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Observation of Griffiths phase, critical exponent analysis, and magnetic
behavior in Bi-doped La0.67Ca0.33MnO3
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The nanocrystalline La0.67−xBixCa0.33MnO3 (x = 0.0, 0.1) samples were synthesized using a citrate complex
method. The synthesized samples crystallizes in single phase and orthorhombic crystal structure with Pbnm
space group. The nanocrystalline La0.67Ca0.33MnO3 (LCMO) exhibits significant second-order paramagnetic
(PM) to ferromagnetic (FM) phase transition, whereas weak second-order phase transition (SOPT) was ob-
served for La0.57Bi0.1Ca0.33MnO3 (LBCMO). Magnetic entropy and Landau analysis have been used for the
confirmation of order of transition in the vicinity of transition temperature (Tc). The Griffiths phase (GP),
which was determined by the temperature-dependent inverse susceptibility (χ−1) data, demonstrated a strong
influence on La-site chemical substitution. Dimeron model is used to explain GP behavior for the samples.
Temperature-dependent resistivity [ρ(T)] also suggests the existence of dimeron formation above metal-insulator
transition temperature (T > TMI ). A an unusual magnetic state also have been observed within the nonlinear
region of Arrott plots for T > Tc. Using information on the intrinsic magnetic field, the critical behavior of the
LBCMO sample was examined close to its Curie temperature. The critical exponents β, γ , and δ are 0.3108,
1.02, and 4.2, respectively. The observed critical behavior is not following any universality class.
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I. INTRODUCTION

Manganese perovskite oxides have been the subject of
intensive study in recent years as a result of the various
findings like large magnetoresistance (CMR), strong con-
nection between the degrees of freedom for the lattice,
charge, orbit, and spin, as well as other phenomena like
metal-insulator transitions and Jahn-Teller (JT) distortions.
Additionally, because of their chemical stability, reproducibil-
ity, and significant isothermal entropy change around ambient
environment [1], they may find use in environmental-friendly
and energy-efficient magnetic refrigeration [2–4]. It offers
a perfect natural environment for research into the physics
of strongly correlated magneto-electric systems in addition
to potential applications. Therefore, a thorough investigation
may result in a deeper comprehension of the underlying
principles governing such systems as well as new opportu-
nities for technology applications [5]. The standard chemical
formula for the manganese perovskite oxides that are most
frequently addressed is A1−xBxMnO3, where A is rare earth
trivalent cation (La, Nd, or Pr) and B is alkaline earth di-
valent cation (Ca, Sr, Ba, and Pb). A change in unit-cell
volume occurs when a B divalent atom with a smaller or
larger radius replaces the A site, process known as hole
doping. To maintain charge equilibrium, the chemical substi-
tution process causes part of the Mn3+ ions to be replaced
by Mn4+ ions, called mixed-valence compound. As a result,
the combination undergoes the double-exchange (DE) inter-
action (Mn3+-O−2-Mn4+), leading to a metallic FM ground
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state, and super-exchange (SE) interactions [Mn3+-O−2-
Mn3+] and [Mn4+-O−2-Mn4+], attributed to an insulating
antiferromagnetic (AFM) ground state. Long-range Coulomb
repulsion between T2g electrons and JT distortion caused an
insulating state, which is the underlying cause of AFM [6,7].
Additionally, the deformation of crystal structure, the ratio of
Mn4+/Mn3+, the Mn-O bond length, Mn-O-Mn bond angle,
and average cation size (A site) all significantly influence
various physical properties of the complex.

As an intriguing phenomenon observed in both condensed
matter physics and neuroscience, the Griffiths phase (GP) is
also subject to the influence of these factors. In magnetism,
GP development, which precedes the creation of ferromag-
netic clusters (spatially distributed regions that are free of
disorder and form ferromagnetically correlated spin arrange-
ment in a finite region) well above ordering temperature Tc.
It is frequently caused by quenched disorder and phase inho-
mogeneity. Quenched disorder in manganites can come from
a variety of sources: (i) Size mismatch of A/B ions, this
which results in variations in the Mn-O-Mn bond length and
bond angle as well as local lattice distortion brought by Mn3+
ions (JT active). (ii) Chemical substitution in the A/B site
caused changes in the Mn4+/Mn3+ ratio and the tolerance
factor [8]. Chemical substitution at the Mn location might
also result in more disorder. In the context of Mott transitions,
GP arises near the transition between a metal and an insu-
lator due to the presence of disorder or inhomogeneities in
the material. It characterized by local regions retaining some
metallic character while the bulk material remains insulating
[9,10]. Moreover, GP in neuroscience has been observed in the
context of brain criticality, where the brain operates at a state
that is balanced between order and chaos [11]. Now we wish
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to draw attention to the purpose of our effort before going
forward. LaMnO3 is insulating, multilayer antiferromagnet
(AFM) compound in its ground state, in which the trivalent
ions lanthanum and manganese, La3+ and Mn3+, completely
balance each other out. When divalent calcium was substi-
tuted into some of the lanthanum sites in the parent molecule,
LaMnO3, changing its magneto-electrical characteristics. This
substitution leaves holes in the eg state and changes some of
the Mn3+ ions into Mn4+ ions. The remaining eg electrons
became mobile by moving between an adjacent Mn4+ and
Mn3+ ion via the oxygen 2p orbital, creating an O(2p)-Mn(eg)
band, which results in conducting behavior.

In this study, we present the impact of Bi3+ substitution
on the structural, magnetic, and magneto-resistive properties
of nanocrystalline La0.67Ca0.33MnO3 at site A (La3+). Given
that Bi3+ and La3+ ions have almost comparable ionic radii
and the same oxidation state, we do not anticipate any no-
ticeable changes in their characteristics. Our experimental
findings, however, clearly show a significant change in its
characteristics. Therefore, it is presumed that the energy level
arrangement and peculiar orbitals of Bi3+ are crucial in this
scenario, and it has also been considered in various papers
[12,13]. We present the impact of this assumption on the
Griffiths singularity (also known as the Griffiths phase). Ad-
ditionally, we have carried out a thorough examination of the
critical exponents close to the PM to FM transition [14,15].
Critical exponents are crucial for understanding interaction
processes close to the Curie temperature (Tc). According to
earlier investigations on the critical behaviours around Tc,
long-range mean-field theory was used to initially characterize
the crucial behavior and to comprehend the interaction across
a short-range manganites, 3D-Heisenberg model is widely
utilized [16,17]. This article seeks to provide a thorough
knowledge of LBCMO’s critical behavior during the phase
transition. The phase transition order was verified using en-
tropy and Landau analysis before critical analysis. We have
examined the critical behavior of the sample at Tc by mak-
ing extremely precise magnetic measurements across a broad
range of magnetic field and temperature using a variety of
approaches, including the Kouvel-Fisher (KF) technique.

II. EXPERIMENTAL DETAILS

Manganese acetate tetrahydrate, pure bismuth nitrate, lan-
thanum nitrate, and calcium carbonate (CaCO3) were used to
create the nanocrystalline samples using the traditional sol-
gel method. With the exception of calcium carbonate, each
starting material was separately dissolved in deionized water.
Nitric acid was used to dissolve calcium carbonate. Separately
dissolved compounds were combined in a 1:3 ratio with citric
acid. In order to get the final precursor, the mixture was heated
until it reached the gel stage, then it was moved to a hot plate.
The crystal structure along with phases of annealed sam-
ples were identified using x-ray diffraction (XRD) technology
using a Rigaku Miniflex600 powder diffractometer. The Phys-
ical Properties Measurement System (PPMS Cryogenic Ltd.)
has been used to conduct measurements of temperature and
magnetic field dependence on magnetization. Magnetization
data (M-H) for the first quadrant were gathered for LBCMO
and LCMO in the temperature ranges of 196–280 K with

FIG. 1. XRD pattern of nanocrystalline at ambient temperature,
LBCMO (x = 0.0, 0.1) samples.

varied temperature intervals and 210–275 K (T = 5 K), re-
spectively. The materials’ electrical resistivity was evaluated
in an 8 T cryogenic free magnet (CFM) equipment using the
traditional four-probe method.

III. RESULTS

A. Structural analysis

Using retveild refinement, the crystal structure along with
phase analysis of the ambient-temperature XRD of LBCMO
(x = 0.0, 0.1) have been examined. The observed XRD pattern
show orthorhombic structure with Pbnm space group. Figure 1
displays the XRD patterns for both samples, which support the
single phase nature of nanocrystalline materials. Lattice char-
acteristics and convergence factors (χ2) are listed in Table I.
The data in Table I, with the exception of average bond length
and average bond angle, were collected from Gaur et al. [18].

TABLE I. For the nanocrystalline LBCMO (x = 0.0, 0.1) sam-
ples: Information of the crystal structures along with fine-tuned
lattice parameters, average bond length, average bond angle, cell
volume, range (2θ ), convergence factor (χ 2), as well as values for
average crystallite size (D) has been listed.

Parameters x = 0.0 x = 0.1

Crystal structure orthorhombic orthorhombic
Space group Pbnm Pbnm
a (Å) 5.4789 5.4291
b (Å) 5.4538 5.4416
c (Å) 7.7004 7.5767
d〈Mn−O〉 (Å) 1.9299 2.0096
〈Mn-O-Mn〉 (deg) 165.13 154.37
cell volume (Å3) 230.097 223.841
2θ range (deg) 10–90 10–90
χ 2 1.68 2.19
D (nm) 25 29
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FIG. 2. For the LBCMO (x = 0.0, 0.1) samples, temperature-dependent field-cooled warming (FCW), and zero field-cooled warming
(ZFCW) magnetization data are shown in (a), and the inset displays a inverse susceptibility (χ−1) vs temperature (T) curve. The curves in
(b) and (c) show log10(χ−1) vs log10(T/ T R

c – 1); the red solid lines are linear fits to the experimental data for x = 0.0 and x = 0.1, respectively.
Here λGP, exponent in GP; λPM , exponent in PM; T R

c , the temperature at which random ferromagnet susceptibility departs from linear behavior;
and TG, Griffiths temperature.

B. Magnetic analysis

We have performed temperature-dependent magnetiza-
tion (M-T) measurements of LBCMO (x = 0.0, 0.1) with an
applied field of 50 mT in order to explore the phase transition
between distinct magnetic phases {shown in Fig. 2(a), main
panel of the figure has been taken from Gaur et al. [18]}, both
samples have shown PM-FM phase transition. Our study of
nanocrystalline LCMO found a transition temperature (Tc) of
∼ 245 K, which is nearer to the reported Tc ∼ 250 K [19].
However, for nanocrystalline LBCMO, we noticed a slightly
reduced Tc ∼ 230 K, as opposed to the Tc ∼ 244 K reported
for polycrystalline sample [13]. This is a common observation
in nanocrystalline materials, as they typically exhibit lower
transition temperatures than their polycrystalline counterparts
[20]. Some of the magnetic parameters of distinct behavior
listed in Table II. The transition temperature Tc got down by
chemical substitution of La with Bi. We have compared the
data for LBCMO to the parent compound LCMO in order to
comprehend the observed behavior. With the chemical substi-
tution of Bi3+ ions in the place of La3+ ions in the LCMO,
neither the structural modification (length of the Mn-O bond
and angle of the Mn-O-Mn bond) nor the charge balance
Mn4+/Mn3+ are anticipated to change because the ionic ra-
dius of the La and Bi ions (rLa = 1.302 Å and rBi = 1.300 Å)
are very similar. This suggests that no change in DE interac-
tions should be anticipated in the Bi-doped sample. However,
the findings demonstrate that the magnetic and entropy char-
acteristics of LCMO are significantly altered by the addition
of Bi ions [18].

Bi–O bond is shorter than the La–O bond, despite the fact
that the ionic radii of the Bi3+ and La3+ ions are equal. This
can be explained by the fact that the Bi’s 6s band, which has
a significant dispersion, is thought to be important in covalent

bonding [21]. Bi-O hybridization between the 6s of Bi and the
2p of O−2 orbitals is made more effective by the electroneg-
ativity of Bi. This Bi-O hybridization are evidenced by the
lower bond angle (Mn-O-Mn) than that of the undoped sam-
ple, and modified Mn-O hybridization [12]. Little reduction
in the bond angle (Mn-O-Mn) favors the AFM-SE interaction.
Such structural distortion decreases the ferromagnetic double
exchange interactions, the drop in Curie temperature reflects
this fact.

Figure 3 shows the M-H isotherms for LBCMO sample
close Tc with a field span of 0 to 5 T. Arrott plots (M2 vs
μ0H/M plots) have also been used to study the order of
phase transition depicted in Fig. 4; Fig. 4(a) has been taken
from Gaur et al. [18]. According to Banerjee’s criterion, a
magnetic second order phase transition (SOPT) or magnetic
first order phase transition (FOPT) is indicated by positive

TABLE II. Inverse susceptibility exponents (λ) along with
characteristic temperatures, the range of GP follows, GP = [(TG-
Tc)/Tc]*100 for the LBCMO (x = 0.0, 0.1), magnetic characteristics
including Curie-Weiss temperature [θP(K)] and effective magnetic
moment [μeff (μB/fu)] respectively.

Bix x = 0.0 x = 0.1

Tc (K) 245 230
TG(K) 273 249
T R

c (K) 246 231
λPM 0.08 0.07
λGP 0.9539 0.9377
GP (%Tc) 11.4 8.2
θP (K) 260 233
μeff (μB/fu) 8.96 8.7
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FIG. 3. Field dependent magnetization data (M-H) of LBCMO
acquired at different temperatures between 196 K to 259 K, with an
external- field span of 0–5 T.

and negative slopes on Arrott plots, respectively [22]. LCMO
shows the magnetic SOPT as we can see positive slopes in
the whole Arrott plot region in Fig. 4. Instance of LBCMO,
the Arrott plot (Fig. 4) demonstrates that there is an region for
T � Tc at low fields (0–1.5 T) displaying negative slopes, but
as field increases slopes turns positive. As slopes gradually
shifts from negative to positive with increasing field strength,

FIG. 4. [(a),(b)] M-H curves in the form of Arrott plots for
LCMO and LBCMO over a range of temperatures.

resulting in an “S” shaped curves. This behavior is indicative
of a weak SOPT.We emphasize that weak SOPT does not
necessarily imply any inherent weakness of the transition, but
rather represents a specific behavior (S shape of Arrott plot at
low magnetic field) for SOPT. We must first do more research
into our claim using some of the other techniques we will be
studying in Sec. III D before drawing any firm conclusions
about the order of transition for LBCMO.

1. Griffiths phase

The Griffiths phase (GP) is the transitional phase between
the FM and PM phases, when inverse-susceptibility [χ−1(T )]
depicts a decline as a function of temperature [23]. Inset of
Fig. 2(a) depicts the temperature dependence of χ−1(T ) de-
rived from DC magnetization for LBCMO (x = 0.0, 0.1). The
χ−1(T) versus T curves for samples LBCMO (x = 0.0, 0.1),
in the PM region, deviates from the linear Curie-Weiss (CW)
behavior suggesting the presence of GP (finite-size clusters
with FM coupled spins).

However, a static long-range order close to Tc would not
emerge in the system as a whole. The exponent λ (0 �
λ � 1) is usually used to define a Griffiths singularity, and
the inverse susceptibility relationship with exponent λ is
defined as

χ−1 ∝ (
T − T R

c

)(1−λ)
. (1)

T R
c , the temperature at which random ferromagnet suscepti-

bility departs from linear behavior. The GP-region may be
measured using

GP = TG − Tc

Tc
100. (2)

The Griffiths temperature (TG), which is characterized as the
start of a decline in χ−1(T) for PM region. We have estimated
the TG, is by analyzing the maxima of the derivative of the
inverse susceptibility with respect to temperature. According
to theoretical findings, the power-law behavior represented by
Eq. (1) is induced by the Griffiths-like phases. The preceding
statement is in fact a modified version of the CW equation,
and the λ denotes a departure from CW behavior as a result of
the formation of FM clusters above Tc. The value of λ, on the
other hand, is often zero in the pure PM zone. As the temper-
ature descends from the higher temperature zone toward Tc,
more clusters reach the FM ordering condition. According to
Bray’s generalized Griffiths concept of [24] bond distribution,
In the temperature range T–T R

c , the system enters the Grif-
fiths phase when neither pure PM behavior nor long-range
FM ordering are present. The PM region creates a number
of tiny FM clusters of various sizes in a spatially dispersed
region. χ−1 is represented as log10χ

−1 vs log10(T/T R
c – 1) in

order to explain our findings for comprehending the GP in the
LBCMO (x = 0.0, 0.1) [shown in Figs. 2(b) and 2(c)]. The
slopes of the linearly fitted data for the λGP (exponent in GP)
and λPM (exponent in PM) regimes, respectively, have been
used to calculate the values of GP and PM phase. The exact
value of T R

c determines the appropriate value of λ. Inaccurate
T R

c values will result in erroneous values for λ. We used the
approach described elsewhere to determine the correct value
of T R

c [25]. In this technique, T R
c is initially fixed at Tc, inverse
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susceptibility in the PM condition is fitted for λPM . The T R
c

value is then changed so that in the PM state, λPM is close to
zero. GP converted into the conventional PM phase above the
Griffiths temperature TG, and χ−1 follows the CW equation.
The value of Tc, TG, T R

c , λPM , λGP, and GP (%Tc) tabulated in
Table II. An extremely high value of GP represents the strong
Griffiths singularity in the LBCMO (x = 0.0, 0.1) sample.
We can clearly see that with Bi doping λGP is decreasing. It
shows that Bi doping suppressing the formation of clustering,
responsible for GP; GP (%Tc) also suggesting the similar
nature.

Now the question arises as to how Bi doping suppress-
ing the formation of GP. Before reaching any conclusion we
should emphasize that Bi doping does not change the the
number of SE sites Mn3+-O−2-Mn3+ or Mn4+-O−2-Mn4+,
number of DE sites Mn3+-O−2-Mn4+, and amount of JT active
Mn3+ ions. Therefore, the short-range FM clustering that is
important for GP formation should ideally not be impacted
by Bi doping; however, this is not the case. The issue there-
fore becomes what phenomenon is behind the suppression of
GP with Bi concentration? The possible reason behind the
suppression of GP will be understood well once we know
how such clusters are forming. Here we used a model called
dimeron model where a pair of JT distorted (Mn3+) and non-
JT distorted (Mn4+) sites produces a local distortion [26].
We designate this kind of distortion as a dimeron (paired
Mn3+ and Mn4+) and correlate such a distortion with two-site
quasiparticle (polaron) [26,27]. Moreover, the temperature-
dependent resistivity analysis also confirms the formation of
dimeron (small polaron), which will be seen in Sec. III C. JT
energies differ between a distorted JT active (one eg electron
with significant JT splitting) Mn3+ site and an undistorted
JT nonactive (no eg electron with no JT splitting) Mn4+ site.
There is a very high barrier created by the disparity in JT ener-
gies between Mn3+ and Mn4+, pictorial depiction can be seen
in Fig. 5(a). An eg electron from occupied JT distorted Mn3+
site 1 moves to a vacant and undistorted Mn4+ site 2, In the
meantime unoccupied site 2 starts to distort and occupied site
1 starts to undistort. We call such state an intermediate local
distorted state (ILDS) as this state has a local distortion in
between the distorted JT active and undistorted JT nonactive
site. When the two sites 1 and 2 relax, they approach their
new equilibrium local state (NELS). Now there will be two
possibilities of NELS: (i) First NELS state (comparable JT
splitting or no JT barrier): there would be virtually no energy
barrier between the two paired Mn sites, the JT splitting of
the two sites would be roughly equal, and electron hopping
between them would be extremely quick. On each site, there
will be a little quasi-equilibrium distortion. Figure 5(b) is a
cartoon explaining the above mentioned phenomenon. When
compared to the JT active Mn3+ site, these locally paired
distorted Mn sites would behave more like quasiparticles and
share one eg electron almost equally between the two Mn sites.
This smallest unit permits both quick back-and-forth hopping
of eg electron, which will lead to strong double exchange
FM coupling and high mobility of dimeron. First NELS state
will be referred as a strong dimeron state because of the
strong DE coupling and high mobility. (ii) Second NELS state
(incomparable JT splitting or finite JT barrier): there would
be a finite JT barrier between the two paired Mn sites, the

FIG. 5. Cartoon model for dimeron. (a) The Mn3+ site shown
with grey circle and Mn4+ site shown with a white circle, and O
atoms have not shown. EJT is the splitting between energy levels
of eg electrons. In Case (b) One eg electron shared by the paired
Mn3+-Mn4+ site is shown by the grey oval. when each of these site
has Ca or La or both in the vicinity. Despite the fact that the Mn-O
bond length (solid lines) on each of these sites are incomparable, the
distortions on these two sites are equivalent, resulting in the same
small JT splitting of the eg levels. In (c) the grey distorted oval
represent one electron shared between the paired Mn3+-Mn4+ site
when each of these site has Bi in the vicinity along with La or Ca or
both. Each of these sites exhibits a minor but distinct JT splitting of
the eg levels and the Mn-O bond lengths (solid lines) and distortions
on each of these sites are incomparable. In situations (b) and (c), two
adjacent Mn3+ atoms on the left and right, each of which has one
eg electron, are having a larger distortion, leading to significant JT
splittings of the eg levels. A considerable barrier prevents an electron
at the lowest eg level on the left or right Mn sites from hopping onto
the middle dimeron sites because of the significant difference in JT
energies.

JT splitting of these two sites would not be same. This local
quasiparticle, which has one eg electron shared across two
Mn sites unequally and electron hopping between them would
not be quick that will lead to a weak double exchange FM
coupling and low mobility of dimeron. A cartoon explaining
the above mentioned phenomenon is shown in Fig. 5(c). Sec-
ond NELS state will be referred to as a weak dimeron state
because of the low mobility and low DE coupling. Strong
dimeron state (high mobility) is forming when there are La or
Ca or both elements surrounding the dimeron. Weak dimeron
(low mobility) state is forming when there are one Bi or more
than one Bi atom surrounding the dimeron. The establishment
of a second NELS state with a weak DE interaction weakens
the nucleation of a short-range FM clustering, which results
in the suppression of GP. The first NELS state’s strong DE
interaction favours the nucleation of short-range FM clus-
tering, which leads to GP. A strong GP is emerging in the
LCMO scenario due to the creation of the first NELS state,
whereas in the case of Bi-doped LBCMO, the GP state is
being diluted or suppressed due to the formation of the second
NELS state. Now, the issue is: What role is Bi playing in
weakening the clustering that is causing GP to be suppressed?
Bi’s high electronegativity makes the hybridization of the 6s
orbital of Bi3+ and the 2p orbital of O−2 more effective than
that of Mn-O. This hybridization is evidenced by the smaller
bond angle of Mn-O-Mn, which favors the localization of the
eg electron and weakens the DE interaction, which in turn
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FIG. 6. [(a)–(c)] Griffiths phase formation and clustering
phenomenon.

weakens the clustering and suppresses GP. The whole process
can be understood well by a model given by Downward et al.
[Fig. 6(a)–6(c)] [26]. In Fig. 6(a), orthorhombic (given that
the examined compounds’ main phase) unit cell has been
considered for the LBCMO (x = 0.0, 0.1) samples, where the
Mn atoms shown along withoxygen in the ab plane. The JT
distorted (non-JT distorted) lattice locations are described by
the Mn3+(Mn4+ ions. Figure 6(a) shows the pair of Mn3+ and
Mn4+, assuming Ca or La or Both in the vicinity, making a
dimeron encircled with grey oval and ferromagnetic clusters
are created by the agglomerated dimerons (shown with black
curve). Figure 6(b) indicate that, if dimeron has Bi atom in the
vicinity, that weaken the dimeron as shown by black dashed
curves, thus DE above T > Tc and clustering also getting
affected. Weakening of clustering also has been shown by
dashed blue curve. Figure 6(c) shows that ferromagnetic clus-
tering started diminishing in size, and as a result the GP-region
will be diminished.

FIG. 7. [(a),(b)] Arrott plots for LCMO and LBCMO respec-
tively and the inset figures have shown enlarged view of Arrott plot
with in the dashed oval shape.

2. An unusual new magnetic state in paramagnetic region

According Chauhan et al. [28], we may analyze different
magnetic states in the nonlinear part (regions with low field
and low temperature) of the M-H curve using the Arrott plot.
Here we have shown Arrott plots for LCMO and LBCMO
samples in Fig. 7 and enlarged part in the inset shows the
region of Arrott plot at low field for T > Tc. Here one can
observe a kind of kink behavior [shown by arrows in insets of
Fig. 7(a) and 7(b)] at every temperature for T > Tc (paramag-
netic region). This kink region, reflected in Arrott plot, seems
like a boundary between nonlinear and linear part of the curve
(transition between nonlinear to liner M-H region). It seems
that nonlinear part exist because of the two possibilities: first
is related to Griffiths phase formation or clustering of short
range FM interaction and second possibility suggest a field
induced phenomenon. The linear part corresponds to pure
paramagnetic state for T > Tc.

C. Electrical transport studies

Both the LBCMO (x = 0.0, 0.1) samples show metal-
insulator transition (TMI ) at 245 K and 230 K respectively
in the absence of external magnetic field and it can be seen
in Fig. 8(a) (taken from Gaur et al. [18]). Magnetic ordering
temperature and metal-insulator transition temperature (TMI )
are almost same, which can be attributed to strong magneto-
transport coupling. Bi-doped sample LBCMO shows very
high resistivity compared to undoped sample LCMO, which
basically mean that conduction mechanism in case of
LBCMO greatly affected by Bi3+ doping. The reason could
be 6s lone pair of electrons in Bi3+, it affects the hybridization
of Bi with O in comparison to Ca/La in such a way that it pro-
motes localized state of eg electron and some grain boundary
effect will also add to it. For T > TMI we have used VRH
and SPH model to explain the conduction mechanism and it
turned out that SPH model fitted well in the temperature range
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FIG. 8. (a) Temperature dependent resistivity for LBCMO (x = 0.0, 0.1) without magnetic field. (b) SPH fit for LCMO in temperature
range 250 K–275 K. (c) and (d) shows the SPH fit for LBCMO within the temperature range 235 K–260 K and 265 K–290 K respectively.

235–290 K. The temperature range (TR) for fitting the resistiv-
ity part has been chosen considering the GP, TR ∼ (TG − TMI ).
SPH model equation can be written as

ρ = AT exp
Ea

kBT
, (3)

where ρ, A, Ea, and T represents the resistivity, coefficients
of resistivity, activation energy and characteristic temperature
respectively. Fitted temperature range, coefficient of resistiv-
ity (A) and activation energy values, for both the samples,
have been listed in the Table III. In essence, the fitted data
reveals that the conduction process is being carried out by a
small polaron (dimeron) above T > TMI . This confirms our
assertion that dimeron production occurs after transition. Two
conclusions may be drawn from the temperature-dependent
resistivity fitted data above TMI . (i) Since LCMO has a lower
activation energy than LBCMO, its conduction mechanism is
largely driven by a dimeron in a high mobility state; Fig. 5(b)
represent the high mobility state of dimeron (eg electron
of dimeron is delocalized for paired Mn site) whereas in
LBCMO it is happening by low mobility state of dimeron,
Fig. 5(c) represents the low mobility state of dimeron (eg elec-
tron of dimeron is localized more towards Mn3+ than Mn4+
site). (ii) High activation energy has been observed in tem-
perature range TR ∼ (TG − TMI ) than T > TG. It means that
at high temperature, thermal energy helping the eg electron

to cross the JT barrier, which lead to a more mobile dimeron
state.

D. Does LBCMO show SOPT?

As we can see the Arrott plot for LBCMO in Fig. 4 (range
196–259 K) suggesting that it looks like a first-order phase
transition considering Banerjee criteria because we are getting
a region of negative slopes at high temperature and low field.
For critical analysis, we will be focusing in the vicinity of Tc

from 220 K to 240 K. Hence, before detailed critical analy-
sis, in the vicinity of transition-temperature (Tc), ordering of
magnetic phase transition must be clearly established. Here,
we employ two separate techniques, entropy analysis [29–32]
and Landau analysis [33], to ascertain the LBCMO’s order of
phase transition.

1. Entropy analysis

(i) The magnetic entropy change |	SM | of the LBCMO
around the Tc may be calculated with the help of Maxwell’s
thermodynamic relation and is given by [28]

	SM (μ0H, T ) =
∫ μ0H

0

(
∂M(μ0H, T )

∂T

)
H

d (μ0H ), (4)

where H is the external magnetic field, M magnetization,
and μ0 the permeability of vacuum. Due to effective spin
ordering, manganites have a significant magnetic entropy shift

TABLE III. Fitted parameters for the LBCMO (x = 0.0, 0.1) samples were obtained for the SPH model.

x A × 10−6 (� m) ea/kB (K) ea (mev) Figure

0.0 TR(K) = 250–275 K 4.0771 1380.66 119.08 8(b)
0.1 TR(K) = 235–260 K 6.7677 1637.71 141.25 8(c)

T > TR(K) = 265–290 K 11.981 1477.27 127.41 8(d)
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FIG. 9. For the nanocrystalline LBCMO sample, the variation in
magnetic entropy (|	SM |) with temperature at varied applied fields.

near Tc [34–36]. A spin-lattice coupling contribution is mostly
responsible for the significant change in entropy |	SM | of
perovskite material. The magnitude of the |	SM | increases
steadily as the applied magnetic field is increased. Nonmono-
tonic behavior of entropy change |	SM | with temperature
is also an indication of the SOPT; Fig. 9 shows the same.
We further exploited the rescaling of |	SM | to guarantee
the LBCMO’s phase transition ordering. In case of SOPT,
rescaled |	SM | curves must collapse into single universal
curve [29,30,32]. Franco et al. have theoretically shown that
such a universal curve exists for a SOPT [29]. A SOPT’s
immediate neighbourhood can scale a number of physical
characteristics [37]. It has been discussed how to scale |	SM |
phenomenologically. To do this in a phenomenological man-
ner, all the |	SM | would be normalized by the greatest value
of the |	SM |, i.e., 	|Speak

M |, which occurs at Tc. Reference
temperature should be chosen such that |	SM (Tr )|/|	Speak

M |
� K in order to rescale the temperature axis. K must fall
between the range of 0 < K � 1 [38], where K is the ratio of
entropy changes at two different reference temperature. Two
reference temperatures Tr1 < Tc and Tr2 > Tc have been se-
lected so that |	SM (Tr1 )|/|	Speak

M | = |	SM (Tr2 )|/|	Speak
M | =

0.7 and, respectively. The definition of rescaled temperature,
say θ , axis is

θ = −(T − Tc)/(Tr1 − Tc), T � Tc

= (T − Tc)/(Tr2 − Tc), T > Tc. (5)

Figure 10 displays the entropy curve that has been scaled
within the field span 1–5 T. The presence of the LBCMO’s
SOPT is supported by the finding that each entropy curve
collapses onto a single universal curve.

(ii) In the literature, a different approach to determining the
magnetic order of phase transition was published [39,40]. In
this method, the field dependency of the sample’s |	SM | was
established by using the relation |	SM | = a(μ0H )n, where
“n” is a magnetic order-related exponent and “a” is a constant.
The exponent (n) for single-phase ferromagnets depend on
magnetic-field and temperature [41,42] and represented by the

FIG. 10. The rescaled entropy curves in the field range for the
nanocrystalline LBCMO sample.

following notation:

n(T, H ) = d ln |	SM (T, H )|
d ln H

. (6)

The values of n(T, H) describe the magnetic order of fer-
romagnets. The sample is in a multidomain condition for
extremely tiny fields, hence such exponent values should not
be taken into account. In-depth research has been done on the
temperature dependence of n for SOPT materials [43,44]. In
the case of SOPT, value of n for T < Tc and T > Tc tends
to 1 and 2, respectively. The presence of the overshoot of
n over 2 is the condition to identify that the transition is a
FOPT. Here, in Fig. 11, we see that n(max) is less than 2,
which is in line with our prior claims of a SOPT. According to
mean-field theory, for ferromagnets with long-range magnetic
order, n(T, H) at Tc is independent of H and reaches the value
with n(T) = 2/3 [45]. However, in every other scenario, the
minimum value is different and linked to the material’s critical
exponents n = 1 + 1

δ
(1 − 1

β
), assuming that the applied field

is sufficient to maintain the material within the critical region
[46]. From Fig. 11, n(min) is valued to be minimal between

FIG. 11. For various magnetic fields, the temperature variation
of exponent n(T, H) for LBCMO sample.
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FIG. 12. The nanocrystalline LBCMO sample’s Landau coeffi-
cients [a(T) and b(T)] temperature dependency.

0.6 and 0.7 for various applied fields instead a constant. It tells
us that LBCMO does not follow mean-field approach.

2. Landau analysis

A power series in terms of the order parameter M may
be used to determine the magnetic free energy F(M,T) of a
ferromagnet [47],

F (M, T ) = F (0) + a(T )

2
M2 + b(T )

4
M4 + c(T )

6
M6

+ · · · − μ0HM, (7)

where a(T), b(T), and c(T) are Landau coefficients. We can
determine the kind of the phase transition near Tc using
F(M, T). The thermodynamic potential is minimized to create
the equilibrium state, ∂F(M, T)/∂M = 0 and resulting in

μ0H = a(T )M + b(T )M3 + c(T )M5. (8)

Temperature-dependent Landau coefficients a(T) and b(T) al-
lowed us to differentiate between FOPT and SOPT using
Eq. (8). The FOPT corresponds to the negative value of b(T)
at Tc, while the SOPT corresponds to the positive value. Tc

of the sample should be associated with the minima of a(T).
Equation (7) was used to fit the magnetic isotherms to derive
the Landau coefficient a(T) and b(T). Figure 12 display how
Landau coefficients change with temperature. b(T) is having
a positive value at Tc as well as passing from zero line at
temperature T0 and Tc of LBCMO is associated with minima
of a(T). This suggest us that LBCMO shows SOPT close
to Tc.

E. Critical analysis and scaling

Understanding the mechanics behind various magnetic
phases is made possible by a certain universality class. Mean-
field model (MF), tricritical mean-field model (TMF), three-
dimensional Heisenberg model (3D-H), three-dimensional
Ising model (3D-I), and three-dimensional XY model (3D-
XY) are five universality classes, which are used to charac-
terize the phase transition in magnetic materials. In general,
the critical exponents and the Tc for the long-range mean-field
approximation may be calculated using the Arrott plot (M2 vs
μ0H/M) but one must move beyond the MF approximation
if the M-H data at various temperatures provided as M2 vs
μ0H/M (Arrott plot) are not parallel. As a result, long-range

FIG. 13. (a) The M-H curves for the nanocrystalline LBCMO
sample at various temperatures between 220 K and 240 K are shown
in form of Arrott plot (M2 vs μ0H/M). (b) Normalized slopes [NS =
S(T)/S(Tc)] as a function of temperature for several models, S(T ) =
dM1/β/d (μ0H/M )1/γ , S(Tc) is the slope at Tc.

universality classes (UCs) like long-range tricritical mean
field and long-range mean field can be disregarded.

Figure 13(a) displays the LBCMO Arrott plot near Tc.
Since the Arrott plot exhibits nonlinear behavior even in the
higher field area then long-range interactions (MF model
β = 0.5 and γ = 1) are probably invalid in LBCMO. The
SOPT is represented by the positive value of slope in the
Arrott plot, whereas the FOPT is represented by the negative
value of slope. As a result, the Arrott plot again matches the
results of the Landau and entropy analyses and so supports the
SOPT. The modified Arrott plots (MAPs) have been the main
emphasis in order to determine the right critical exponents
(β and γ ). α, β, γ , and δ are variables (critical exponents) to
study the critical behavior of such system, which is showing
SOPT and these same variables distinguish between different
UCs. The fact that all UCs include fairly comparable δ value
means that it is difficult to compare many models with single
variable δ (see Table IV).

The 3D-I, 3D-XY, TMF, and 3D-H model’s respective
value for δ are 4.82, 4.81, 4, and 4.8 [48–50]. The initial
susceptibility χ0(T) and the spontaneous magnetization MS(T)
exhibit universal scaling laws as a result of the advent of
divergence of the correlation length ξ = ξ0|T − Tc/Tc|−ν in
the vicinity of the Tc. The mathematical definitions of crit-
ical exponents around Tc from magnetization are defined as
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TABLE IV. Comparison of the nanocrystalline LBCMO sample’s critical exponents β, γ , and δ with several theoretical models. MAPs,
Modified Arrott plots; KF, Kouvel-Fisher; CI, critical isotherm; and EA, entropy analysis.

Method Tc (K) α β γ δ

(Theory)
Tricritical mean field [49] 0 0.25 1 5
3D Ising (d = 3, n = 1) [48,49] 0.11 0.325 1.241 4.82
3D XY (d = 3, n = 2) [48,49] –0.007 0.346 1.316 4.81
3D Heisenberg (d = 3, n = 3) [48,49] –0.115 0.365 1.386 4.8

(Experiment)
LBCMO MAPs 230 ± 0.2 0.3108 ± 0.001

230 ± 0.06 1.02 ± 0.003
Cl 4.2
KF 229.84 ± 0.1 0.30954 ± 0.0003

230 ± 0.002 1.016 ± 0.001
EA 0.344 1.11

follows in accordance with the universal scaling hypothesis
[51,52]:

MS (T ) = M0(−ε)β, ε < 0, T < Tc, (9)

χ−1
0 = (h0/M0)(ε)γ , ε > 0, T > Tc, (10)

M = DH1/δ, ε = 0, T = Tc, (11)

And taking the derivative of Eq. (9),

dMS (T )

dT
= −βM0(|ε|)β−1, (12)

where ε = T −Tc
Tc

is the reduced temperature and : M0, M0/h0,
and D are critical amplitudes. The Arrott-Noakes equation of

state [54] in the asymptotic region |ε| < 0.1 is

(H/M )1/γ = (T − Tc)/Tc + (M/M1)1/β, (13)

where β and γ are critical exponents and the material constant
M1 is used. The equation of magnetic state can be written as
[49]

M(H, ε) = εβ f±(H/ε (β+γ ) ), (14)

where T > Tc defines f+ and T < Tc defines f−. Rushbrooke
and Widom’s scaling relationship may be used to provide the
relationship between critical exponents [51,55],

α + 2β + γ = 2, (15)

δ = 1 + γ

β
. (16)

FIG. 14. The isotherms of (M )1/β vs (μ0H/M )1/γ with (a) TMF, (b) 3D-XY (c) 3D-H, and (d) 3D-I.
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Thus, by fitting MS(T) and χ−1
0 (T) using Eqs. (9) and (10),

and MAPs [(M )1/β vs (μ0H/M )1/γ ], critical exponents β and
γ may be derived. Using Eq. (11), M-H curve plotted at Tc

will help us to calculate critical exponent δ separately.
To build the MAPs, we selected four distinct types of

three-dimensional (3D) crucial exponents (β, γ ) [49], which
correspond to the 3D-H (0.365, 1.386), the 3D-I (0.325, 1.24),
the 3D-XY (0.346, 1.316), and TMF (0.25, 1). All of the
models display quasistraight lines for LBCMO (Fig. 14). Se-
lecting the best model to evaluate the crucial exponents is
challenging in this circumstance. We have employed the nor-
malized slope (NS) technique to select the most suited model
that captures the system. We have estimated their normalized
slopes (NS) using this technique, where the slope S(T ) =
dM1/β/d (μ0H/M )1/γ [Fig. 13(b)]. NS [NS = S(T)/S(Tc)]
should always be 1 if the MAPs display a succession of paral-
lel lines with the same slope [53]. The best model, which has a
closest fit to 1 over the chosen temperature range is clearly the
3D-I, as shown in Fig. 13(b). Critical exponent of 3D-I will be
used as starting exponents for MS(T, 0) and χ−1

0 (T, 0) to get
exact critical exponents.

The correct values MS(T, 0) and χ−1
0 (T, 0) in the MAPs of

LBCMO generated for the 3D Ising model are provided by
the intercepts with the axes M1/β and (H/M )1/γ gained by the
linear extrapolation from the high field region [Fig. 14(d)].
Fitting these values of MS(T, 0) and χ−1

0 (T, 0) to Eqs. (9)
and (10) results in one set of β and γ . To obtain the ex-
act exponents (β and γ ), an iterative method has been used
[54]. The critical exponents for LBCMO using this technique
are as follows: According to Fig. 15(a), β = 0.3108± 0.001
with Tc = 230 ± 0.2 K and γ = 1.02 ± 0.003 with Tc=230 ±
0.06 K. Again, the Kouvel-Fisher (KF) technique [56] may
be utilized to determine the critical exponents and with more
accuracy, as stated by

MS (T )

dMS (T )/dT
= T − Tc

β
, (17)

χ−1
0 (T )

dχ−1
0 (T )/d (T )

= T − Tc

γ
. (18)

The MS (dMS (T )/dT )−1 vs T along with χ−1
0 (dχ−1

0 /d (T ))−1

vs T will results in a straight line with slopes of 1/β and 1/γ ,
respectively, and the intercepts on the temperature axis will
provide the value Tc, per the KF method. According to the lin-
ear fitting of the MS (dMS (T )/dT )−1 and χ−1

0 (dχ−1
0 /d (T ))−1

for LBCMO. β, γ and Tc are β = 0.30954 ± 0.0003 with
Tc = 229.84 K ± 0.1 and γ = 1.016± 0.001 with Tc = 230 K
± 0.02 [Fig. 15(b)]. One can observe that the critical ex-
ponents acquired using the KF approach and the exponents
derived using MAPs are in agreement. The critical exponents
of LBCMO have also been determined using field dependent
magnetic entropy change. For a SOPT, the field dependency
of magnetic entropy change may be written as [43]

	SM = a(μ0H )n, (19)

where n is a function of the sample’s magnetic state. Inset of
Fig. 16(a) illustrates the linear plot ln(|	SM |) vs ln (H) at Tc,
which determines the value of n. It has been determined that

FIG. 15. (a) MAPs as a function of temperature for the inverse
susceptibility χ−1

0 (T, 0) and the spontaneous magnetization MS(T, 0).
(b) KF plots as a function of temperature for the MS (dMS (T )/dT )−1

and χ−1
0 (dχ−1

0 /d (T ))−1.

n has a value of 0.5457. Now, the following relations are used
to identify critical exponents [43]:

n = 1 + 1

δ

(
1 − 1

β

)
, (20)

n = 1 +
(

β − 1

β + γ

)
, (21)

Equations (11) are used to independently find the critical
exponents δ. Figure 16(b) shows the isothermal M-H at Tc and
inset shows log-log plot’s linear fit in the higher field region.
The log-log plot’s slope of the linear fit specifies 1/δ, yielding
δ = 4.20. Further, the Eqs. (20) and (21) are used to get
the critical exponents β = 0.344 and γ = 1.11, respectively.
Additionally, the critical exponent for low temperature may
be calculated by fitting Eq. (9) with M versus T(K) data, al-
though it will be challenging due to ferromagnetic clustering.
Then, using Eq. (12) to fit the dM

dT plot, we may determine β.
Figure 17 illustrates fitting, and the calculated value of β is
0.31.

When compared to the exponents calculated using the
MAPs and KF technique, the values of the critical exponents
(β and γ ) match up nicely. Last but not least, Widom-scaling
relation [57] employing Eq. (16) ensures the accuracy of the
exponents. The exponents β, γ acquired from the MAPs and
KF methods as well as the Widom-scaling relation were used
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FIG. 16. (a) Equation M = DH1/δ used for linear fitting of sam-
ple LBCMO’s M-H isotherm at Tc (shown with red line) and log-log
plot of M-H isotherm shown in inset. (b) Plot of LBCMO’s |	SM | as
a function of field at Tc. log-log plot of LBCMO’s |	SM | with field
and its linear fit (black line) have been shown in the inset.

to determine the δ value for LBCMO, which was found to
be 4.281 and 4.282, respectively. As a result, the critical
exponents determined using either technique are precise and
unambiguous. Interaction phenomenon does not adhere to any
universality class of interactions. If a physical system does
not follow any universality class, it could suggest that the
system has unique features that are not captured by the exist-
ing models. This could happen if the interactions between the

FIG. 17. LBCMO, magnetization vs temperature around 230 K.
Inset shows the dM

dT vs T(K) plot, fitted with Eq. (12) results β =
0.31.

FIG. 18. Magnetization’s scaling behavior is shown in the main
panel as a function of renormalized H on a log-log scale (T < Tc

and T > Tc) for LBCMO. Renormalized H is shown in the upper
and lower insets as a function of the renormalized fields T > Tc and
T < Tc, respectively.

system’s constituents are too complex or if there are multiple
competing interactions that cannot be described by a single
model [58]. It may also result from the presence of defects
caused by enhanced A-site disorder, formation of nanograins,
or grain boundaries.

These defects can cause short-range ferromagnetic inter-
action in a paramagnetic matrix, as observed in the case of
GP [59]. Furthermore, the validity of the resulting exponents
has also been confirmed by Eq. (14) using the notion of crit-
ical phenomena and the plot’s data (Mε−β vs μ0Hε−(β+γ ))
should flatten into two different curves below and above Tc

[60]. Insets of Fig. 18 shows the scaling plot of renormalized
magnetization m (m = Mε−β ) and field, h (h = μ0 Hε−(β+γ ))
and two separate universal curves, one above and one below
Tc, contain all the data. The field and scaled renormalized
magnetization support the accuracy of the previous study.

Using Eq. (14) on a log-log scale, the main panel of Fig. 18
shows the scaling behavior of M and H values above and
below Tc. The scaling equation of state suggests that the in-
teractions are correctly renormalized in critical regimes. We
also drew the MAPs from the MAPs approach for the values of
β = 0.3108 and γ = 1.02. Figure 19 illustrates how all MAPs
isotherms in higher field regions show as nearly parallel lines
as they can. This is another confirmation of our LBCMO
results.

IV. SUMMARY AND CONCLUSIONS

The structural, magnetic, and resistive characteristics of
La0.67−xBixCa0.33MnO3 (x = 0.0, 0.1) have been examined.
Both materials exhibit a second-order PM-FM phase tran-
sition. The transition temperature decreases as Bi content
increases in La site. The reduction of Tc is caused by the lone
pair of Bi’s 6s orbital. Studied samples exhibit short-range
FM linked spin clustering, known as GP, above the transition
temperature. The attenuation of GP caused by Bi doping is
explained by a dimeron hypothesis. The existence of dimeron
above TMI was also confirmed by a temperature-dependent
resistivity data and the sample show metal to insulator
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FIG. 19. MAPs M
1
β vs ( H

M )
1
γ at various temperatures near Tc for

LBCMO.

transition. The order of the magnetic phase transition has been
identified using the Arrott plots, Banerjee criterion, Landau
theory, and magnetic entropy analysis. For LBCMO, critical
scaling behavior has also been discussed and the values of the
universal critical exponents (β, γ , and δ) have been calculated
using the Arrott-Naokes and Kouvel-Fisher formula and it is
validated using the Widom criterion. The employed methods
provide exact and unambiguous critical exponents; the inter-
actions seem to be correctly renormalized in critical regimes
and do not adhere to any universality class of interactions.
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