
PHYSICAL REVIEW B 108, 024409 (2023)

Damped topological magnons in honeycomb antiferromagnets
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We study magnon excitations and their interactions in honeycomb antiferromagnets with the Dzyaloshinskii-
Moriya interaction. When an applied magnetic field is turned on, the classical ground state of the system is
in noncollinear antiferromagnetic order. Therefore, it is crucial to consider the interactions between magnons.
We find an exact and well-formed solution of the bosonic Bogoliubov–de Gennes Hamiltonian, which allows
us to analytically study the topological properties and damping effects of the magnon bands. In particular, the
formulas of the Berry phase and Berry curvature for the magnon bands are worked out analytically. The Mn-
based trichalcogenide MnPS3 is taken as a candidate material realization to estimate the order of magnitude of
the thermal Hall conductivity and its evolution with the temperature and the Dzyaloshinskii-Moriya interaction
strength. We develop a nonlinear spin wave theory to study the damping effects of the topological magnons and
find the different damping behaviors of the upper and lower topological magnon bands when tuning the applied
magnetic field. In some parameter regions, the damping effects are so strong that the free magnon description
breaks down. Finally, we discuss how to observe these effects in experiments.
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I. INTRODUCTION

The honeycomb lattice is one of the most fascinating
model systems for both theoretical and experimental stud-
ies in recent decades. On the theoretical side, due to its
unique single-particle dispersion spectrum, it often provides
precise solutions for analyzing a variety of intriguing physics,
such as the topological insulators (including Chern insulator,
quantum spin Hall effect, and Weyl semimetal), topologi-
cal magnons (including magnon thermal Hall effect, Dirac
magnon, Weyl magnon, spin Nernst effect, and valley Hall
effect), etc. [1–19]. On the experimental side, there are vari-
ous materials for both electronic and magnetic systems with
honeycomb structures, such as graphene, silicon, transition-
metal dichalcogenides 2H-MX2, CrX3 (X = F, Cl, Br, I),
XPS3 (X = Mn, Fe), CoTiO3, Cr2Ge2Te6, and α-Cu2V2O7

[20–36]. Therefore, the honeycomb lattice systems are an
ideal playground for mutual verification between theoretical
and experimental researches.

Magnons are the elementary excitations in the ubiqui-
tous magnetically ordered systems. Since magnons are easily
manipulated by magnetic fields and free of Joule heating,
topological magnons have attracted more and more attention
[37–43]. Experimentally, the thermal Hall effect was first
observed in three-dimensional (3D) pyrochlore ferromagnetic
insulators Lu2V2O7, Ho2V2O7, and In2Mn2O7 [44,45]. Later,
this effect was also reported in the two-dimensional Kagome
magnet Cu(1,3-bdc) [46,47]. These advances motivate peo-
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ple to search for various controllable topological magnetic
materials.

Early works on topological magnons focused mainly on
ferromagnets described by the Heisenberg model with the
Dzyaloshinskii-Moriya interaction (DMI) [3,4,37,42,48]. The
ground states for these systems are collinear ferromagnetic
states, where the magnons are usually well-defined quasipar-
ticles and the interactions between magnons can be safely
ignored. Therefore, the theoretical studies in this field are
mainly based on the linear spin wave theory (LSWT). Re-
cently, it was also proposed that the thermal Hall effect can be
extended to antiferromagnets [38–41,49,50]. It is well known
that noncollinear magnetic orders are ubiquitous in antifer-
romagnets, and the interactions between magnons lead to
magnon decays and spectral renormalizations [51–57]. There
have been some investigations on the effects of interactions on
the Dirac magnons in a honeycomb lattice [6–8]. They both
found that the topological properties of magnons are modu-
lated by their interactions. The topological magnon damping
effects have also been investigated in Kagome-lattice ferro-
magnets, where the cubic interactions of the magnons result
from the unparallel relation between magnetization and DMI
vector [58].

However, to the best of our knowledge, present theoretical
studies on topological magnon interactions have mainly fo-
cused on ferromagnets with a honeycomb lattice. One of the
main reasons is that obtaining single-particle energy spectra of
noncollinear antiferromagnets generally involves diagonaliz-
ing the bosonic Bogoliubov–de Gennes (BdG) Hamiltonians.
Except for some special cases [11,12], the BdG Hamiltonians
are generally at least four-by-four matrices for topological an-
tiferromagnets. It is difficult to obtain analytical eigenstates to
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further study the magnon interactions [50]. Therefore, how the
magnon interactions affect the topology of antiferromagnets is
still an issue of fundamental interest in topological quantum
materials.

In this paper, we study the damping effects of topo-
logical magnons in honeycomb antiferromagnets with both
DMI and an applied magnetic field. An elegant analytical
well-formed eigenstate that allows us to investigate magnon
interaction effects is found. We investigate the topological
properties of the magnon bands by working out the exact
Berry phase and Berry curvature. The damping effects of the
topological magnons are investigated by developing a non-
linear spin wave theory. It is shown that the damping effects
of upper and lower topological magnon bands have different
behaviors with the tuning of the applied magnetic field. Es-
pecially in some parameter regions, the damping effects are
so strong that the magnons cannot be viewed as well-defined
quasiparticles.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the system Hamiltonian and discuss its
classical phase diagram. In Sec. III, the spin wave theory is
constructed. We illustrate how to diagonalize the quadratic
Hamiltonian and obtain the vertex functions for the cubic
Hamiltonian. The properties of the vertex function under the
time-reversal transformation are also discussed. In Sec. IV,
we discuss in detail the topological properties of the magnon
bands and calculate the thermal Hall conductivity for MnPS3.
In Sec. V, we calculate the damping effects of the magnon
bands induced by the cubic Hamiltonian. Finally, a summary
is given in Sec. VI.

II. SYSTEM HAMILTONIAN

We consider the spin Hamiltonian in the honeycomb lattice
as follows:

H = J
∑
〈i, j〉

Si · S j +
∑
〈〈i, j〉〉

Di j · Si × S j −
∑

i

B · Si, (1)

where the Si is the spin of magnitude S localized at Ri in the
honeycomb lattice. The first term represents the nearest neigh-
bor Heisenberg interaction with J > 0 for antiferromagnets.
The second term is an out-of-plane next-nearest-neighbor
DMI with Di j = νi jDẑ, where νi j = +1 (−1) for counter-
clockwise (clockwise) hopping between ith and jth lattice
as shown in Fig. 1(a). The last term is an applied magnetic
field along the z axis with B = Bẑ in unit of gμB. To facilitate
tracking the order of S in the spin wave theory, we redefine
B = hS.

Let us discuss the mean-field ground state of the model,
where the spins are viewed as classical vectors [59,60]. When
the applied magnetic field is absent, the ground state is a
collinear antiferromagnetic phase (CAP) assumed to be in
the x direction. However, as shown in Fig. 1(b), the CAP
will be instead by a noncollinear canted phase (NCP) when
the applied magnetic field is turned on. The canting an-
gle is determined by minimizing the classical ground state
energy EMF/(2NS) = −(3/2)J cos 2θ − h sin θ , where N is
the total number of unit cells. We obtain sin θ = h/hs with
hs = 6J .

FIG. 1. (a) Schematics of a honeycomb lattice with two sublat-
tices denoted by A and B. Three nearest-neighbor and next-nearest-
neighbor vectors are labeled as dn and an (n = 1, 2, 3), respectively.
The dashed arrows give the positive νi j sign convention of DMI in
Eq. (1). (b) The canted phase induced by the z-axis applied magnetic
field, where the arrows labeled by A and B are the spins located in
A and B sublattices, respectively. (c) The forward and (d) backward
bubble diagrams of the magnon Green’s function generated by the
cubic vertices.

III. NONLINEAR SPIN WAVE THEORY

In the spin wave theory, we first need to perform a local
rotation at each lattice point, so that the mean-filed directions
of the spin point along the local z axis. Labeling the local
frame spins as S̃iα , the appropriate transformation between
local and global spins is given by [50,53]

Sx
i,A(B) = ±S̃x

i,A(B) sin θ ± S̃z
i,A(B) cos θ,

Sy
i,A(B) = ±S̃y

i,A(B), (2)

Sz
i,A(B) = −S̃x

i,A(B) cos θ + S̃z
i,A(B) sin θ,

where ± correspond to sublattices A and B, respectively.
With the rotation, the Hamiltonian Eq. (1) can be rewritten

in the local reference frames as H = HJ + HD + Hh with

HJ = J
∑
〈i j〉

[
cos 2θ

(
S̃x

i S̃x
j − S̃z

i S̃z
j

) − S̃y
i S̃y

j

− sin 2θ
(
S̃x

i S̃z
j + S̃z

i S̃x
j

)]
,

HD = D
∑
〈〈i j〉〉

sin θ
(
S̃x

i S̃y
j − S̃y

i S̃x
j

)
+ cos θ

(
S̃z

i S̃y
j − S̃y

i S̃z
j

)
,

Hh = hS
∑

i

(
cos θ S̃x

i − sin θ S̃z
i

)
. (3)

Let us discuss two collinear phases. The first one is the
fully polarized phase (FPP) with θ = π/2. In this case the
third term in HJ and the second term in HD will disappear.
According to the spin wave theory, these terms will lead to
the magnon cubic interactions. Therefore, the magnons are
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not affected by the cubic interactions in this case. The second
one is the CAP with θ = 0 when the applied magnetic field is
absent. In this case the third term in HJ and the first term in HD

will disappear. At this point, if we still use the linear spin wave
approximation, we will find that HD does not affect the physics
of the system. However, there will be the spin Nernst effect
caused by HD, which can be confirmed by an appropriate spin
transformation [11,12,50]. In other words, to capture the real
physics, the staggered Néel order should point in the z-axis
direction at zero magnetic field.

Then, we perform a standard Holstein-Primakoff (HP)
transformation to the local spin operators S̃i in Eq. (3),

S̃x
i = 1

2

(√
2S − a†

i aia
†
i + ai

√
2S − a†

i ai

)
,

S̃y
i = i

2

(√
2S − a†

i aia
†
i − ai

√
2S − a†

i ai

)
, (4)

S̃z
i = S − a†

i ai,

where a†
i (ai ) are bosonic creation (annihilation) operators. In

the large-S limit, to capture the lowest order interaction effects
of magnons, we expand the square root parts of Eq. (4) up to
the order of a†

i ai/
√

S, i.e.,√
2S − a†

i ai ≈
√

2S −
√

2

4

a†
i ai√
S

. (5)

Then, substituting Eqs. (4) and (5) into Eq. (3), up to cubic
terms of a†

i (ai ), the expanded Hamiltonian is obtained as

H = H (0) + H (1) + H (2) + H (3) + · · · , (6)

where H (n) (with n = 0, 1, 2, 3) gives the S2−n/2th-order con-
tribution. The first term H (0) = 2NS2EMF is the classical
ground state energy. The second term H (1) vanishes due to
the energy minimum. The magnon energy bands are obtained
by diagonalizing the quadratic Hamiltonian H (2). The magnon
damping effects originate from the cubic Hamiltonian H (3).
In this paper, we will not discuss the effects of higher-order
interactions. The specific forms of H (2) and H (3) are given in
the following two subsections.

A. Quadratic Hamiltonian

By performing the Fourier transformation, the quadratic
Hamiltonian H (2) is written in momentum space as

H (2) = 3JS
∑

k

[(1 +Dk )a†
1ka1k + (1 −Dk )a†

2ka2k

− (sθ fka†
1ka2k − (1 − sθ ) fka†

1ka†
2−k + H.c.)], (7)

where a†
1(2) denotes the operator on the sublattice A (B),

and Dk = (D/J )
√

sθgk with sθ = sin2 θ . Dk is an odd func-
tion of k due to gk = (2/3)

∑
n sin(k · an) where an are the

vectors linking next nearest neighbors shown in Fig. 1(a).
fk = (1/3)

∑
n exp(ik · dn) = | fk| exp(iϕk ) is the complex

nearest-neighbor hopping amplitude with | fk| = | f−k| and
ϕk = −ϕ−k.

For D = 0, the method of diagonalization of H (2) has been
discussed by Maksimov et al. [53]. The conditions of applying
this method are given by Chernyshev [54,55]. Although the

Hamiltonian in Eq. (7) does not satisfy those conditions, a
similar procedure is still applicable.

First, we use a unitary transformation a†
αk =

ei(−1)αϕk/2 ∑
μ T αμ

k c†
μk to transform the field operators (a, a†)

to (c, c†), where Tk is a real matrix:

Tk =
[− cos ψk sin ψk

sin ψk cos ψk

]
. (8)

Surprisingly, we can figure out the elements of Tk as cos ψk =√
(ηk +Dk )/2ηk and sin ψk =

√
(ηk −Dk )/2ηk, with ηk =√

D2
k + s2

θ | fk|2. Because ηk is an even function of k, we
have cos ψ−k = sin ψk. After this transformation, H (2) can be
rewritten in terms of the field operators (c, c†) as

H (2) = 3JS
∑
k,μ

[
Aμkc†

μkcμk − Bμk

2
(cμkcμ−k + H.c.)

]
, (9)

where the two real functions are Aμk = 1 − (−1)μηk and
Bμk = (−1)μ(sθ − 1)| fk|.

Then, H (2) in Eq. (9) can be diagonalized by the standard
Bogoliubov transformation cμk = uμkbμk + vμkb†

μ−k

[also written as cμk = cosh(χμk )bμk + sinh(χμk )b†
μ−k]

with 2uμkvμk = Bμk/ωμk, u2
μk + v2

μk = Aμk/ωμk and

ωμk =
√

A2
μk − B2

μk. An explicit expression for these
quantities is given in Appendix A. The two magnon bands are
given by

E±,k = 3JS
√

(1 ± ηk )2 − (sθ − 1)2| fk|2, (10)

where + and − correspond to the upper and lower magnon
bands, respectively. The magnon bands with different sθ are
shown in Fig. 4. In the FPP, E±,k are reduced to be E±,k =
3JS(1 ± ηk ). And for the CAP, E±,k = 3JS

√
1 − | fk|2 are

degenerate. Note that the energy gaps at K (K ′) are �K =
6DS

√
3sθ , which is independent of J and can be used to

extract the strength of DMI in the experiments.

B. Cubic Hamiltonian

The cubic Hamiltonian H (3) in momentum space reads

H (3) =
∑
k,q

∑
αβ

(
V αβ

q a†
βqa†

αkaα−p + H.c.
)
, (11)

where −p = k + q and the interacting vertices are given by
the elements of the vertex matrix Vq as

Vq = 3

√
S

2N

[−D cos θgq J sin(2θ ) f ∗
q

J sin(2θ ) fq D cos θgq

]
. (12)

It is worth noting that, due to the DMI, Vq does not have
the time-reversal symmetry, i.e., V−q �= (Vq)∗. By sequentially
performing the unitary and Bogoliubov transformations, we
can write out the cubic Hamiltonian in terms of field operators
(b, b†) as

H (3) =
∑
k,q

∑
ρνμ

(
1

2!
�

ρνμ

1,qkpb†
ρqb†

νkbμ−p

+ 1

3!
�

ρνμ

2,qkpb†
ρqb†

νkb†
μp + H.c.

)
. (13)
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It has the same form as the one obtained by Maksimov
et al. [53]; however, the interaction vertices are very differ-
ent. Since the DMI breaks the time-reversal symmetry, both
the decay vertices �

ρνμ

1,qkp and the source vertices �
ρνμ

2,qkp can
be divided into two parts: �

ρνμ

α,qkp = �
ρνμ

αS,qkp + �
ρνμ

αA,qkp, where

�
ρνμ

αS,qkp conserve the time-reversal symmetry �
ρνμ

αS,−(qkp) =
(�ρνμ

αS,qkp)∗, while �
ρνμ

αA,qkp have the time-reversal antisymme-

try �
ρνμ

αA,−(qkp) = −(�ρνμ

αA,qkp)∗. Because of the presence of the
source vertices, it is obvious that the cubic Hamiltonian is also
different from that obtained in a ferromagnet [8]. The explicit
forms of �

ρνμ

α,qkp are given in Appendix B.
Compared with the situation where the DMI is absent [53],

we can see that the impacts induced by the DMI are twofold.
First, the DMI strongly modifies the energy spectrum of the
magnon at K (K ′), leading to the opening of energy gaps at the
Dirac points. Furthermore, as we will see in the next section,
this leads to topologically nontrivial magnon bands. Second,
the DMI causes the time-reversal antisymmetric part �

ρνμ

αA,qkp
which appears in the decay and source vertices of the cubic
Hamiltonian. A natural question is whether �

ρνμ

αA,qkp causes the
change of some physical quantities (such as the decay rates
and the self-energies discussed in the following section) under
the time-reversal operation, i.e., X(k) �= X(−k) for physical
quantity X.

To answer the question, we need to consider
|�ρνμ

α,qkp|2 which appears in the sums of the 1/S order
of the perturbative expansion. According to the above
definitions, we have |�ρνμ

α,qkp|2 = |�ρνμ

αS,qkp|2 + |�ρνμ

αA,qkp|2 +
2 Re[�ρνμ

αS,qkp(�ρνμ

αA,qkp)∗], where the last term of the right-hand
side changes its sign under the time-reversal transformation.
Using the definitions of �

ρνμ

αS,qkp and �
ρνμ

αA,qkp in Appendix B,
after some tedious calculations, we find out that �

ρνμ

αA,qkp is real
while �

ρνμ

αS,qkp is imaginary if ρ + ν + μ is odd, or vice versa if
ρ + ν + μ is even. Then, we have Re[�ρνμ

αS,qkp(�ρνμ

αA,qkp)∗] = 0,

as �
ρνμ

αS,qkp(�ρνμ

αA,qkp)∗ has no real part. Hence, |�ρνμ

α,qkp|2 is
invariant under the time-reversal transformation. We conclude
that, up to the 1/S order, the physical quantities which are
functions of |�ρνμ

α,qkp|2 and magnon spectra E±,k are invariant
under time-reversal transformation, like the decay rates given
in the Sec. V.

On the other hand, it is easy to verify that the symmetry
part �

ρνμ

αS,qkp is dominant near the momentum � point, while
the antisymmetry part �

ρνμ

αA,qkp is dominant near the K (K ′)
points. Therefore, we find that the decays of lower magnon
bands are almost not affected by DMI (or equivalently by
�

ρνμ

αA,qkp) near the � point. We can also expect that the physical
quantities related to �

ρνμ

αA,qkp around the K (K ′) point will be

greatly affected by �
ρνμ

αA,qkp.

IV. TOPOLOGY OF THE MAGNON BANDS
AND THERMAL HALL CONDUCTIVITY

Berry curvature �α (k) is an important physical quantity
to describe the topological properties of the αth energy band.
According to the diagonalization procedures of H (2), we can
explicitly write down the eigenvectors |�±(k)〉 which are

given in Appendix A. The Berry curvatures are calculated
by �±(k) = [−Im{〈∇�±(k)| × �|∇�±(k)〉}]z, where � =
diag(1, 1,−1,−1) is a diagonal matrix and [·]z means taking
the z component. We find that the analytical expressions of
the Berry curvature can be divided into two parts which are
given by

�±(k) = �±,ψ (k) + �±,χ (k) (14)

with

�±,ψ (k) = (∓ sin 2ψk cosh 2χ±,k )∇ϕk × ∇ψk,

�±,χ (k) = (± sinh 2χ±,k cos 2ψk )∇ϕk × ∇χ±,k, (15)

where χ1(2)k are denoted by χ+(−),k, respectively. The topol-
ogy of the magnon bands is characterized by the Chern
numbers C±, which are defined as the integration of the cor-
responding Berry curvature over the Brillouin zone (BZ). The
Chern numbers contributed by �±,ψ and �±,χ are

C±,ψ = 1

2π

∫
BZ

�±,ψ (k)dkxdky,

C±,χ = 1

2π

∫
BZ

�±,χ (k)dkxdky. (16)

The Chern numbers are given by C± = C±,ψ + C±,χ .
In the FPP, because cosh χ±,k = 1 and ∇χ±,k = 0, we have

C±,χ = 0. Then, the Chern numbers are reduced to C± =
C±,ψ = ∓(1/4π )

∫
S sin(2ψ )d (2ψ )dϕ which give the area on

the unit sphere S if we view 2ψ , ϕ as the polar and azimuth
angles, respectively. Because the BZ over which we integrated
the Berry curvature is a closed and orientable manifold (torus),
the integral must be an integer. By numerical calculation, we
obtain the Chern numbers as −1 and +1 for the upper and
lower bands, respectively. In the NCP, both the C±,ψ and C±,χ

are not integers. However, according to the gauge field theory
[61], the integral of their sum remains an integer as shown in
Fig. 2(a).

With the help of the exact eigenvectors |�±(k)〉, we can
also prove analytically that the Chern numbers are inte-
gers. For antiferromagnets, the Berry vector potentials of the
magnon energy bands are defined as

A±(k) = i〈�±(k)|�|∇�±(k)〉, (17)

which are two-dimensional vectors in the k plane. It is obvious
that the Berry curvature can also be calculated by �±(k) =
[∇ × A±(k)]z. According to Stokes’s theorem, the integral
of the Berry curvature over BZ must be zero if A±(k) is
nonsingular on the whole BZ. Through a direct calculation,
we obtain

A±(k) = ∓ cosh 2χ±,k cos 2ψk∇ϕk. (18)

It can be confirmed that K and K ′ are singular points of A±(k).
We take the upper band as an example to demonstrate the
singularity of A+(k) at K (K ′), which is shown in Fig. 2(b).

As shown in Fig. 2(c), because A+(k) has no singularity in
the cyan region of the BZ, according to Stokes’s theorem, the
integral of Berry curvature in this region can be transformed
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FIG. 2. (a) The Chern numbers C± and their contributions from
C±,ψ and C±,χ are plotted with D = 0.1J and different values of sθ .
(b) The Berry vector potential A+(k) is shown by a vector field
plot, with the color plot indicating its magnitude |A+(k)|, where
sθ = 0.9 and D = 0.1J . (c) The Brillouin zone which is spanned
by two primitive vectors of the reciprocal lattice is equivalent to the
surface of a torus due to the periodic boundary conditions. The cyan
area is surrounded by a blue line with arrows pointing in the positive
direction.

into a line integral of its boundary (blue line). Taking the limit
conditions, L to coincides with L, and the radii of circles C1

and C2 tend toward zero, r → 0, then the integrals of A+(k)
over L and L cancel out, hence∫

BZ
�+(k)dS = lim

r→0

∮
C1+C2

A+(k)dl. (19)

By expanding A+(k) around K and K ′ respectively, the in-
tegral on the right side of Eq. (19) gives −2π . Therefore,
the Chern number C+ of the upper band is −1. The same
discussions can also be used for the lower band.

The thermal Hall conductivity is related to the Berry cur-
vatures by

κxy = −k2
BT

h̄V

∑
k

M∑
α=1

{
c2(g(εn,k )) − π2

3

}
�αk, (20)

where g(εn,k ) = [eεn,k/kBT − 1]−1 is the bosonic distribution
function, c2(x) = (1 + x)(ln 1+x

x )2 − (ln x)2 − 2 Li2(−x),
Li2(x) is the dilogarithm [40], and M is the number of
sublattices. In experiments, MnPS3 can be considered a
two-dimensional Heisenberg antiferromagnet in which Mn2+

ions with S = 5/2 are arranged in a honeycomb lattice
[62,63]. An out-of-plane DMI is also allowed due to the
lack of an inversion center at the midpoint between the
next-nearest-neighbor sites.

We take MnPS3 as a candidate material realization to esti-
mate the order of magnitude of the thermal Hall conductivity,
and show the evolution of the thermal Hall conductivity with
the temperature and the DMI strength. The structure of MnPS3

is monoclinic, with the C2/m space group. The unit cell

W
/(

K
 m

))

W
/(

K
 m

))

FIG. 3. The thermal Hall conductivities of MnPS3 as a function
of temperature (T ) and DMI strength (D) are given in (a) and (b),
respectively. We have chosen D = 0.077 meV and sθ = 0.9 in panels
(a) and (b), respectively. Panels (c) and (d) are the magnon decay
rates �μ,k for lower and upper bands, respectively. The decay rates
for different values of sθ are plotted with different colors. The inset
in (d) sketches the first Brillouin zone of the honeycomb lattice.

parameters are a = 6.077 Å, b = 10.524 Å, c = 6.769 Å,
and β = 107.35◦, and the nearest-neighbor exchange inter-
actions are J = 0.77 meV. We ignored the second- and the
third-nearest-neighbor exchange couplings because they con-
serve the symmetry of the system Hamiltonian Eq. (1) and
thus do not qualitatively change the main physics discussed
here.

The thermal Hall conductivities κxy as a function of tem-
perature and DMI strength are shown in Figs. 3(a) and 3(b),
respectively. We can see that as long as sθ and D are not
too small, the Hall thermal conductivity reaches the order of
10−3 W/K m, which is exactly the range that can be measured
experimentally [44]. In the limit of sθ → 0, it can be proved
that κxy → 0 due to Dk → 0 in Eq. (7). This means that the
thermal Hall effect is absent when the applied magnetic field
is turned off, which is consistent with the Ref. [50]. However,
it can be expected that the spin Nernst effect will occur at
this time [12]. Finally, as shown in Figs. 3(a) and 3(b), the
thermal Hall conductivities increase monotonically with the
increase in temperature and DMI strength. It is worth noting
that D should be less than the critical value for the spin texture
formation.

V. MAGNON DAMPLING INDUCED BY INTERACTION

One important feature of the interactions between magnons
is the damping effects which will lead to a finite lifetime
for the magnons. The damping effect determines many basic
properties of a quantum many-body system, such as transport,
thermalization, etc. We invoke the standard diagrammatic
technique for bosons at zero temperature to investigate the
damping effect induced by H (3). Up to order 1/S, the one-
magnon Green’s function is contributed by the “forward” and
“backward bubble” diagrams shown in Figs. 1(c) and 1(d),
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respectively. From those two diagrams, the normal self-
energies are extracted as

�
αβ

F,k = 1

2

∑
q

∑
νν ′

�
νν ′β
1,q(k−q)(−k)

(
�νν ′α

1,q(k−q)(−k)

)∗

ω − Eν,q − Eν ′,k−q + i 0+ , (21)

�
αβ

B,k = −1

2

∑
q

∑
νν ′

�ανν ′
2,kq(−k−q)

(
�

βνν ′
2,kq(−k−q)

)∗

ω + Eν,q + Eν ′,k+q − i 0+ . (22)

Note that although Eqs. (21) and (22) give the self-energy
matrices, we only need to consider their diagonal elements for
the correction of order 1/S. For the same reason, we ignored
the contributions of anomalous self-energies.

The damping effect of magnons originates from the imag-
inary part of the self-energy. In this study, the imaginary part
of the self-energy comes from the contribution of Eq. (21). In
the lowest Born approximation [51,58], the decay rate can be
expressed as

�μ,k = π

2

∑
q,νν ′

∣∣�νν ′μ
1,q(k−q)(−k)

∣∣2
δ(Eμ,k − Eν,q − Eν ′,k−q). (23)

We note that in the Born approximation, decays are only
allowed if kinematic conditions Eμ,k = Eν,q + Eν ′,k−q are sat-
isfied. In other words, decays are only possible when the
single-magnon spectrum overlaps the two-magnon contin-
uum. The momentum-resolved two-magnon density of states
(DOS) is defined as [8]

Dk(ω) = 1

N

∑
q,νν ′

δ(ω − Eν,q − Eν ′,k−q), (24)

which is a useful quantitative characteristic of the two-
magnon continuum. We show the two-magnon DOS with the
color plot in Fig. 4.

The evolutions of the decay rate �μ,k of the upper and
lower magnon bands with sθ are shown in Fig. 3. In the
summation of Eq. (23), we have used a system with 2 ×
2000 × 2000 points: a sparse mesh for the momentum k of
4 × 106 points in the whole BZ. An artificial broadening of the
δ function 0+ = 3 × 10−4J was also used. To clearly show the
influence of decay rates on topological magnons, we also draw
the decay rates on the magnon bands in Fig. 4. As expected,
in Fig. 4 the decay only occurs when the single-magnon spec-
trums intersect with the two-magnon continuum.

It can be seen from those figures that the magnon decay
rates depend on (i) the strength of the interaction of H (3) and
(ii) the intersection positions of the single-magnon spectrum
and the two-magnon continuum. First, in the FPP, the topo-
logical magnons do not suffer decay from H (3) since Vq = 0
in Eq. (12). Second, as shown in Fig. 4(f), when the system
tends to the CAP, although the interaction strength of H (3)

is very strong, the decay rates are still weak; this is because
the single-magnon bands are far away from the region where
the two-magnon continuum is strong. Third, as discussed by
Maksimov et al. [53], there is a critical sθ,c = 0.6 for the

FIG. 4. Magnon bands are represented by white lines with ver-
tical bars whose lengths are proportional to its decay rates shown
in Fig. 3. Berry curvatures for upper and lower bands are plotted
by black and red dashed lines, respectively. The color plots give
the two-magnon DOS in Eq. (24). Blue (red) color indicates zero
(maximal) two-magnon DOS. The parameters are D = 0.1J and
sθ = 0.9, 0.8, 0.7, 0.6, 0.5, 0.1 for (a)–(f), respectively.

long-wavelength part of the lower band, and the decays will
occur only when sθ > sθ,c. Fourth, for the long-wavelength
part of the upper band, as shown in Figs. 4(a) and 4(b), there
is also a decay-free region when ∼0.7 < sθ < 1. In general,
the decay of magnons at long wavelengths is relatively weak
in both the upper and lower bands.

Finally, we are very interested in the decays of magnons
near K (K ′). Because the nonzero Berry curvatures are mainly
concentrated in this region, the magnons near K (K ′) will be
responsible for the thermal (or spin) Hall effect. We know that
magnons can be considered as well-defined and independent
quasiparticles only if they have sufficiently long lifetimes,
which are given by τμ,k = h̄�−1

μ,k. Or, equivalently, the con-
dition �μ,k  Eμ,k is required. We find that the decay rates of
the upper and lower magnon bands show different behaviors
as sθ decreases. In some parameter regions, the quasiparti-
cle picture breaks down where the quasiparticle condition is
not satisfied. For example, the decays of the upper band in
Fig. 4(a) are very weak, while the decays of the lower band
along K-M are very strong. In Fig. 4(d), there are strong
decays in the upper band and almost no decay in the lower
band. In Fig. 4(e), the decay near K (K ′) in the upper band
is very strong, even �μ,k > Eμ,k in some momentums, while
the lower band has no decay at all. From these examples, in
general, we conclude that strong decays should occur when
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the single-magnon spectrum intersects with the maximum of
the two-magnon continuum.

VI. SUMMARY

In summary, we have investigated the magnon excitations
in honeycomb antiferromagnets with DMI and an applied
magnetic field. We find an analytical solution which allows
us to analytically study the topological properties and the
damping effect of the magnon bands. In particular, we work
out the analytical formulas of the Berry phase and Berry cur-
vature for the energy bands. By both numerical and analytical
methods, we also show that the Chern numbers for the upper
and lower magnon bands are exactly ∓1, respectively. By the
nonlinear spin wave theory, we further study the damping
effect of the topological magnons in the NCP. We find that the
damping behaviors of the upper and lower magnon bands are
different with the variation of the magnetic field. This means
that the magnetic field can be used to manipulate the transport
properties of the system.

In experiments, the Mn-based trichalcogenide MnPS3 [29]
may be viewed as a potential candidate to confirm our re-
sults. Using the experimental parameters of this material,
we have shown the thermal Hall conductivity as a function
of temperature and strength of DMI. We found that thermal
Hall conductivities are of the order of magnitude that can be
detected in an experiment. The topological properties of the
magnon bands in MnPS3 can be confirmed by a transverse
magnon Hall current induced by an in-plane temperature gra-
dient. One important manifestation of the magnon damping
effect is the broadening of the magnon spectrum in experi-
ments. To the best of our knowledge, how the damping effect
affects the magnon Hall current of the system is still an open
question both in theoretical and experimental studies. We be-
lieve the results here will provide an ideal platform for future
studies.
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APPENDIX A: THE DIAGONALIZATION
OF QUADRATIC HAMILTONIAN H (2)

In the main text, we discussed how to diagonalize H (2)

by the field operator transformation; now we give the ma-
trix method to diagonalize H (2). For this purpose, we rewrite
H (2) as

H (2) = 3JS

2

∑
k

(φ†(k), φ̃(−k))H (k)

(
φ(k)

φ̃†(−k)

)
, (A1)

where a constant term has been neglected, φ†(k) = (a†
1k, a†

2k ),
and the tilde on the top of φ means the transpose operation.
The bosonic Bogoliubov HamiltonianH (k) has the following
form:

H (k) =
[
A(k) B(k)
B∗(−k) A∗(−k)

]
, (A2)

where the matricesA(k) and B(k) are

A(k) =
[

1 +Dk −sθ fk
−sθ f ∗

k 1 −Dk

]
,

B(k) =
[

0 (1 − sθ ) fk
(1 − sθ ) f ∗

k 0

]
. (A3)

H (k) is diagonalized by a paraunitary Bogoliubov transfor-
mationUk which satisfies �HkUk = UkEk andU†

k�Uk =
�, with Ek = diag(E+,k, E−,k,−E+,−k,−E−,−k ). Accord-
ing to the diagonalization procedure of the field operator
transformation, we can write down directly the paraunitary
transformation as

Uk = (|�+(k)〉 |�−(k)〉 |�̄+(k)〉 |�̄−(k)〉), (A4)

where

|�+(k)〉 =

⎡
⎢⎢⎣

cosh χ1 cos ψ exp(iϕ/2)
− cosh χ1 sin ψ exp(−iϕ/2)

sinh χ1 sin ψ exp(iϕ/2)
− sinh χ1 cos ψ exp(−iϕ/2)

⎤
⎥⎥⎦,

|�−(k)〉 =

⎡
⎢⎢⎣

cosh χ2 sin ψ exp(iϕ/2)
cosh χ2 cos ψ exp(−iϕ/2)
sinh χ2 cos ψ exp(iϕ/2)

sinh χ2 sin ψ exp(−iϕ/2)

⎤
⎥⎥⎦, (A5)

and |�̄±(k)〉 = C�x|�±(−k)〉. Here, C is the conjugate oper-
ator and

�x =
[

0 I2×2

I2×2 0

]
, (A6)

where I2×2 is a two-by-two diagonal matrix. Note that χ1,2, ψ ,
and ϕ are all real functions of k. We have omitted the k index
for brevity. Specifically, we have

cosh χ1k = u1k =
√
E+,k + E+,k

2E+,k
,

sinh χ1k = v1k =
√
E+,k − E+,k

2E+,k
,

cosh χ2k = u2k =
√
E−,k + E−,k

2E−,k
,

sinh χ2k = v2k = −
√
E−,k − E−,k

2E−,k
, (A7)

with cos ψk = √
(ηk +Dk )/2ηk, sin ψk = √

(ηk −Dk )/2ηk,
and ϕk = (1/i) ln( fk/| fk|) which are also given in the main
text.

APPENDIX B: THE TRANSFORMATIONS
OF CUBIC HAMILTONIAN H (3)

We write H (3) as

H (3) =
∑
k,q

∑
αβ

(
V αβ

q a†
βqa†

αkaα−p + H.c.
)
, (B1)
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where −p = k + q and the interacting vertices are given by
the elements of the vertex matrix Vq as

Vq = 3

√
S

2N

[−D cos θgq J sin(2θ ) f ∗
q

J sin(2θ ) fq D cos θgq

]
. (B2)

For convenience, we define the following matrix:

Wq = 3

√
S

2N

[ −D cos θgq J sin(2θ )| fq|
J sin(2θ )| fq| D cos θgq

]
. (B3)

Using an unitary transformation

a†
αk = ei(−1)αϕk/2

∑
μ

T αμ

k c†
μk,

Eq. (B1) is written as

H (3) =
∑
k,q

∑
ρνμ

(
U ρνμ

qkp c†
ρqc†

νkcμ,−p + H.c.
)
, (B4)

where

U ρνμ

qkp =
∑
αβ

W αβ
q T βρ

q T αν
k T αμ

−p exp[(−1)αϕ̃qkp], (B5)

with ϕ̃qkp = (ϕq + ϕk + ϕp)/2 and −p = k + q.
By denoting Mαβ,ρνμ

qkp = W αβ
q T βρ

q T αν
k T αμ

−p and defining

Ōαβ,ρνμ

qkp = Mαβ,ρνμ

qkp + Mαβ,ρνμ

−(qkp)

2
,

Āαβ,ρνμ

qkp = Mαβ,ρνμ

qkp − Mαβ,ρνμ

−(qkp)

2
, (B6)

we can decompose U ρνμ

qkp into U ρνμ

qkp = Oρνμ

qkp +Aρνμ

qkp . where

Oρνμ

qkp =
∑
αβ

Ōαβ,ρνμ

qkp exp[i(−1)αϕ̃qkp],

Aρνμ

qkp =
∑
αβ

Āαβ,ρνμ

qkp exp[i(−1)αϕ̃qkp]. (B7)

It can be verified that, under the time reversal operation,
Oρνμ

qkp is symmetric andAρνμ

qkp is antisymmetric, i.e., Oρνμ

−(qkp) =
(Oρνμ

qkp )∗ andAρνμ

−(qkp) = −(Aρνμ

qkp )∗.
With the above definition and the transformation cμk =

uμkbμk + vμkb†
μ−k , H (3) can be written in terms of (b, b†)

as

H (3) =
∑
k,q

∑
ρνμ

(
1

2!
�

ρνμ

1,qkpb†
ρqb†

νkbμ−p

+ 1

3!
�

ρνμ

2,qkpb†
ρqb†

νkb†
μp + H.c.

)
. (B8)

Here, the decay �
ρνμ

1,qkp and source �
ρνμ

2,qkp vertices are given as

�
ρνμ

1,qkp = �
ρνμ

1S,qkp + �
ρνμ

1A,qkp,

�
ρνμ

2,qkp = �
ρνμ

2S,qkp + �
ρνμ

2A,qkp, (B9)

where

�
ρνμ

1S,qkp = Oρνμ

qkp (uρq + vρq)(uνkuμp + vνkvμp)

+ Oμνρ

pkq (uμp + vμp)(uνkvρq + vνkuρq)
+ Oνρμ

kqp (uνk + vνk )(uρquμp + vρqvμp),

�
ρνμ

1A,qkp = Aρνμ

qkp (uρq − vρq)(uνkuμp + vνkvμp)

+Aμνρ

pkq (vμp − uμp)(uνkvρq + vνkuρq)

+Aνρμ

kqp (uνk − vνk )(uρquμp + vρqvμp), (B10)

and

�
ρνμ

2S,qkp = Oρνμ

qkp (uρq + vρq)(uνkvμp + vνkuμp)

+ Oνμρ

kpq (uνk + vνk )(uμpvρq + vμpuρq)

+ Opqk(uμp + vμp)(uρqvνk + vρquνk ),

�
ρνμ

2A,qkp = Aρνμ

qkp (uρq − vρq)(uνkvμp + vνkuμp)

+Aνμρ

kpq (uνk − vνk )(uμpvρq + vμpuρq)

+Apqk(uμp − vμp)(uρqvνk + vρquνk ). (B11)

It is noted that �
ρνμ

1S,qkp and �
ρνμ

2S,qkp retaining the time-reversal
symmetry have the same form as the results obtained by
Maksimov et al. [53], while �

ρνμ

1A,qkp and �
ρνμ

2A,qkp conserving
the time-reversal antisymmetry originate from the DMI. As
far as we know, this type of interacting vertices has not been
studied so far.
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