). What essentially matters is simply the type
of frustrated unit cell (triangle, tetrahedron,...) and the local
connectivity between them. In addition, we also show how
to compute correlations on Husimi trees with a nontrivial
distribution of sublattices and local easy-axes on trillium and
hyperkagome lattices (Appendix C 4).

On the experimental front, one of our take-home mes-
sages is that the reduced susceptibility χT (that is frequently
used by chemists) is a very useful complement to the in-
verse susceptibility 1/χ for frustrated magnets. The Curie-law
crossover is especially transparent in this quantity, between
two horizontal asymptotic lines. χT thus immediately tells
us (i) how far we are from the high-temperature Curie law,
and (ii) the presence or absence of a low-temperature spin-
liquid Curie law. This is especially useful because some
frustrated materials may ultimately order or freeze at a very
low temperature T ∗. But if the reduced susceptibility χT
reaches a low-temperature plateau at Tp � T ∗, then it is
a solid indication that a strongly correlated regime char-
acteristic of a spin liquid exists over a finite temperature
window T ∗ < T < Tp.

To describe the Curie-law crossover in its entirety, we
introduce the following fitting ansatz [Fig. 1(b)]:

χT |fit = 1 + b1 exp[c1/T ]

a + b2 exp[c2/T ]
, (3)

inspired by the above analogy between disparate models and
Husimi tree calculations. This empirical ansatz provides a
complementary estimate of the Curie constant and Curie-
Weiss temperature,

C = 1 + b1

a + b2
, θcw = b1c1

1 + b1
− b2c2

a + b2
, (4)

that is not based on a high-temperature expansion. Hence,
if Eq. (4) agrees with values obtained from a Curie-Weiss
fit, then it is reasonable to consider them as an accurate
description of the material. However, if there is a noticeable
mismatch, then it is likely that experimental data have not
reached the high-temperature regime where the Curie-Weiss
law is valid.

The remainder of this article is structured as follows. In
Sec. III, we introduce the models of classical spin liquids,
defined with Ising spins on a variety of frustrated lattices
in two and three dimensions (Fig. 2). These models will
be solved numerically with classical Monte Carlo simula-
tions and analytically on their corresponding Husimi trees
(Fig. 3).

In Sec. IV, we present thermodynamic quantities for all
spin liquids introduced in Sec. III and discuss analogies and
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FIG. 2. Corner-sharing lattices in two and three dimensions involve different lengths of minimal loops L between frustrated cells.
(a) Triangular lattice (L = 3), (b) kagome lattice (L = 6), (c) square-kagome lattice (L = 4), (d) checkerboard lattice (L = 4), (e) ruby
lattice (L = 3), (f) trillium lattice (L = 5), (g) hyperkagome lattice (L = 10), and (f) pyrochlore lattice (L = 6). Thermodynamic observables
for each lattice (see Fig. 5) have been obtained numerically with classical Monte Carlo simulations of Hamiltonian H [Eq. (5)], as described in
Appendix B. While commonly referred to “edge sharing” in the literature, we describe the triangular lattice as corner sharing to emphasize its
analogy with the trillium lattice in three dimensions and the corresponding Husimi tree HT(3,3) in Fig. 3(c). Numbers on lattice sites indicate
the Manhattan distance �, used in Fig. 6.

signatures of their Curie-law crossover. In particular, we dis-
cuss the reason for the very good match between Monte-Carlo
simulations and Husimi tree calculations, despite the different
lattice structure.

In Sec. V, we discuss the limitations of the conventional
Curie-Weiss fit, showing the advantage to use the reduced
susceptibility χT . We introduce and benchmark the Husimi
ansatz [Eq. (3)] to numerical simulations of spin-liquid mod-
els with Ising and continuous Heisenberg spins.

In Sec. VI, we apply this ansatz to experimental data
for the pyrochlore NaCaNi2F7 [36], the square-kagome
KCu6AlBiO4(SO4)5Cl [37], and the spiral spin liquid
FeCl3 [38].

In Sec. VII, we conclude with a brief summary and impli-
cations for future experiments on spin-liquid materials.

Details on the lattice geometries, Monte Carlo simulations,
Husimi tree calculations, connection to Coulomb gauge field
theory, and structure factors are given in Appendices A, B, C,
D, and E, respectively.

III. MODELS AND METHODS

A. The Ising model

In Secs. III and IV, we focus on thermodynamic properties
of minimal spin-liquid models,

H = J
∑
〈i j〉

	Si · 	S j, (5)

for Ising spins 	Si = σi	ei, with σi = ±1, and nearest-neighbor
coupling J , applied to a variety of lattices, as shown in Fig. 2.
We shall consider two types of Ising spins, either collinear
along the same global z-axis 	ez, or oriented along their local
easy axis 	ei attached to the sublattice of site i. The latter
is motivated from single-ion anisotropy, as found, for exam-
ple, in kagome materials like Dy3Mg2Sb3O14 [39] and spin
ices like Dy2Ti2O7 and Ho2Ti2O7 on the pyrochlore lattice
[40,41], and EuPtSi [31,42,43] on the trillium lattice. We shall
refer to each system as “global-axis” and “local-axis” models,
as illustrated in Fig. 4. All local easy axes relevant for this
work are defined in Appendix A. Global-axis and local-axis
models are equivalent, up to a simple rescaling of the coupling
constant J [44,45]

Jlocal = Jglobal (	ei · 	e j ), (6)

where i and j are two neighboring sites. For lattices con-
sidered here, the scalar product (	ei · 	e j ) is the same for all
neighboring pairs, which means that the energy, specific heat
and entropy of the two models are the same up to rescaling
(6). However, magnetic quantities such as the susceptibility
differ. In this work, the exchange coupling is always antiferro-
magnetic Jglobal > 0 (ferromagnetic Jlocal < 0) for global-axis
(local-axis) models, to stabilize a spin-liquid ground state.
From now on, all energies and temperatures are given in units
of Jglobal = 1, understanding that the rescaling of Eq. (6) is
always applied for local-axis models.
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FIG. 3. Husimi trees for various corner sharing lattices. Frustrated cells from real lattices (Fig. 2) are arranged on the Husimi tree (HT),
with the central cell in red, the first shell in blue, and the second shell in green. (a) HT(3,2): For the kagome and hyperkagome lattice,
with corner sharing triangular plaquettes. (b) HTS: For the square-kagome lattice. (c) HT(3,3): For the triangular and trillium lattice, where
three triangular plaquettes share one corner. (d) HT(4,2): For the checkerboard, ruby and pyrochlore lattice, which is made of corner-sharing
square/tetrahedron plaquettes.

In Sec. V, the Hamiltonian of Eq. (5) will also be consid-
ered for continuous Heisenberg spins.

B. Spin liquids on the Husimi tree

The frustrated Ising model [Eq. (5)] on corner-sharing
lattices (see Fig. 2) can be solved, regardless of its physical
dimension, by numerical methods such as classical Monte
Carlo simulations (see Appendix B). On the analytical front,
however, the question is more delicate. Since correlations play
a major role, one needs a method beyond standard mean-field
theory, but nonetheless valid for frustrated models across dif-
ferent dimensions. The Husimi tree (HT) calculation precisely
fits our needs, by incorporating the local frustrated constraints
of the lattice, irrespectively of its dimension. HT recursively
extends from a central frustrated cell—e.g., a triangle or a
tetrahedron—into a nonreciprocal lattice, without any internal
loop beyond the frustrated cell (Fig. 3). As a consequence,
its boundary is of comparable size to the volume of the bulk
[54,55] and the HT remains a mean-field approach. It is thus
inaccurate at critical points, except above their upper critical
dimensions [56–58]. But since we explicitly study models
away from phase transitions, we expect pertinent analyti-
cal insights from the HT, spurred on by encouraging results
on frustrated systems in the literature [16,56–65]. Technical
aspects of the HT method are explained in Appendix C includ-

FIG. 4. While Ising models usually consider collinear spins (a,
c), the crystal field in materials may impose a local easy axis (b,
d), respecting the symmetry of the magnetic-ion environment, as
illustrated here for the kagome and pyrochlore lattice. All local easy
axes are defined in Appendix A.

ing the explicit expressions of the thermodynamic quantities
and how to include the noncollinear easy-axes of the different
sublattices.

We will compare a variety of physical lattices, with differ-
ent numbers of internal loops and frustrated unit cells (Fig. 2),
to their pseudo-lattice counterparts on the Husimi tree, which
do not have any internally closed loops (Fig. 3). Let us define
L as the smallest internal loop formed by frustrated cells on
the physical lattice. We relate all physical lattices, as intro-
duced in Fig. 2, to their corresponding HT trees, according to
the number of sites per frustrated cell and their connectivity:

(i) HT(3,2) [Fig. 3(a)] contains three sites in the frustrated
cell, where each site is connected between two cells. It relates
to the kagome (L = 6), square-kagome (L = 4), and hyper-
kagome (L = 10) lattice. Considering the complexity of the
frustrated cell in the square-kagome lattice, we also included
the Husimi tree HTS [Fig. 3(b)] to improve the mean-field
approximation.

(ii) HT(3,3) [Fig. 3(c)] contains three sites in the frustrated
cell, where each site is connected between three cells, and
relates to the triangular (L = 3) and trillium (L = 5) lattice.

(iii) HT(4,2) [Fig. 3(d)] contains four sites in the frus-
trated cell, where each site is connected between two cells,
and relates to the checkerboard (L = 4), ruby (L = 3), and
pyrochlore (L = 6) lattice.

The similarity between a given lattice and its Husimi tree,
taken individually, makes sense—except maybe for the trian-
gular lattice, which will be discussed separately in Sec. IV D.
In this set up we shall investigate the Curie-law crossover
by comparing thermodynamic quantities between the physical
lattice (as obtained by classical Monte Carlo simulations) and
their corresponding pseudo lattice on the Husimi tree in the
next section.

IV. THE CURIE-LAW CROSSOVER

The Curie-law crossover describes the evolution of the
magnetic susceptibility between two different Curie laws [16],
whose origin becomes obvious when considering the reduced
susceptibility χ T :

χ T = 1

N

∑
i, j

[〈	Si · 	S j〉−〈	Si〉〈	S j〉] = 1 + 1

N

∑
i 
= j

〈	Si · 	S j〉. (7)

024411-4



CURIE-LAW CROSSOVER IN SPIN LIQUIDS PHYSICAL REVIEW B 108, 024411 (2023)

FIG. 5. Thermodynamic signatures of the Curie-law crossover in spin liquids. Comparison of the normalized energy E , specific heat Ch,
entropy S and reduced susceptibility χT per spin for results obtained from classical Monte Carlo simulations (open symbols) on the physical
lattices (Fig. 2) and analytical calculations (solid black lines) on their corresponding Husimi trees (Fig. 3). Observables are shown on a
semilogarithmic plot. (a) Lattices with triangular cells, where each site belongs to two frustrated cells, HT(3,2): Kagome, square-kagome and
hyperkagome. (b) Lattices with triangular cells, where each site belongs to three frustrated cells, HT(3,3): Trillium and triangular. (c) Lattices
with tetrahedral cells, HT(4,2): Checkerboard, ruby and pyrochlore. Results are given for global-axis and local-axis models, respectively
labeled “global” and “local,” as explained in Sec. III. All systems perform a crossover from a high-temperature paramagnetic regime into a
low-temperature classical spin-liquid regime. This is seen by two different Curie laws at high and low temperatures in the reduced susceptibility
χT [Eq. (8)]. Technical details on simulations and analytics are given in Appendices B and C, respectively.

In magnetically disordered systems, as studied here, 〈	Si〉 =
0 for all temperatures, while translational invariance implies
additionally that

χ T = 1 +
∑
i 
=0

〈	S0 · 	Si〉 =
∑

i

〈	S0 · 	Si〉, (8)

where 	S0 is an arbitrary “central” spin. In a paramagnet with
uncorrelated spins, Eq. (8) gives the Curie constant

C∞ ≡ χT |T →∞ = 1. (9)

At zero temperature, the Curie constant is renormalized by the
correlations of the spin liquid:

C0 ≡ χT |T →0 =
∑

i

〈	S0 · 	Si〉T →0. (10)

In fact, C0 is nothing less than the integration of spin cor-
relations in real space, with C0 smaller (greater) than 1 for
dominating antiferromagnetic (ferromagnetic) correlations.

A. Thermodynamics

Figure 5 displays thermodynamic observables: Normal-
ized energy E , specific heat Ch, entropy S, and reduced
susceptibility χT , obtained by simulating the Hamiltonian
H [Eq. (5)] with classical Monte Carlo simulations for
the physical lattices (Fig. 2) and analytical calculations on
their corresponding Husimi trees (Fig. 3). As explained
in the Introduction, these systems have often been studied
in the literature; see, e.g., Refs. [13,16–19,23,24,26,27,29–
32,34,35,46–52]. Our interest here is not to study them in-
dividually, but to see how their thermodynamic properties
compare to each other. In particular, classical spin liquids
are known for their residual entropy as T → 0+, that mea-
sures the degeneracy of the spin-liquid ground state. It can
be categorized into three groups [46–52] (corresponding to
the three columns in Fig. 5), (i) kagome, square-kagome, and
hyperkagome lattices with S(T → 0) ≈ 0.5, (ii) triangular
and trillium lattice with S(T → 0) ∼ 0.3 − 0.4, and (iii) ruby,
checkerboard, and pyrochlore lattices with S(T → 0) ≈ 0.2.
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TABLE I. Residual entropy S|T →0 and spin-liquid Curie constant C0, obtained from Monte Carlo (MC) simulations and Husimi tree (HT)
calculations. Table cells including two lines for C0 display results for global-axis (first line) and local-axis models (second line). HT calculations
of C0 are detailed in Appendix C 4. The column “other methods” compares the HT estimate, also known as Pauling entropy, to exact results
when available (except for the 3D pyrochlore lattice obtained from series expansion). As a side remark, one should be aware that the Pauling
entropy is not always a lower bound of the residual entropy on the corresponding real lattices (see Ref. [53] and Appendix C 5).

S |T →0 C0 ≡ χT |T →0

Lattice Monte Carlo Husimi tree Other methods Monte Carlo Husimi tree

Kagome 0.502(1) 1
3 ln 9

2 ≈ 0.5014 [46] 0.50183 [47]
0.201(1)
1.988(1)

1/5
2

Hyperkagome 0.502(1) 1
3 ln 9

2 ≈ 0.5014 [46] n/a
0.200(1)
1.500(1)

1/5
3/2

Square kagome 0.504(1) [13] 1
6 ln 41

2 ≈ 0.5034 [13] n/a 0.203(1) 0.2028

Triangular 0.323(2) ln 3
2 ≈ 0.4055 [31] 0.323066 [48,49] 0.162(8) 1/7

Trillium 0.392(1) [31] ln 3
2 ≈ 0.4055 [31] n/a

0.135(1)
0.969(1)

1/7
1

Ruby 0.194(1) 1
2 ln 3

2 ≈ 0.2027 [50] n/a 0.0 0

Checkerboard 0.216(1) 1
2 ln 3

2 ≈ 0.2027 [50] 3
4 ln 4

3 ≈ 0.2158 [51] 0.0 0

Pyrochlore 0.206(1) 1
2 ln 3

2 ≈ 0.2027 [50] 0.205006(9) [52]
0.0
2.002(1)

0
2[17]

The HT estimate of the residual entropy is also known as
Pauling entropy, which, as a side-note, is not always a lower
bound (see Appendix C 5).

The behavior of the entropy is accompanied by a change
in magnetic correlations from a high-temperature regime with
C∞ = 1 to a model-dependent value C0 at low temperatures
(see also Table I). The low-temperature Curie constant C0 is
not universal, making its value a characteristic property of the
underlying spin liquid.

In some models, the value of C0 is easy to understand. For
the ruby, checkerboard, and pyrochlore lattice with global axis
spins, C0 is zero [Fig. 5(c)]. This is because their ground state
respects the so-called ice rules [44,45] with two up spins and
two down spins per frustrated cell. The magnetization M =
| ∑i 	ezσi| is thus not only globally zero on average, 〈M〉 = 0
but also locally zero for all frustrated units. No fluctuations of
the magnetization are allowed in the spin liquid, resulting in
〈M2〉 = 0 and thus a vanishing reduced susceptibility. In other
words, we get C0 = 0 as can be expected for any system with a
zero-magnetization plateau. For triangular frustrated units, the
opposite reasoning applies because the magnetization cannot
be canceled with three collinear Ising spins. Magnetic fluc-
tuations persist down to zero temperature, and 〈M2〉 and χT
remain finite.

Remarkably, thermodynamic observables match well
within each group of lattices, despite their different physical
dimensions. It was already known [46–52] that some models
had very similar residual entropies as T → 0+. Here this
similarity is further illustrated with the value of the spin-
liquid Curie law C0 (see Table I). But more importantly,
thermodynamic quantities are essentially the same for all tem-
peratures within each group of models. For example, the 2D
square-kagome model compares well with the 2D kagome,
as recently noticed for quantum spins−1/2 [27], but also the
3D hyperkagome, while the 2D ruby model matches with 3D
pyrochlore for all temperatures. Furthermore, thermodynamic

observables for each group are well reproduced by their cor-
responding HT, suggesting that correlations barely depend on
the physical dimension of the lattice. In the following we will
try to understand why.

B. Husimi tree sets the correlation length

As seen in Eq. (10), C0 corresponds to the integration of
real-space correlations in the spin liquid (see also Table I).
Let us consider HT(3,2) whose C0 = 1/5. This value deviates
from Monte Carlo results on the kagome and hyperkagome
lattice within less than 1%. For the square-kagome lattice, the
mismatch drops from 2% to 0.1% by including a more evolved
version of the Husimi tree [see HTS in Fig. 3(b)], which
contains a larger frustrated unit cell and includes internal loop
lengths of four sites. Such a trend suggests the presence of a
particularly small correlation length ξ in these systems.

To confirm our suggestion, let us define spin-spin correla-
tions on the HT:

D(�) = 〈	S0 · 	S�〉 = 〈σ0 σ�〉, (11)

assuming that all spins are collinear along a global axis 	Si =
σi	ez. The fact that (i) there is no closed loop in the HT (beyond
the size of the frustrated unit), (ii) the Hamiltonian is invariant
under time-reversal symmetry, and (iii) the HT is by definition
locally the same at each vertex, allows us to formulate an exact
expression for the spin-spin correlations

D(�) = 〈σ0 σ�〉 = 〈
σ0 σ 2

1 σ 2
2 ...σ 2

�−1 σ�

〉
= 〈σ0 σ1〉〈σ1 σ2〉...〈σ�−1 σ�〉
= 〈σ0 σ1〉�. (12)

The nearest-neighbor spin-spin correlation averaged over the
ensemble of ground states can be easily calculated. And it
turns out to be the same result for the three kinds of Husimi
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FIG. 6. Absolute value of the real-space spin-spin correlation length |D(�)| at low temperature, deep in the spin-liquid regime of H [Eq. (5)],
as obtained from classical Monte Carlo simulations for global-axis Ising spins on their physical lattices (Fig. 2), and their corresponding Husimi
tree (HT). (a) Exponential decay D(�) ∼ e−�/ξ on the kagome [ξ = 1.10(2)], hyperkagome [ξ = 1.03(2)], square-kagome [ξ = 1.18(2)], and
ruby lattice [ξ = 0.76(3)] compare semiquantitatively well with the exponential decay on the Husimi tree (ξHT = 0.91) [Eq. (15)]. (b) Algebraic
decay D(�) ∼ 1/�α on the triangular [α = 0.476(10)], checkerboard (α = 2), and pyrochlore (α = 3), lattice. On the checkerboard and
pyrochlore lattices, correlations are known to decay algebraically (see Sec. IV C) but follow the HT exponential decay for the first three
or four nearest neighbors, i.e., over a distance larger than ξHT. Correlations on the trillium [ξ = 1.55(2)] and triangular lattice deviate more
strongly from HT expectations, which we believe causes the small, but visible, mismatch of thermodynamic quantities in Fig. 5(b). Note that
for a relevant comparison between physical lattices and HT, we used the Manhattan distance �, defined on paths for each lattice as shown in
Fig. 2. For lattices in panel (b), the Manhattan distance is also the Euclidian distance. Panels (a) and (b) are, respectively, on a semilog and
log-log plot.

trees, HT(3,2), HT(3,3), and HT(4,2):

〈σ0 σ1〉 = −1/3. (13)

This means that correlations decay exponentially on Husimi
trees, following the formula

D(�) = (− 1
3

)� = (−1)� e−� ln 3, (14)

for all Husimi trees considered here, giving a correlation
length

ξHT = (ln 3)−1 ≈ 0.91. (15)

More generally, for a Husimi tree whose frustrated units are
made of Nu Ising spins fully connected between each other
via antiferromagnetic couplings, the correlation length in the
degenerate ground state is

ξHT = 1

ln Nu
, if Nu is odd, (16)

ξHT = 1

ln(Nu − 1)
, if Nu is even. (17)

Equation (15) means that correlations decay typically over
the nearest-neighbor distance in Husimi trees. This length
scale is smaller than any loop in the real lattice, suggesting
that correlations in real lattices may decay in a similar way
at short distances. Monte Carlo simulations confirm this as-
sumption on the kagome, hyperkagome [32], square-kagome
[13], and ruby [30] lattice at low temperatures [Fig. 6(a)],
whose correlation lengths are roughly the same as ξHT. Since
the correlation length is expected to decrease upon heating,
this short correlation length is consistent with the success of
the HT approximation over the whole temperature range for
global- and local-axis models alike.

For the sake of clarity, we should point out that the value
of C0 is not coming from a cutoff of the correlations beyond
ξHT. Indeed, it would be tempting to see classical spin liq-
uids as an ensemble of independent clusters of superspins
(on each triangle or tetrahedron), and the spin-liquid Curie
law as a form of superparamagnetism, as observed with fer-
romagnetic nanoparticles [66]. However, we cannot recover
the value C0 = 0.2 for kagome-type systems from such an
argument. Appendix C 4 shows that the resulting error scales
like − 6

5 (− 2
3 )L+1 on a Husimi tree of L layers. Even if correla-

tions ultimately vanish at long distance, the cutoff necessary
to approximately recover the value of C0 is much larger than
ξHT. To understand the similarity between simulations and
analytics, it would be more accurate to see the paths con-
necting the central spin to the many spins on layer L on the
infinite-dimensional Husimi tree of Fig. 3 as virtual paths of
correlations connecting a pair of Lth nearest neighbors on the
corresponding real lattice of Fig. 2. This picture is nearly exact
up to the nth nearest neighbor before closing the minimal
loop of size L on the real lattice (n = L/2 − 1), which is
why deviations between Monte Carlo and Husimi tree grow
inversely with L in Fig. 6: First hyperkagome, then kagome,
and finally square-kagome.

C. Coulomb field theory and flat bands

However, correlations on the checkerboard and pyrochlore
lattices are algebraic at low temperature, scaling like 1/rd

[67], with d the physical dimension of the lattice. Their an-
gular dependence is dipolar though, which means that the
integration of these correlations over the entire system in
Eq. (10) does not diverge, and C0 is well defined. The dipo-
lar nature of these correlations comes from the fact that

024411-7



RICO POHLE AND LUDOVIC D. C. JAUBERT PHYSICAL REVIEW B 108, 024411 (2023)

their ground states are ice models, described by an emergent
Coulomb field theory [29]. With respect to the exponential de-
cay of the HT, these algebraic correlations only differ beyond
the third or fourth neighbor; see the comparison to the black
curve on Fig. 6(b). In that sense the correlation length ξHT re-
mains effectively relevant at short distances. That being said,
one would have been forgiven to expect larger corrections to
C0 coming from the long-range algebraic tail. Here again we
are left with the question: Why are these corrections so small?

For models with a global axis, C0 is known to be ex-
actly zero (see discussion in Sec. IV A); the ice rules prevent
magnetic fluctuations for all tetrahedra, and thus conveniently
prevent any corrections. But this does not explain the match
of Fig. 5(c) for the local-axis pyrochlore model, a.k.a., spin
ice, where C0 ≈ 2.0. Magnetic fluctuations are allowed in
the spin-ice ground state. Additionally, since the spin-ice
model is ferromagnetic, the sum of Eq. (8) contains mostly
positive terms, as opposed to the alternating series encoun-
tered for the integration of correlations in antiferromagnets
(Appendix C 4). For the latter, potential corrections coming
from algebraic correlations would partially cancel out; while
they would a priori add up in the ferromagnetic model. This
suggests that an alternative point of view is necessary.

Let us temporarily step away from Husimi trees and con-
sider the other facet of spin ice, as a U(1) Coulomb gauge
field. As mentioned previously this gauge-field texture comes
from the ice rules, that can be rewritten as a divergence-free
constraint on the magnetization field 	M [29]. But spin ice is
not the only model supporting this type of texture. The ground
state of the pyrochlore antiferromagnet with classical Heisen-
berg spins is a U(1)×U(1)×U(1) Coulomb gauge field that has
often been described as three copies of spin ice [28,29,33,67].
The susceptibility of these divergence-free fields is readily
available using the self-consistent Gaussian approximation
(SCGA). It means that with the proper normalisation, SCGA
offers an alternative approach to compute C0 and C∞ (see
Appendix D). In particular, it tells us that the ratio C∞/C0

is due to the topology of the magnetic band structure of the
pyrochlore lattice [68–71]; the ground state is composed of
two degenerate flat bands, accounting for half (C∞/C0 = 1/2)
of the total number of bands.

To summarize, since C0 comes from the integration of cor-
relations [Eq. (10)], it is remarkable that algebraic correlations
in real lattices give almost the same result as exponential
correlations in Husimi trees (see pyrochlore and checkerboard
results in Fig. 5). This is because C0 = 0 is protected by the
absence of local fluctuations for global-axis models, while
C0 ≈ 2.0 is a direct consequence of the topology of the band
structure for local-axis models.

Before closing our discussion on the checkerboard and
pyrochlore lattices, let us take advantage of these dipolar
correlations, whose signatures in the equal-time structure
factor present sharp, singular features known as pinch points
[29,72,73]. Upon heating, these singular features broaden
as topological-charge excitations disrupt the Coulomb field
[Figs. 7(a)–7(c)] [74]. By measuring their breadth, pinch
points offer a quantitative way to measure the establishment
of the spin liquid. Figure 7(d) shows the full width at half
maximum (FWHM) of the pinch point on the checkerboard
lattice as a function of temperature. Our point is that the

FIG. 7. Signatures of the Curie-law crossover in coulombic spin
liquids. (a)–(c) Equal-time structure factor S(q) [Eq. (E1)] of H
[Eq. (5)] for Ising spins in their global axis on the checkerboard
lattice, obtained from classical Monte Carlo simulations. The pinch-
point gets broader upon heating. (d) Temperature-dependent full
width at half maximum (FWHM) of pinch-points. FWHM has been
obtained from a Lorentzian fit for line cuts of the pinch point along its
singular qx direction [see inset of panel (d)]. The FWHM illustrates
the Curie-law crossover in a similar way as the reduced suscept-
ibility χT .

Curie-law crossover, as seen in χT , is able to grasp the
evolution of FWHM, i.e., the build up of the spin liquid. And
while only a fraction of spin liquids have characteristic,
singular, patterns such as pinch points, the Curie-law
crossover is a generic property of all spin liquids. This
vindicates the Curie-law crossover as a useful signature of the
onset of a spin liquid, and the reduced susceptibility χT as a
suitable observable to measure it.

D. The triangular and trillium lattice

Let us now consider two systems with noticeably different
geometries; the triangular and trillium lattice. While the latter
is three-dimensional and made of corner-sharing triangles,
the former is two-dimensional and usually seen as made of
edge-sharing triangles. From the view point of Husimi trees,
HT(3,3) is clearly a reasonable approximation for the trillium
lattice, with each spin belonging to three triangles. But, even
if less conventional, it can also be used for the triangular
lattice [59,65], since each spin can similarly be seen as shared
by three triangles [see colored lattice in Fig. 2(a)]. The ob-
vious caveat of this choice of Husimi tree (made of three
spins) is that loops that are ignored are of the same size as
the frustrated triangular unit cell itself. However, by direct
comparison between MC and HT(3,3) results in Fig. 5(b),
the reduced susceptibility, χT , of the two antiferromagnetic
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FIG. 8. Reduced susceptibility χT of the Ising antiferromagnet
on the triangular and trillium lattice, emphasizing the difference
between the Husimi tree (HT) and Monte Carlo (MC) simulations.
The global-axis triangular antiferromagnet possesses a nonmono-
tonic reduced susceptibility χT , with a small but distinct minimum
at T = 0.9.

models overlap with a quantitative difference appearing only
below T � 1 (Fig. 8).

The excellent match above T � 1 is in part due to the
fact that the nearest-neighbor correlations in the degenerate
ground state is 〈σ0σ1〉 = −1/3 [23], for triangular and tril-
lium systems in accordance with their corresponding Husimi
tree [see Eq. (13)]. Indeed, the ground-state energy is Egs =
−NbondJ/3 = Nbond〈σ0σ1〉, where Nbond is the number of
nearest-neighbor bonds. For T � 1, correlations beyond near-
est neighbors apparently start to play a role on the real lattices.
From Fig. 8, the deviation from the HT curve indicates
a dominant antiferromagnetic (respectively, ferromagnetic)
contribution for the trillium (respectively, triangular) lattice
[Eq. (8)]. In the triangular case, the third nearest-neighbor
correlations are known to be strongly ferromagnetic [23,24],
with 〈σ0σ3〉 > |〈σ0σ1〉|, as T → 0+. It is likely that this in-
crease of ferromagnetic correlations in the ground state causes
an upturn of the reduced susceptibility (Fig. 8). Accordingly,
integrated correlations in the triangular Ising antiferromagnet
are more antiferromagnetic at finite temperature, for T ≈ 0.9,
than in the spin-liquid ground state. Such a nonmonotonic be-
havior of the reduced susceptibility χT is unusual but not rare.

It is even more pronounced for the trillium lattice with
easy axes. The reduced susceptibility χT of easy-axes models
necessarily increase upon cooling from high temperature, be-
cause nearest neighbor correlations are always ferromagnetic
[the scalar product in Eq. (6) is always negative]. For the
trillium lattice, however, one can show that C0 ≈ C∞ = 1 (see
Appendix C 4 g). It means that χT has to decrease at low
temperature.

The phenomenon of reentrance with bond-dependent in-
teraction anisotropy is yet another example of nonmonotonic
χT , and discussed in detail elsewhere [13,14].

V. HUSIMI ANSATZ FOR THE CURIE-LAW CROSSOVER

A. Limitation of the Curie-Weiss fit

As mentioned in the Introduction, the Curie-Weiss tem-
perature θcw = −z J is a mean-field estimate of the transition
temperature Tc for a system with connectivity z, where the
Curie-Weiss law is a consequence of critical scaling invari-

ance with critical exponent γ = 1. Even though the concept
of conventional order does not apply to spin liquids, θcw does
represent a meaningful quantity, as a measure of interaction
strength. The practical question is, how accurately can this
quantity be measured in experiments?

Best estimates can only be made at high temperatures,
since θcw is the first-order correction to the Curie law

1

χ
= T

C

[
1 − θcw

T
+ O

(
1

T 2

)]
. (18)

And here is the main issue with the Curie-Weiss temperature
θcw. In magnets, the high-temperature regime is frequently not
accessible, since it is two or three orders of magnitude larger
than the characteristic exchange coupling J . For example, in
magnets with 3d valence electrons, J is often of the order
of ∼100 K and the high-temperature regime is inaccessible
because it lies above the melting point of the crystal. However,
for magnets with 4 f valence electrons, J is much smaller,
of the order of ∼1 K. But 4 f ions have a large single-ion
degeneracy, lifted by the local crystal field. This crystal field
introduces a single-ion anisotropy with an associated energy
scale, which varies a lot from one material to another, but
the lowest single-ion excitation is usually of the order of
10–100 K. The high-temperature region is thus difficult to
access because the nature of magnetic moments changes with
temperature [12]. We refer the reader to the useful tutorial
written by Mugiraneza and Hallas [5] for a practical, step-by-
step, application of the Curie-Weiss fit.

The susceptibility measures the evolution of the spin-spin
correlations [Eq. (8)]. And the problem is that, as we have seen
throughout this paper, this evolution from paramagnetism to
spin liquid takes place over several orders of magnitude in
temperatures. It is thus naturally best seen on a logarithmic
scale. Applying the Curie-Weiss law, which is a linear fit, can
be dangerous. What appears to be a reasonable temperature
window on a linear scale might actually only measure a small
evolution of the spin-spin correlations. The Curie-Weiss fit
will always give a result of course, but the outcome will
depend on the window of measurement (Fig. 1). And if the
high-temperature regime is not available, then it is not possi-
ble to check if the value is correct or not, causing a potentially
(largely) inaccurate estimate of θcw.

B. The Husimi ansatz

To measure the Curie-Weiss temperature in spin liquids,
a complementary approach, relying on data points within an
experimentally accessible temperature region, would be wel-
come.

While very high-temperatures are often physically not
accessible, very low-temperatures are also not ideal. Irre-
spectively of the possible difficulty to thermalize the sample,
perturbations beyond the spin-liquid Hamiltonian usually set
a temperature scale T ∗ below which the physics of the spin
liquid is lost; the system may order or fall out-of-equilibrium.
The most appropriate window in experiments is thus at inter-
mediate temperatures, precisely where the crossover between
the two Curie laws takes place. And while low- and high-
temperature expansions are the least accurate in this regime,
Sec. IV A has shown that HT calculations are quantitatively
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reliable over the entire temperature region for corner-sharing
lattices.

Appendix C 2 gives the analytical formula of the suscepti-
bility for different geometries of the Husimi tree. We notice
that the reduced susceptibility is always of the form

χT |HT =
∑

i αi eκi/T∑
i α

′
i eκ ′

i /T
. (19)

This expression is sufficiently generic that it should be able to
fit any form of χT . But as it is written, Eq. (19) is unpractical.
Fortunately, it turns out that only a few terms are usually
necessary. The simplest pertinent form of Eq. (19) is

χT |HA = 1 + b1 exp[c1/T ]

a + b2 exp[c2/T ]
. (20)

We shall refer to Eq. (20) as the Husimi ansatz. In this form the
Curie constant and Curie-Weiss temperature can be directly
extracted from the fitting parameters:

CHA
∞ = 1 + b1

a + b2
, (21)

θHA
cw = b1c1

1 + b1
− b2c2

a + b2
. (22)

Equation (20) will be our primary phenomenological ansatz
for the rest of this paper. Intuitively, we understand that the c1

and c2 parameters correspond to effective energy scales in the
Boltzmann factor. However, two energy scales might be too
minimal to describe the physics of some models, especially if
different types of couplings are involved. This is why we will
also consider an extended ansatz to fit χT

χT |HA = 1 + b1 exp[c1/T ]

a + b2 exp[c2/T ] + b3 exp[c3/T ]
, (23)

where the Curie constant and Curie-Weiss temperature be-
come

CHA
∞ = 1 + b1

a + b2 + b3
, (24)

θHA
cw = b1c1

1 + b1
− b2c2 + b3c3

a + b2 + b3
. (25)

C. Benchmark of the Husimi ansatz

The purpose of this section is to benchmark the Husimi
ansatz of Eq. (20) in a controlled way on various model
Hamiltonians. In Fig. 9 we fit the Curie-law crossover with
Eq. (20) for pyrochlore models with global-axis and local-
axis Ising spins. To test the ansatz on a general framework,
beyond the Ising models used to build our Husimi-based intu-
ition, we also consider continuous spins on the Heisenberg
antiferromagnet (HAF) [33,45,75], and pseudo-Heisenberg
antiferromagnet (pHAF) [76–79]. The pHAF is defined on the
XXZ model as follows:

HXXZ =
∑
〈i j〉

[
JzzSz

i Sz
j − J±(S+

i S−
j + S−

i S+
j )

]
, (26)

with Sz
i along the local [111] easy-axis, as defined in Table IV,

for parameters J±/Jzz = −0.5 [79]. This model is thermody-
namically equivalent to the HAF, but with different magnetic

correlations, and thus a distinct evolution of the Curie-law
crossover.

Figures 9(a) and 9(b) show vanishing C0 = 0, induced by
the zero-divergence constraint on the ground-state manifold,
imposing zero magnetization in all tetrahedra (see discussion
in Sec. IV A). Figures 9(c) and 9(d) show C0 = 2, as a result of
dominant ferromagnetic correlations. Entering the spin-liquid
regime at low T for Figs. 9(a) and 9(c) for models with Ising
degrees of freedom shows a rather sharp kink below T/|J| �
1, while on the opposite, models with continuous degrees of
freedom in Figs. 9(b) and 9(d) enter the low-T regime rather
smoothly.

Results were obtained from classical MC simulations
(black circles) and have been fitted with the Husimi ansatz
(solid lines) from Eq. (20) over different temperature win-
dows. Examples of three different fitting windows are shown
for high-temperature (first row), and low-temperature (second
row) fits. The range of fitting windows are indicated by blue,
yellow and green bars on the bottom of each plot, and allow to
judge their reliability in comparison to MC data. It becomes
clear that fitting windows, which include only one Curie-law
regime (either at low or high temperature), do not accurately
reproduce the Curie-law crossover. This is especially impor-
tant for Ising models, because of the relatively sharp kink
when entering the spin-liquid regime.

However, fitting windows including the intermediate
temperature window, with only the onset of high- and low-
temperature regimes quantitatively reproduce χT over the
full temperature range. The third row of panels shows the
“minimal” fitting window. By using Eqs. (21) and (22) we
can precisely extract the Curie constant C∞ and Curie-Weiss
temperature θcw from those fits. Fitted and exact solutions
match perfectly within error bars (see Table II).

This benchmark shows that the Husimi ansatz correctly
reproduces the Curie-law crossover over the full range of tem-
peratures for several distinct models with Ising and continuous
spins. It requires a fitting window spanning typically 1 or 2 or-
ders of magnitude in temperature, in the intermediate regime
that is usually accessible to experiments (see the bottom row
of Fig. 9). This is a useful theoretical proof of concept, that
now needs to be applied to experiments.

VI. THE HUSIMI ANSATZ IN EXPERIMENTS

Our goal in this section is to show by examples the advan-
tages and limitations of the Husimi ansatz in real materials,
and to encourage its use jointly with the Curie-Weiss fit.

A. NaCaNi2F7

First, let us consider a material where the ansatz gives
similar results to the Curie-Weiss fit. To do so, let us
consider one of the closest materials to the canonical
HAF.

NaCaNi2F7 is a spin-1 pyrochlore material, well described
by a weakly perturbed nearest-neighbor Heisenberg Hamilto-
nian [80,81]. It shows spin freezing at T ∗ ≈ 3.6 K, which has
been assumed to originate from Na1+/Ca2+ charge disorder;
however, no long-range magnetic order has been observed
[36].
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FIG. 9. Empirical fit [Eq. (20)] of the reduced susceptibility χT on the pyrochlore lattice [Fig. 2(h)], as obtained from classical Monte
Carlo simulations of H in Eq. (5) for both Ising and continuous Heisenberg spins and HXXZ in Eq. (26). (a) Pyrochlore Ising, global axis, and
(b) pyrochlore Heisenberg antiferromagnet show dominant antiferromagnetic correlations χT |T →0 = 0, while (c) pyrochlore Ising, local axis
(spin ice), and (d) the pyrochlore pseudo-Heisenberg antiferromagnet show dominating ferromagnetic correlations χT |T →0 = 2. The fitting
windows are given by the coloured bars at the bottom of each figure. Examples for different fitting windows are shown for high-temperature
(first row) and low-temperature regions (second row). The last row shows for each model a minimal fitting window, which is sufficient to
reproduce χT over the full range of temperatures. Simulations were done for system sizes of linear dimensions L = 16, i.e., N = 65 536 spins.

In Fig. 10, we plot the magnetic susceptibility of
NaCaNi2F7, extracted from Ref. [36], on a semilogarithmic
scale for χT and on a linear scale for 1/χ . The data points
are well fitted by the Husimi ansatz of Eq. (20) over the whole
range of accessible temperatures.

TABLE II. Curie constant C∞ [Eq. (21)] and Curie temperature
θcw [Eq. (22)], obtained for the fit of the reduced susceptibility χT
with minimally sufficient fitting window, as shown in the third row
of Fig. 9.

C∞ θcw

Model Fit Exact Fit Exact

Ising global 1.00(1) 1.0 −6.0(1) −6
HAF 1.00(2) 1.0 −2.03(5) −2
Ising local 1.00(2) 1.0 2.0(1) 2
pHAF 1.00(1) 1.0 0.65(2) 2/3

We fit the Husimi ansatz within physically relevant
temperatures 
T = [3.6 K, · · · , 300 K], above the freezing
transition up to the maximally available datapoints, and ob-
tain a Curie-Weiss temperature θHA

cw = −122(1) K, and a
Curie constant CHA

∞ = 1.67(1) (emu K)/(Oe mol-Ni), which
gives an effective magnetic moment of μHA

eff = 3.65(1)μB/Ni.
All these quantities are in good agreement with a
standard Curie-Weiss fit over a temperature window 
T =
[150 K, · · · , 300 K], which reveals θcw = −129(1) K with
μeff = 3.6(1) μB/Ni. This strongly suggest, as also qualita-
tively visible from the straight behavior of 1/χ in Fig. 10(b),
that experimentally measured data points reach the high-
temperature regime where a standard Curie Weiss fit becomes
a reliable estimate.

B. KCu6AlBiO4(SO4)5Cl

KCu6AlBiO4(SO4)5Cl is a promising S = 1/2 quantum
spin-liquid candidate on the distorted square-kagome lattice,
as reported by M. Fujihala et al. [37]. Measurement of specific
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(a)

(b)

FIG. 10. Fit of the experimental susceptibility for the pyrochlore
material NaCaNi2F7 (black circles) plotted on (a) a semilogarithmic
plot for χT and (b) a linear scale for 1/χ . Fitting the Husimi ansatz
[Eq. (20)] within a temperature window 
T = [3.6 K, · · · , 300 K]
(red solid line), gives an estimate of θcw = −122(1) K. Our result is
in good agreement with a standard Curie-Weiss fit (blue dashed line).
Experimental data were extracted from Ref. [36].

heat and susceptibility did not find any signatures of long-
range order down to 1.8 K, while μSR confirmed the absence
of spin order and spin freezing down to 58 mK.

In Fig. 11, we plot the magnetic susceptibility of
KCu6AlBiO4(SO4)5Cl, as kindly provided by M. Fujihala
[37], on a semilogarithmic scale for χT and on a linear
scale for 1/χ . In comparison to NaCaNi2F7 in Fig. 10(b),
it becomes evident that 1/χ for KCu6AlBiO4(SO4)5Cl
shows a rather strong deviation from a linear behavior
over nearly the whole range of experimentally accessible
temperatures. A Curie-Weiss fit for the high-temperature
tail within 
T = [200 K, · · · , 300 K] gives θcw = −237(2)K
and μeff = 1.96 μB/Cu with a Landé factor g = 2.25 [37].
The Husimi ansatz from Eq. (20) gives a noticeably differ-
ent outcome though. We find θHA

cw = −154 ± 28 K. The large
error bar comes from the choice of the fitting temperature win-
dow [Tmin, Tmax] (see the spread of the red curve in Fig. 11),
where we fix Tmax = 300 K at the highest available tempera-
ture, and vary Tmin between 10 and 30 K. The nonlinearity of
1/χ and spread of the Husimi estimate suggest that 300 K is
too far from the high-temperature limit for a conclusive esti-
mate of θcw. The noticeable difference between the outcomes
of the Curie-Weiss fit and Husimi ansatz, however, makes us
wonder which of the two estimates is more reliable.

From a microscopic analysis in Ref. [37] we understand
that KCu6AlBiO4(SO4)5Cl is not an ideal square-kagome
lattice; the three bonds of a triangle in Fig. 2(c) are in-
equivalent. All triangles are distorted in the same way and
form three distinct “nearest-neighbor” couplings, J1, J2, J3,
on each triangle [see inset in Fig. 11(a)]. M. Fujihala et al.

(a)

(b)

J1

J3 J2

FIG. 11. Fit of the experimental susceptibility for the
S = 1/2 square-kagome quantum spin-liquid candidate
KCu6AlBiO4(SO4)5Cl (black circles), plotted on (a) a
semilogarithmic plot for χT and (b) a linear scale for 1/χ .
Experimental data are plotted together with exact diagonalization
(ED) data (18 sites, green dots) of an effective J1-J2-J3 Heisenberg
model [see inset in panel (a)], as proposed in Ref. [37]. We
fit experimental data with the Husimi ansatz [Eq. (20)] for
Tmin � T � Tmax, where we set Tmax = 300 K to the highest
available temperature from experiment, and vary Tmin between 10
and 30 K (shaded, respectively, from light red to red). Experimental
data and ED results were kindly provided by M. Fujihala [37].

[37] built a microscopic Hamiltonian which describes its
magnetic susceptibility at high temperature, using exact di-
agonalization (ED) and finite-temperature Lanczos methods,
as shown on Fig. 11. ED results fit the experimental data
very well down to T ≈ 40 K, below which finite-size ef-
fects make further estimates difficult. M. Fujihala et al.
obtained

J1 = −135 K, J2 = −162 K, J3 = −115 K, (27)

with a Landé factor g = 2.11. This high-temperature analysis
cannot rule out low-energy perturbations, but it establishes
the model of M. Fujihala et al as a solid parametrization of
KCu6AlBiO4(SO4)5Cl in the temperature regime relevant to
θcw, which is straightforward to estimate from Eq. (27):

θED
cw = S(S + 1)

3
4

(
J1 + J2 + J3

3

)
(28)

=
(

J1 + J2 + J3

3

)
≈ −137 K. (29)

Equation (29) leads to a couple of remarks. Firstly, the ED
results are in better agreement with the Husimi ansatz than
the Curie-Weiss fit, which a posteriori validates the former.
Secondly, θcw here simply corresponds to the average value
of the three inequivalent exchange couplings. J1, J2, J3 fit
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within the energy window set by θcw ± δJ , thus defining the
anisotropic energy scale δJ = 25 K. Using Tmin = δJ as a
lower bound of our fitting temperature window, we obtain
from the Husimi ansatz θHA

cw = −136 K with a Landé factor
g = 2.1, which is essentially the same result as from ED
[82]. This suggests that the main difficulty to estimate θcw

comes from the lattice anisotropy of KCu6AlBiO4(SO4)5Cl.
And while the Curie-Weiss law is not adapted to account for
multiple energy scales in this intermediate regime, the Husimi
ansatz has been designed to be a flexible fitting function for
the crossover that happens in this intermediate regime. We
believe it is the reason why the Husimi ansatz, albeit its large
error bar, gives a better result than the Curie-Weiss fit.

C. FeCl3

1. Experiments

As seen from the two previous materials with negative
Curie-Weiss temperatures, spin liquids usually show domi-
nant antiferromagnetic couplings. However, there also exist
frustrated magnets where the interplay between ferro- and
antiferromagnetism can lead to multiple Curie-law crossovers
[13,14]. An important example relevant to materials are spiral
spin liquids. They form a class of classical spin liquids where
spiral states compete and form a subextensive ground-state
manifold with characteristic ring features in momentum space
[83–87].

The Van der Waals magnet FeCl3 is a prototype of a spiral
spin liquid. At first, investigated as a member of crystallized
anhydrous ferric chlorides [88], the history of FeCl3 dates
far back into the 1930s, where it already attracted attention
due to its unusual magnetic properties at low temperature.
Susceptibility measurements reported a Curie-Weiss tempera-
ture of θcw ≈ −12 K, however, noticing already at that time a
deviation from the conventional Curie-Weiss law [89]. Fur-
thermore, inelastic neutron-scattering (INS) measurements
[90], magnetic susceptibility [91], Möessbauer effect [92],
magnetic field [93], and NMR measurements [94] confirmed
a phase transition into an unusual spiral ground state at about
TN ≈ 10 K. But it was only recently, with the work of S. Gao
et al. [38], that continuous ring features around the �-point
could be observed in INS experiments; a clear evidence of
spiral spin-liquid physics in FeCl3.

In Fig. 12 we show the magnetic susceptibility of FeCl3,
as kindly provided by M. McGuire [38], on a semilogarith-
mic scale for χT and on a linear scale for 1/χ . In contrast
to the materials above (see Figs. 10 and 11), it seems that
χT reaches the plateau of the high-temperature Curie-Weiss
regime already at about 300 K. For the traditional 1/χ vs T
plot [Fig. 12(b)], the Curie-Weiss law shows a good fit over
the temperature window 
T = [100 K, · · · , 350 K], which
gives θcw = −11(1) K, in agreement with previous measure-
ments [89]. However, when plotting the reduced susceptibility
χT instead [Fig. 12(a)], the Curie-Weiss law is seen to no-
ticeably deviate from experimental data below 50 K. In fact,
after careful consideration, experimental data show a broad
maximum at about T ≈ 300 K, suggesting that the reduced
susceptibility χT is not monotonic. This motivates us to fit
the available experimental data with the extended Husimi
ansatz of Eq. (23) which allows for nonmonotonic behavior.

It fits the experimental data quantitatively well over the whole
temperature range and indeed presents a slight downturn at
high temperatures above T > 500 K. Unfortunately, FeCl3 is
structurally unstable at higher temperatures and there are not
enough data points after the downturn of χT to extract a re-
liable estimate of θcw. And since susceptibility measurements
are naturally more noisy at high temperature, one should re-
main cautious. That being said, the Husimi ansatz suggests
a positive Curie-Weiss temperature in FeCl3—as opposed
to previous measurements [88,89,91]—and thus a multistep
Curie-law crossover with dominant ferromagnetic interac-
tions, that would justify the anomalous behavior of the
susceptibility that has been noticed since 1940 [89].

2. Simulations

In absence of data points for FeCl3 at high temperature,
it is difficult to push the experimental analysis any further.
Therefore, to conclude this discussion on the multistep Curie-
law crossover, we shall turn to classical Monte Carlo (MC)
simulations. Magnetic Fe3+ (S = 5/2) ions cover honeycomb
layers, which are stacked in an ABC arrangement along the
c axis. By comparing LSW theory and SCGA results to INS
data, S. Gao et al. [38] proposed a series of models with up to
nine coupling parameters. For the sake of simplicity, we will
focus on their minimal model, which is able to reproduce the
ring features of a spiral spin liquid; the J1-J2-Jc1 Heisenberg
model [see inset in Fig. 13(a)]:

HJ1J2Jc1 = J1

intra∑
〈i j〉,nn

SiS j + J2

intra∑
〈i j〉,nnn

SiS j + Jc1

inter∑
〈i j〉,nn

SiS j,

(30)

where

J1 = −0.3 meV, J2 = 0.075 meV, Jc1 = 0.15 meV.

(31)

The couplings J1 and J2, respectively, account for nearest-
neighbor and next nearest-neighbor interactions within indi-
vidual honeycomb layers, while Jc1 is the nearest-neighbor
antiferromagnetic interlayer coupling.

In Fig. 13 we show the susceptibility, measured from
MC simulations of HJ1J2Jc1 [Eq. (30)]. Now the multistep
Curie-law crossover becomes evident, even from simulation
data, and the extended Husimi ansatz from Eq. (23) gives
θHA

cw = +8.7(2) K, with a Curie constant CHA
∞ = 3.6(1). It

means that, taken in its extended form, the Husimi ansatz
can also account for a nonmonotonic evolution of χT due to
competing ferro- and antiferromagentic couplings.

D. Summary about experimental comparison

In this section, we analyzed magnetic properties for
three spin-liquid candidates, namely, the S = 1 pyrochlore
fluoride NaCaNi2F7, the S = 1/2 square-kagome material
KCu6AlBiO4(SO4)5Cl, and the S = 5/2 spiral spin liquid
on the honeycomb lattice FeCl3. All three materials showed
a Curie-law crossover over a wide temperature range, from
∼1 K up to ∼104 K. Considering those examples, it becomes
clear that a conventional Curie-Weiss fit applied to spin liquids
can be reliable, but does not always have to. Depending on
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(a)

(b)

FIG. 12. Fit of the experimental susceptibility for the S = 5/2
magnet FeCl3 (black circles) plotted on (a) a semilogarithmic plot
for χT and (b) a linear scale for 1/χ . Fitting the extended Husimi
ansatz [Eq. (23)] for all available data points (red solid line) reveals
a multistep (nonmonotonic) Curie-law crossover with a slight down-
turn at high temperatures, and hence a positive θHA. Unfortunately,
the absence of data points above 350 K makes it impossible to
extract a reliable estimate of θcw. A standard Curie-Weiss fit (blue
dashed line) gives a very different result of θcw = −11(1) K, while
showing a strong deviation from experimental data points below
50 K. Experimental data were kindly provided by M. McGuire [38].

the microscopic model parameters and the nature of the
underlying spin liquid, the high-temperature Curie-Weiss
regime might not be practically accessible. We showed, that
the comparison between the conventional Curie-Weiss fit and
the Husimi ansatz, as introduced in Sec. V B, allows us to
quantify whether the high-temperature regime of a material is
reached or not.

NaCaNi2F7 is an example where experiments could reach
to the high-temperature regime, and results from Husimi
ansatz and Curie-Weiss fit gave nearly the same results.
However, KCu6AlBiO4(SO4)5Cl, shows a rather nonlinear
behavior of 1/χ in Fig. 11(b) for the available temperatures
in experiment, which results in a mismatch between standard
the Curie-Weiss fit and the Husimi ansatz. The latter, however,
agrees with independent ED results. Last but not least, FeCl3
is probably an example of a multistep Curie-law crossover.
Such nonmonotonic behavior of magnetic correlations can-
not be described by a conventional Curie-Weiss law, and
therefore requires extra caution. By comparison to a minimal
Heisenberg model we showed that an extended Husimi ansatz
[Eq. (23)] is able to capture such a nonmonotonic Curie-
law crossover, predicting a Curie-Weiss temperature which
is noticeably different compared to the one obtained from a
standard Curie-Weiss fit.

In addition, some materials support the physics of a spin
liquid at low but finite temperature, before ordering (or spin-
freezing) at ultralow temperatures T ∗. The mechanism is

(a)

(b)

J1
J2

Jc1

ab
c

FIG. 13. Fit of the numerical susceptibility (black circles) plotted
on (a) a semilogarithmic plot for χT and (b) a linear scale for 1/χ .
Numerical data were obtained from classical Monte Carlo simu-
lations for the J1-J2-Jc1 Heisenberg model [Eq. (30)] on the ABC
stacked honeycomb lattice [see inset in panel (a)] for model pa-
rameters as proposed for FeCl3 [38] [Eq. (31)]. Fitting the extended
Husimi ansatz [Eq. (23)] for all available data points (red solid line)
clearly reveals a multistep (nonmonotonic) Curie-law crossover with
a significant downturn at high temperatures, and hence a positive
θHA

cw = 8.7(2) K.

simple. Let us consider a pristine spin-liquid model with a
Curie-Weiss temperature θcw. By definition, this system does
not order. Now, let us add a relevant, but small, perturbation
of energy scale 
 inducing a transition at T ∗ ∼ 
 � θcw.
One expects the spin-liquid physics to persist for a certain
temperature window above T ∗. But to determine the extent
of this window is not easy without a microscopic probe such
as neutron scattering, NMR or μSR. Fortunately, by plotting
the reduced susceptibility χT on a logarithmic temperature
scale, we immediately measure the build-up of magnetic cor-
relations upon cooling [Eq. (10)] and can thus estimate how
close we are from the spin-liquid regime. This is the case
of NaCaNi2F7 which has a spin-freezing transition at T ∗ ≈
3.6 K. In Fig. 10(a), we see that χT approaches the low-
temperature spin-liquid Curie law (with C0 = 0 here) at Tp ∼
10–20 K. It means that NaCaNi2F7 supports the spin-liquid
physics of the pyrochlore antiferromagnet over the temper-
ature window T ∗ � T � Tp. It also means that the Husimi
ansatz can be used successfully even if the system orders at
ultralow temperature.

VII. CONCLUSIONS

The Curie-Weiss temperature θcw is a useful quantity to
estimate the strength of frustration in frustrated magnets
[Eq. (2)]. However, the Curie-Weiss law is an estimate of the
magnetic susceptibility close to a mean-field critical point,
which—by definition—is absent in frustrated magnets. In
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this Article, we have shown that the concept of a Curie-law
crossover [16] is a generic feature for spin liquids and a more
accurate description of their thermodynamic properties, that
can be used to partially classify them. We systematically study
the Curie-law crossover among a variety of frustrated Ising
models in two and three dimensions (Fig. 2), and motivate
its relevance to thermodynamic signatures, as seen in experi-
ments. Comparing unbiased Monte Carlo simulations with the
analytical Husimi tree approximation shows that the Curie-
law crossover is determined by the type of frustrated unit cell
(triangle, tetrahedron,...) and the connectivity between them,
rather than the physical dimension of the lattice. As a side
note, the Husimi tree approximation proves to be quantita-
tively accurate for all temperatures and for many spin-liquid
models (Fig. 5).

As a consequence of the Curie-law crossover, we recom-
mend using the reduced susceptibility χT , complementary
to the usual 1/χ plot, when studying a potential spin liquid.
It is often difficult to estimate whether 1/χ has reached the
asymptotic linear behavior, while χT quickly indicates how
far we are from the high-temperature Curie law.

Based on the success of the Husimi tree approximation, we
propose an empirical ansatz [Eq. (3)] as a useful complement
to the Curie-Weiss law. The Husimi ansatz is easy to use and
designed to be a flexible fitting function for the crossover in
χT that takes place in the temperature regime which is typi-
cally accessible to experiments. This means that the Husimi
ansatz can be used on a broader temperature window than
the Curie-Weiss fit, which is necessarily limited to the region
where 1/χ is linear in T . In its extended form [Eq. (23)],
the Husimi ansatz can also take into account the competition
between ferro- and antiferromagnetic couplings in multistep
Curie-law crossovers.

It should be noted that the approach developed here works
for frustrated magnets in general. Frustration does not need to
be geometric in origin, it may come from further neighbor or
anisotropic spin exchange, as present in Kitaev materials. And
even if the simulations and calculations were based on clas-
sical spins in this paper, the Husimi ansatz can be applied to
quantum materials in the crossover regime, as done in Sec. VI.
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APPENDIX A: DEFINITION OF LOCAL EASY AXES

We provide positions and definitions for the local easy axes
	ei of Ising spins [see Eq. (6)] for the kagome (Table III),

TABLE III. The three sublattices of the kagome lattice with their
local easy axes 	ei and their positions. The corresponding lattice
vectors are 	a = (1, 0), 	b = 1

2 (−1,
√

3). The rescaling of exchange

coupling between local and global axes is Jkagome
local = −2Jkagome

global < 0.

Site index i 	ei Position

1 (0, 1) ( 1
2 , 0)

2 1
2 (−√

3, −1) 1
4 (3,

√
3)

3 1
2 (

√
3, −1) 1

4 (1,
√

3)

pyrochlore (Table IV), hyperkagome (Table V), and trillium
lattice (Table VI). Models with global and local axes are
equivalent up to a rescaling in the exchange coupling J given
in each table caption.

APPENDIX B: MONTE CARLO SIMULATIONS

Numerical Monte Carlo (MC) simulations of the Hamilto-
nian H [Eq. (5)] for Ising spins (Ising model) were performed
by updating the site dependent Ising variable σ = ±1 for
systems larger than N = 10 000 spins. To account for statis-
tically independent samples at very low temperatures a local
single-spin flip Metropolis update algorithm has been used
in combination with parallel tempering [96,97], and a worm-
update algorithm [98,99] in the case of the checkerboard,
pyrochlore and ruby lattice. A single MC step consists of N

TABLE IV. The 16 sublattices in the cubic unit cell of the py-
rochlore lattice with their local easy axes 	ei and their positions.
The corresponding lattice vectors respect the cubic symmetry of
the lattice 	a = (1, 0, 0), 	b = (0, 1, 0), 	c = (0, 0, 1). The rescaling
of exchange coupling between local and global axes is Jpyrochlore

local =
−3Jpyrochlore

global < 0.

Site index i 	ei Position

1 1√
3
(+1,+1, +1) 1

8 (−3, −3, 1)

2 1√
3
(−1,+1, −1) 1

8 (−1, −3, 3)

3 1√
3
(+1,−1, −1) 1

8 (−3, −1, 3)

4 1√
3
(−1,−1, +1) 1

8 (−1, −1, 1)

5 1√
3
(+1,+1, +1) 1

8 (1, −3, −3)

6 1√
3
(−1,+1, −1) 1

8 (3, −3, −1)

7 1√
3
(+1,−1, −1) 1

8 (1, −1, −1)

8 1√
3
(−1,−1, +1) 1

8 (3, −1, −3)

9 1√
3
(+1,+1, +1) 1

8 (−3, 1, −3)

10 1√
3
(−1,+1, −1) 1

8 (−1, 1, −1)

11 1√
3
(+1,−1, −1) 1

8 (−3, 3, −1)

12 1√
3
(−1,−1, +1) 1

8 (−1, 3, −3)

13 1√
3
(+1,+1, +1) 1

8 (1, 1, 1)

14 1√
3
(−1,+1, −1) 1

8 (3, 1, 3)

15 1√
3
(+1,−1, −1) 1

8 (1, 3, 3)

16 1√
3
(−1,−1, +1) 1

8 (3, 3, 1)
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TABLE V. The 12 sublattices of the hyperkagome lattice with
their local easy axes 	ei and their positions. The corresponding lattice
vectors respect the cubic symmetry of the lattice 	a = (1, 0, 0), 	b =
(0, 1, 0), 	c = (0, 0, 1). The rescaling of exchange coupling between
local and global axes is JhyperK

local = −3JhyperK
global < 0.

Site index i 	ei Position

1 1√
3
(+1, +1, +1) 1

8 (−3, −3, 1)

2 1√
3
(−1, +1, −1) 1

8 (−1, −3, 3)

3 1√
3
(−1, −1, +1) 1

8 (−1, −1, 1)

4 1√
3
(+1, +1, +1) 1

8 (1, −3, −3)

5 1√
3
(+1, −1, −1) 1

8 (1, −1, −1)

6 1√
3
(−1, −1, +1) 1

8 (3, −1, −3)

7 1√
3
(+1, +1, +1) 1

8 (−3, 1, −3)

8 1√
3
(−1, +1, −1) 1

8 (−1, 1, −1)

9 1√
3
(+1, −1, −1) 1

8 (−3, 3, −1)

10 1√
3
(−1, +1, −1) 1

8 (3, 1, 3)

11 1√
3
(+1, −1, −1) 1

8 (1, 3, 3)

12 1√
3
(−1, −1, +1) 1

8 (3, 3, 1)

local single spin-flip updates on randomly chosen sites, and
five worm updates (checkerboard, pyrochlore, and ruby lat-
tice), performed in parallel for replicas at 100 to 200 different
temperatures, with replica-exchange initiated by the parallel
tempering algorithm every 102 MC step.

MC simulations of the Hamiltonian H [Eq. (5)] for Heisen-
berg spins (Heisenberg model) were performed by using a
local heat-bath algorithm [100,101], in combination with par-
allel tempering [96,97], and over-relaxation [102]. Here, a
single MC step consists of N local heat-bath updates on ran-
domly chosen sites, with N over-relaxation steps, flipping the
spin direction about their local exchange field, and replica-
exchange every 102 MC step.

In both cases, simulations for Ising and Heisenberg models,
thermodynamic quantities were averaged over 106 statistically
independent samples, after 106 MC steps for simulated an-
nealing and 106 MC steps for thermalization.

TABLE VI. The four sublattices of the trillium lattice with their
local easy axes 	ei and their positions. The corresponding lattice
vectors respect the cubic symmetry of the lattice 	a = (1, 0, 0), 	b =
(0, 1, 0), 	c = (0, 0, 1). The rescaling of exchange coupling between
local and global axes is J trillium

local = −3J trillium
global < 0. The explicit posi-

tion of each site within the unit cell is given by the crystal parameter
u = 0, 138 to compare to previous work [31,43,95].

Site index i 	ei Position

1 1√
3
(+1,+1, +1) (u, u, u)

2 1√
3
(+1,−1, −1) ( 1

2 + u, 1
2 − u, 1 − u)

3 1√
3
(−1,+1, −1) (1 − u, 1

2 + u, 1
2 − u)

4 1√
3
(−1,−1, +1) ( 1

2 − u, 1 − u, 1
2 + u)

(a) (b)

FIG. 14. The Husimi tree HT(3,2) for the kagome lattice. (a) Tri-
angular frustrated cells arranged in shells, where shell 0 (red)
corresponds to the central unit. The Husimi tree is equivalent to
the real kagome lattice up to its 2nd shell (green). (b) All possible
spin configurations for an isolated triangular cell with correspond-
ing Boltzmann weights g0 and g1 for global axis Ising spins [see
Eq. (C4)].

APPENDIX C: HUSIMI TREE

1. Explicit calculations for the kagome Ising antiferromagnet

In this Appendix, the Husimi tree calculation shall be ex-
plained on the example of HT(3,2) [see Figs 3(a) and 14(a)].
Branches of nonintersecting triangular cells spread out from
the central unit (shell 0, drawn in red). Let us consider the
Hamiltonian Eq. (5) for Ising spins σi on sites i with an
additional external magnetic field h:

H = J
∑
〈i j〉

σiσ j − h
∑

i

σi. (C1)

At the end of the calculations, the magnetic field will be
taken vanishingly small to obtain the susceptibility χ . The
magnetization on one of the central sites (chosen arbitrarily)
is

〈σ1〉 = 1

Z0

∑
{σ1,σ2,σ3}

σ1

(∏
〈i j〉

gi j

)(
3∏

i=1

αi

)
Z1(σ1)Z1(σ2)Z1(σ3),

(C2)

with Z0 =
∑

{σ1,σ2,σ3}

( ∏
〈i j〉

gi j

)(
3∏

i=1

αi

)
Z1(σ1)Z1(σ2)Z1(σ3)

(C3)

being the total partition function.
∏

〈i j〉 denotes the product
over all nearest-neighbor pairs within the central triangular
plaquette. Z1(σi) is the partition function of the branch of the
Husimi tree moving outwards and starting from the central
spin i with orientation σi.

Let us label Zn(σ j ) the partition function starting on site j
belonging to the nth layer of the tree. The Boltzmann weights
are

gi j = e−βJσiσ j , (C4)

αi = eβhσi , (C5)

taking the values g0 = eβJ and g1 = e−3βJ here [Fig. 14(b)].
Equation (C2) then gives explicitly

〈σ1〉 = g0
(
Y1 − Y 2

1

) + g1
(
1 − Y 3

1

)
3g0

(
Y1 + Y 2

1

) + g1
(
1 + Y 3

1

) , (C6)
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where we introduced the ratio between partition functions of
a spin on shell n, pointing ↑ (σ = 1) and a spin pointing down
↓ (σ = −1) [55] as

Zn(↓)

Zn(↑)
= Yn e2βh, (C7)

and where successive layers of the Husimi tree are related
recursively:

Yn = g0Y 2
n+1 + g1(1 + 2Yn+1)

g0 + g1Yn+1(2 + Yn+1)
. (C8)

To solve the Husimi tree, we calculate the limit Yn −−−−→
n→+∞ Y

and replace it in Eq. (C6), Y1 = Y [103]. In absence of an
external magnetic field Y = 1, since the disordered system
does not prefer any spin direction. This gives 〈σ1〉 = 0 as
trivially expected. But other observables such as the energy
E , specific heat Ch, and entropy S can be derived analyti-
cally from the partition function Z0. These calculations are
relatively straightforward and explicit results for the different
Husimi trees are given in Appendix C 2.

In this Appendix, we will further show the calculation
of the susceptibility. An external magnetic field h causes a
perturbation ε away from the trivial value

Y = 1 − ε, (C9)

which can be used together with Eqs. (C7) and (C8) to obtain
ε in first order of h:

ε = 2βh
3g0 + g1

5g0 − g1
. (C10)

The first-order expansion in h is sufficient to compute the
magnetic susceptibility, since higher-order terms vanish as
h → 0. Introducing Eqs. (C7)–(C10) into Eq. (C6) gives the
temperature-dependent magnetization

〈σ1〉 = βh
g0 + 3g1

5g0 − g1
(C11)

and the reduced susceptibility

χT ≡ 1

β

∂〈σ1〉
∂h

∣∣∣∣
h→0+

= g0 + 3g1

5g0 − g1
. (C12)

2. Analytic equations

Next to the magnetization and reduced susceptibility
[Eq. (C12)], thermodynamic observables like energy E , spe-
cific heat Ch, and entropy S are directly obtained from the
partition function of the Husimi tree [Eq. (C3)] [15]:

E = − 1

Z0

(
∂Z 0

∂β

)∣∣∣∣
{h,ε}→0

, (C13)

Ch = −β2

(
∂E

∂β

)∣∣∣∣
{h,ε}→0

, (C14)

S = βE + log
Z0

Z1(↑)
A0, (C15)

where A0 is fitted such that S|T →∞ = log(2).
Here we show analytic expressions for thermodynamic

observables, as obtained by HT calculations. All thermody-
namic observables are plotted in Fig. 5, for J = 1, inducing
antiferromagnetic correlations between spins.

Husimi tree HT(3,2) corresponding to the kagome and
hyperkagome lattices:

E = 2J
−g0 + g1

3g0 + g1
, (C16)

Ch = 32J2β2 g0g1

(3g0 + g1)2
, (C17)

S = 2Jβ
−g0 + g1

3g0 + g1
+ 2

3
log

[
1√
2

(3g0 + g1)

]
, (C18)

χglobT = g0 + 3g1

5g0 − g1
, (C19)

where g0 = eβJ , and g1 = e−3βJ .
Husimi tree HTS corresponding to the square-kagome

lattice:

E = 2

3
J

−41g0 + 30g2 + 8g3 + 3g4

41g0 + 52g1 + 30g2 + 4g3 + g4
, (C20)

Ch = 16

3
J2β2 41g0(26g1 + 60g2 + 18g3 + 11g4) + 30g2(2g3 − g4 + 26g1) + 26g1(16g3 + 9g4) − g4(g4 + 22g3)

(41g0 + 52g1 + 30g2 + 4g3 + g4)2
(C21)

S = 2

3
Jβ

−41g0 + 30g2 + 8g3 + 3g4

41g0 + 52g1 + 30g2 + 4g3 + g4
+ 1

6
log

[
1

2
(41g0 + 52g1 + 30g2 + 4g3 + g4)

]
(C22)

χT = 2

3

2g0 + 7g1 + 15g2 + 5g3 + 3g4

17g0 + 30g1 + 16g2 + 2g3 − g4
+ 4

3

(65g0 + 381g1 + 605g2 + 601g3) + g4(275g1 + 103g2 + 15g3 + 3g4)

(41g0 + 52g1 + 30g2 + 4g3 + g4)(17g1 + 13g2 + 3g3 − g4)
(C23)

where g0 = e4βJ , g1 = 1, g2 = e−4βJ , g3 = e−8βJ , and g4 = e−12βJ .

Husimi tree HT(3,3) corresponding to the triangular and
trillium lattice:

E = 3J
−g0 + g1

3g0 + g1
, (C24)

Ch = 48J2β2 g0g1

(3g0 + g1)2
, (C25)

S = 3Jβ
−g0 + g1

3g0 + g1
+ log

[
1

2
(3g0 + g1)

]
, (C26)

χT = g0 + 3g1

7g0 − 3g1
, (C27)

where g0 = eβJ , and g1 = e−3βJ .
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Husimi tree HT(4,2) corresponding to the checkerboard,
ruby and pyrochlore lattice:

E = −3J
g0 − g2

3g0 + 4g1 + g2
, (C28)

Ch = 24J2β2 g0g1 + 4g0g2 + 3g1g2

(3g0 + 4g1 + g2)2
, (C29)

S = −3J β
g0 − g2

3g0 + 4g1 + g2
+ 1

2
log

[
1

2
(3g0 + 4g1 + g2)

]
,

(C30)

χT = 2
g1 + g2

3g0 + 2g1 − g2
, (C31)

where g0 = e2βJ , g1 = 1 and g2 = e−6βJ .

3. High-temperature expansion of the susceptibility

As discussed in Sec. V A, θcw contributes to the first-order
correction of the Curie law:

1

χ
= T

C

[
1 − θcw

T
(1 + 
(T ))

]
. (C32)

The same high-temperature expansion can be done for the
results from Husimi tree calculations, where second and
higher-order terms will account for the deviation from the
Curie-Weiss law. Curie-constant C, Curie temperature θcw

and higher-order corrections 
(T ), extracted from the inverse
susceptibility 1/χ for global axes spins are summarized as
follows:

HT(3,2):

C = 1,

θcw = −4J,


(T ) = J

T
− J2

3T 2
− 5J3

3T 3
+ · · · . (C33)

HTS:

C = 1,

θcw = −4J,


(T ) = J

T
− J2

3T 2
− 4J3

3T 3
+ · · · . (C34)

HT(3,3):

C = 1,

θcw = −6J,


(T ) = J

T
− J2

3T 2
− 5J3

3T 3
+ · · · . (C35)

HT(4,2):

C = 1,

θcw = −6J,


(T ) = J

T
− 4J2

3T 2
− 5J3

3T 3
+ · · · . (C36)

Since J = 1, all models show negative values for θcw,
indicating dominating antiferromagnetic interactions. Further-
more, their absolute values correspond to the number of
nearest neighbor sites, and measures the local exchange field
(Weiss field or molecular field) acting on every individual
spin. The deviation 
(T ) of θcw scales independently of the
type of the Husimi tree with 1/T in leading order. However,
the deviation in second-order terms of 1/T 2 differs between
Husimi trees, made of triangular plaquettes and square plaque-
ttes. And from this comparison it becomes evident that HTS
shows only a small difference of 2% compared to HT(3,2) (see
Table I), since their deviation happens from third-order 1/T 3.

4. An alternative way to compute C0

In Appendix C 1, the susceptibility was calculated as the
linear response to an external magnetic field h, when h → 0.
At zero temperature it is also possible to calculate it as the sum
of spin-spin correlations, following Eq. (8). When applied to
the ground-state ensemble, this method allows to extract the
value of the spin-liquid Curie constant C0 as has been done
for spin-ice-related models [15,16,19,104,105]. For ease of
calculations, let us consider that the Husimi tree is made of
L layers of spins, centered around a central site instead of a
central frustrated unit. It is then common practice to consider
this central spin 	S0 as the spin representative of the bulk of the
real lattice. This is because 	S0 is the furthest away from the
boundary of the tree, and thus less sensitive to surface effects.
For a HT of L layers, the spin-liquid Curie constant of Eq. (10)
becomes

C0(L) = 1 +
L∑

�=1

g� 〈	S0 · 	S�〉, (C37)

where 〈	S0 · 	S�〉 is the correlation between the central spin and
one of the spins on layer � ∈ [1 : L], in the ground state. g� is
the number of spins in this layer.

a. Kagome-type Husimi tree with global axis

For HT(3,2), the number of sites per layer is g� = 2 × 2�.
Using Eq. (C37) and Eq. (14) with global Ising axis, one gets

C0(L) = 1 +
L∑

�=1

2 · 2�

(
−1

3

)�

= 1 + 2

[
1 − (−2/3)L+1

1 + 2/3
− 1

]

= 0.2 − 6

5

(
−2

3

)L+1

−−−→
L→∞

0.2. (C38)

The value of 0.2 is recovered in the thermodynamic limit
of the alternating (antiferromagnetic) series of spin-spin
correlations.

b. Trillium-type Husimi tree with global axis

For HT(3,3), the number of sites per layer is g� = (3/2) ×
4�. As a consequence, the series of Eq. (C37) becomes
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alternating divergent, because of the boundary

C0(L) = 1 +
L∑

�=1

3

2
× 4�

(
− 1

3

)�

= 1 + 3

2

[
1 − (−4/3)L+1

1 + 4/3
− 1

]

= 1

7
− 9

14

(
−4

3

)L+1

. (C39)

If the size of the boundary grows faster than the correlations
decay, then the series diverges. That being said, even if the cal-
culation is mathematically ill posed, it is interesting to notice
that the constant term, 1/7, is the same as the one obtained
from the complete Husimi tree calculation [see Eq. (C27) in
the limit β → +∞ and Table I].

c. Pyrochlore-type Husimi tree with global axis

For HT(4,2), the number of sites per layer is g� = 2 × 3�.
As a consequence, the sum of Eq. (C37) becomes alternating,

C0(L) = 1 +
L∑

�=1

2 × 3�

(
−1

3

)�

−−−→
L→∞

1 + 2

(
1

1 + 1
− 1

)
= 0. (C40)

As was the case for HT(3,3), even if the calculation is mathe-
matically ill posed, it is interesting to notice that the outcome
is the exact result [Table I].

d. Kagome Husimi tree with local easy axes

Considering local axes makes the calculation a bit more
complex, because spins are not collinear anymore. For the
kagome lattice, the local easy axes are given in Table III,
giving 	ei	e j = −1/2 for spins on different sublattices. Equa-
tion (C37) then becomes

C0(L) = 1 +
L∑

�=1

u�

(
−1

3

)�

+
L∑

�=1

v�

(
−1

2

) (
−1

3

)�

.

(C41)

From now on, u� (respectively, v�) are the number of spins
on layer � belonging to the same (respectively, a different)
sublattice as the central spin of reference, 	S0. By definition,
we have u� + v� = g� = 2 × 2� for HT(3,2). It is not difficult
to see that these sequences are related by recursion

u�+1 = v�, v�+1 = v� + 2 u�, (C42)

which gives

u� = 2
3 2� + 4

3 (−1)�, v� = 4
3 2� − 4

3 (−1)�. (C43)

Injecting Eq. (C43) into Eq. (C41), and taking the limit L →
+∞, finally gives C0 = 2 for the kagome lattice with local
easy axes.

e. Spin-ice Husimi tree with local easy axes

For 3D spin ice on the pyrochlore lattice (Table IV), the
calculation is very similar. The scalar product between spins

on different sublattices is now 	ei	e j = −1/3, and the number
of spins belonging to the same, u�, and different, v�, sublat-
tices are

u� = 1
2 3� + 3

2 (−1)�, v� = 3
2 3� − 3

2 (−1)�, (C44)

which gives C0 = 2 for the pyrochlore lattice with local easy
axes. Please note this is the same value, up to a normalisation,
as the one calculated for the dielectric constant of cubic ice
[104,105].

f. Hyperkagome Husimi tree with local easy axes

There are four different types of spin orientations in the
hyperkagome lattice (see Table V), labeled 1, 2, 3, 4. Let us
assume that the central spin of reference has orientation 1, at
no cost in generality. When posing the problem, one quickly
sees that the number of spins with orientation 1 in layer � is
not obvious to calculate, because there are four types of tri-
angles, with orientations {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}.
Among the u� sites with orientation 1 on layer �, we need to
make a distinction between:

(1) the a� spins that have a site with orientation 1 as second
neighbor in the internal layers (n < �),

(2) the b� spins that do not have a site with orientation 1
as second neighbor in the internal layers.

We have u� = a� + b� and u� + v� = g� = 2 × 2� sites on
layer � for HT(3,2). If we impose the local geometry of the
hyperkagome lattice on HT(3,2), then one gets the following
recursion relations

a�+2 = b�+1 + a� + b�,

b�+3 = 2(a�+1 + a� + b�). (C45)

Imposing the appropriate initial conditions, one gets

a� = 2�−2 + (−1)� + 2�/2−2

{
3√
7

sin[�(π − tan−1(
√

7))]

− cos[�(π − tan−1(
√

7))]

}
, (C46)

b� = 2�−2 − 2�/2−2

{
1√
7

sin[�(π − tan−1(
√

7))]

− 3 cos[�(π − tan−1(
√

7))]

}
, (C47)

whose sum can be simplified into

u� = 2�−1 + (−1)� + (−1)�+12
�
2 + 1

2 sin[(� − 1) tan−1(
√

7)]√
7

.

(C48)
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Since the easy axes of the hyperkagome lattice give 	ei · 	e j =
−1/3 for spins with different orientations, we get

C0 = 1 +
+∞∑
�=1

u�

(
−1

3

)�

+
+∞∑
�=1

v�

(
−1

3

) (
−1

3

)�

= 1 + 2

3

+∞∑
�=1

(
−1

3

)�

(2 u� − 2�)

= 5

3
− 4

√
2

3
√

7

+∞∑
�=1

(√
2

3

)�

sin[(� − 1) tan−1
√

7]

= 5

3
− 4

√
2

3
√

7
× 1

8

√
7

2
= 3

2
(C49)

for the hyperkagome lattice with local easy axes.

g. Trillium Husimi tree with local easy axes

There are four sublattices in the minimal unit cell of
the trillium lattice, labeled 1, 2, 3, 4. Let us assume
that the central spin of reference is on sublattice 1, at
no cost in generality. As for the hyperkagome case in

Appendix C 4 f, there are four types of triangles, with sublat-
tices {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. Among the v� sites
that do not belong to sublattice 1 on layer �, we need to make
a distinction between:

(1) the c� spins that were in a triangle with a sublattice-1
site in layer � − 1,

(2) the d� spins that were not in a triangle with a sublattice-
1 site in layer � − 1.

We have v� = c� + d� and u� + v� = g� = 3
2 × 4� sites on

layer � for HT(3,3). If we impose the local geometry of the
trillium lattice on HT(3,3), then one gets the following recur-
sion relations:

u�+1 = c� + 2d�,

c�+1 = 4u� + c� + 2d�,

d�+1 = 2c�,

(C50)

which gives a self-consistent recursion relation for the number
of sites in sublattice 1

u�+3 = u�+2 + 8 u�+1 + 16 u�, (C51)

whose solution is

u� = 3

(
22�−3 + 2�−3

{
1√
7

sin

[
�

(
π − tan−1

(√
7

3

))]
+ 3 cos

[
�

(
π − tan−1

(√
7

3

))]})
. (C52)

Since the easy axes of the trillium lattice give 	ei	e j = −1/3 for spins on different sublattices, we get

C0(L) = 1 +
L∑

�=1

(
−1

3

)�(
u� − v�

3

)
= 1 +

+∞∑
�=1

(
−1

3

)�(4

3
u� − 4�

2

)

= 1 + 1

2

L∑
�=1

(
−2

3

)�
{

1√
7

sin

[
�

(
π − tan−1

(√
7

3

))]
+ 3 cos

[
�

(
π − tan−1

(√
7

3

))]}
. (C53)

The sum of Eq. (C53) converges to zero for L → +∞, which
is why the Husimi tree for the trillium lattice with easy axes
gives C0 = 1 (see Table I). However, the first term of the sum
is positive (it is 2/3 for L = 1), which means that the build
up of correlations at short distance is primarily ferromagnetic.
This is consistent with the increase of the reduced susceptibil-
ity χT when cooling from high temperature in Fig. 5(b).

5. Comment on the Pauling entropy

For ice problems, the Pauling entropy provides a lower
bound on the exact value of the entropy [53]. Ice problems
are defined as systems of connected vertices, where each link
between two vertices has a direction (the spin), and each
vertex possesses as many inward as outward links—the so-
called ice rules. The ground state of the checkerboard and
pyrochlore lattices are ice problems, and their Pauling entropy
are indeed lower than their exact residual entropy (Table I).
The ground state of the ruby lattice is, however, not an ice
problem [30], even if it is also made of corner-sharing tetrahe-
dra with two spins up and two spins down. This is because the
center of the tetrahedra—the above-mentioned vertices – form
a kagome lattice, which is not bipartite but tripartite. There

are three kinds of tetrahedra on the ruby lattice, labeled for
convenience red, green and blue. If an up spin is mapped to
an outward (inward) link in a red (green) tetrahedron, then
what happens in the blue tetrahedra? It is easy to show that
all-in/all-out states then appear in the blue tetrahedra, and
the ground-state ensemble is thus not an ice problem. The
ground state of the Ising ruby antiferromagnet is actually
a Z2 spin liquid, as opposed to the U(1) gauge structure
on pyrochlore [30]. Nevertheless, despite these fundamen-
tal differences, the thermodynamic quantities of these three
models (ruby, checkerboard and pyrochlore) are semiquanti-
tatively the same for all temperatures, including their residual
entropy.

APPENDIX D: C0 APPEARING IN COULOMB GAUGE
FIELD THEORY

The spin-ice ground state is famously known as a U(1)
Coulomb gauge field [29]. This gauge-field texture comes
from the ice rules (“2 in-2 out”), that can be rewritten as a
divergence-free constraint on the magnetization field 	M(	r)
at position 	r. At lowest order, the probability distribution of
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	M(	r) is [75]

P ∝ exp

(
− κ0

2vcell

∫
d	r | 	M|2(	r)

)
, (D1)

where vcell is the volume of the primitive unit cell. From
Eq. (D1), the entropic stiffness κ0 is also the inverse of the
variance of the magnetization in the spin-ice ground state (up
to a prefactor), i.e.,

κ0 ∝ 1

C0
. (D2)

It means that C0 is a measure of the (inverse of) the strength of
entropic interactions between topological-charge excitations
in spin ice [106]. To conclude, the stiffness is also the La-
grange multiplier appearing in the self-consistent Gaussian
approximation (SCGA) that ensures the spin-length constraint

on average [70]. For many models with continuous spins,
this Lagrange multiplier can be computed analytically in the
limit of zero and infinite temperatures, and thus offers an
alternative way to compute the ratio C0/C∞ and to connect
it to the number of flat bands in the system (see discussion in
Sec. IV C).

APPENDIX E: S(q)—EQUAL-TIME STRUCTURE FACTOR

The equal-time (energy-integrated) structure factor is de-
fined as

S(	q) = 1

N

N∑
i, j

ei	q(	ri−	r j )〈	Si · 	S j〉 = 1

N

〈∣∣∣∣∣
N∑
i

ei	q·	ri 	Si

∣∣∣∣∣
2〉

. (E1)
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