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Confinement is a ubiquitous phenomenon in which constituent particles are bound together into a new
quasiparticle. In condensed matter physics, magnon bound states can be regarded as a confinement of magnons,
and an oscillating deconfinement crossover of two-magnon bound states scattered by a two-magnon continuum
was revealed in the one-dimensional (1D) ferromagnetic chain by the spin entanglement entropy (SEE) analysis.
Now, we extend the study to the two-dimensional (2D) and three-dimensional (3D) cases. Although the
interactions between magnons in high dimensions are not as effective as in one dimension, two-magnon bound
states can still survive around the corners of the Brillouin zone (BZ). In 2D or 3D square lattices, the bound
states reduce their dimensionality to be 1D bound states at the BZ edges, which are bound only along the
direction parallel to the BZ edge. This is verified by examining the relation between the magnon separation d
and the intercept D of the SEE, which is found to satisfy the 1D relation D = ln d + 1, but in 2D and 3D lattices.
Meanwhile, the 2D bound states satisfy D = 2 ln d + 1.3 in both 2D and 3D lattices. Unlike those in the 1D
chain, some bound states will enter the continuum directly rather than cling to its bottom. We find that these
immersed bound states are neither preserved nor deconfined completely when just meeting the continuum in
finite-size systems, which is similar to what occurs in the 1D chain. Their SEE and magnon separation oscillate
with respect to the system size. Therefore, these bound states undergo the oscillating deconfinement crossover
in the continuum.

DOI: 10.1103/PhysRevB.108.024407

I. INTRODUCTION

Magnon bound states are also called Bethe strings because
of their prediction in one-dimensional (1D) quantum mag-
nets by Bethe [1]. In quantum magnets, the propagation of
a single spin flip through coupling with neighboring spins
is called a magnon excitation. Due to the effective attraction
between magnons, multiple magnons can form bound states.
An n-string means that n magnons form a bound state, and
that state will inevitably collide with other magnons when
encountering the continuum of many-magnon excited states.
Therefore, the scattering between the bound states and the
continuum constitutes a challenging problem involving the
many-body interactions.

In Ref. [2], we studied the spin entanglement entropy
(SEE) [2–4] of two-magnon bound states in a 1D ferromag-
netic Heisenberg chain, which provides reliable reference
points due to its exact solvability. The confinement of the
bound states is quantified by an increasing SEE with a sep-
aration between the two magnons in the bound states as a
particle physics analog [2]. Specially, we find an oscillat-
ing confinement-deconfinement crossover of the two-magnon
bound states when they are immersed in the two-magnon
continuum in an alternating ferromagnetic chain [2]. The
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oscillation crossover was illustrated by the oscillating scaling
behavior of the SEE. The oscillation indicates that the bound
states, scattered in the many-particle continuum, will experi-
ence a gradual deconfinement crossover rather than a critical
phase transition. This is in contrast to the usual belief that
the bound state will experience a damping but be preserved
from deconfinement when entering the continuum. The string
of bound states will be broken eventually but will have to go
through a process of oscillation. The concept of confinement
was first introduced in particle physics to describe how the
constituent particles are bound together to form new particles.
In particle physics, the constituent particles in the confined
states cannot be isolated and therefore cannot be observed
directly in the usual way. Fortunately, the energy scale of
confinement in condensed matter physics is not that unreach-
able. Hence, the special oscillating deconfinement of magnon
bound states found here provides a suitable case to understand
confinement in quantum spin systems, which reflects the in-
trinsic many-body features therein.

Although the interactions between magnons in high dimen-
sions are not as effective as in one dimension, the two-magnon
bound state has also been acknowledged in high-dimensional
lattices in various quantum magnets [5–26]. It is known that,
different from one dimension, there are multiple branches
of bound states in high-dimensional ferromagnets, and some
of the branches will be immersed in rather than below
the two-magnon continuum [7,8,17,19]. Hence, interesting
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issues arise regarding how to tell the difference between
the high-dimensional and 1D bound states and characterize
the properties of various branches of the two-magnon bound
states and whether the oscillating crossover can be extended
to high dimensions or deteriorates to be a transition with a
critical point instead.

In this paper, we study the two-magnon bound states in
two-dimensional (2D) and three-dimensional (3D) square lat-
tices. The bound states exist mainly around the Brillouin zone
(BZ) corner and approach the two-magnon continuum when
dispersing from the corner to the center of the BZ. Since the
two magnons can be bound along the bonds of different ori-
entations, there are two branches and three branches of bound
states in 2D and 3D square lattices, respectively [8]. More-
over, by studying the orientation of bound states, they can be
distinguished along different momentum paths. Particularly,
some bound states are bounded in only a certain direction
rather than in all directions, as if they were lower-dimensional
bound states while in the higher-dimensional space [27]. In
particular, there is reduced dimensionality of bound states
along the BZ edges and surfaces. For example, in the 2D lat-
tice the 1D-like bound states along the BZ edge from (π, π ) to
(π, 0) appear to be bound in the y direction. In the 3D lattice,
along the BZ edge from (π, π, π ) to (π, π, 0), the highest-
energy branch of bound states behaves as 1D bound states.
Also, in the 3D lattice, at the BZ surface along (π, π, π ) to
(π, 0, 0), the branch with the highest energy behaves like 2D
bound states.

To further understand the properties of these bound states,
we perform a SEE analysis [2]. We showed previously that
the scaling of the SEE for two-magnon excitations will have a
nonzero intercept D due to the interactions between magnons,
and it constitutes a correction to the natural logarithm law of
the SEE [2]. In particular, it was found that the intercept is re-
lated to the average separation d between two magnons in the
bound state. For the normal bound states along the path from
(π, π ) to (0,0) in the 2D lattice, the two branches of bound
states are explicit 2D bound states, as their separations are
equal along the x and y directions. We show that their intercept
of the SEE versus the separation has an asymptotic behavior to
D = 2 ln d + 1.3, where the prefactor 2 denotes their 2D char-
acter. On the other hand, the reduced dimensionality of bound
states is also revealed by the SEE analysis. The intercept-
separation relation of the higher-energy branch along (π, π )
to (π, 0) is exact, D = d ln d − (d − 1) ln(d − 1), which is
the same as that in the 1D chain [2] and will be ln d + 1 in the
continuum limit.

A similar SEE analysis is also applied to the 3D lattice.
The 1D bound state exists on the edge along the (π, π, π )
to (π, π, 0) direction, and its intercept-separation relation is
in good agreement with D = d ln d − (d − 1) ln(d − 1). At
the BZ surface from (π, π, π ) to (π, 0, 0), the bound states
have nonzero separations in the y and z directions. Their
intercept-separation relation approaches 2 ln d + 1.3, which is
the relation for the 2D bound states. Therefore, these bound
states at the BZ surface are 2D bound states. The bound states
along (π, π, π ) to (0,0,0) are definite 3D bound states, and
their intercept-separation relation is about D = 2.7 ln d + 1.4.

From the energy spectra of two-magnon excitations, the
bound states will either cling to the bottom of the two-magnon
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FIG. 1. Illustration of the ferromagnetic Heisenberg model in
(a) 2D and (c) 3D square lattices. BZ and high-symmetry points and
lines of (b) 2D and (d) 3D square lattices.

continuum or enter the continuum directly after dispersing
from the BZ corner [8]. Thus, some bound states will be
inevitably immersed in the continuum. This is different from
the situation in the 1D ferromagnetic spin chain, where the
bound states cling to only the bottom of the continuum. From
the spectral perspective, the immersed bound state will spread
its spectral weight in the continuum and appears as a heavily
suppressed and broad peak. So it is hard to explore the nature
of decayed or deconfined immersed bound states from the
spectra. We show that the SEE scaling for the immersed bound
states exhibits an oscillation with the system size in both finite
2D and 3D lattices. Meanwhile, the separation of the two
magnons in the immersed bound states shows a similar oscil-
lation. The clear oscillation of both the SEE and the separation
implies that the bound states have to experience an oscillating
deconfinement crossover in both 2D and 3D systems that is
similar to the oscillating crossover for the deconfinement of
the bound states in the 1D alternative ferromagnetic chain [2].

II. MODEL AND METHOD

The Hamiltonian of the spin-1/2 ferromagnetic Heisenberg
model on a square lattice is

H = −J
∑
〈i j〉

Si · S j, (1)

where only the nearest bonds 〈i j〉 are included. The ferro-
magnetic ground state is chosen to be |F 〉 = | ↑ · · · ↑〉. The
2D and 3D square lattices and the corresponding BZ are
illustrated in Fig. 1.

Excitations in the space with one spin flip |r〉 = S−
r |F 〉,

known as magnons, are solved as |ok〉 = 1√
N

∑
r eik·r |r〉,

where k is the wave vector of the magnon. Thus, excitations
in the space with two spin flips |r1, r2〉 = S−

r1
S−

r2
|F 〉 can be

regarded as two-magnon excitations. If there is no interac-
tion between magnons, two magnons with wave vectors k1

and k2 will simply form a two-particle continuum satisfying
Ek = Ek1 + Ek2 and k = k1 + k2. In fact, since the interactions
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between magnons will result in the deviation of the momenta
from the values of the one-magnon wave vectors k1 and k2,
two-magnon excitations are not as simple as a two-particle
continuum. Fortunately, total momentum k is still a good
quantum number due to the translational symmetry, so we can
diagonalize H in the subspace with a certain momentum k,
and the eigenstates read

|tk〉 =
∑
r1.r2

ψk (r1, r2)|r1, r2〉, (2)

where ψk (r1, r2) is the coefficient obtained from the exact di-
agonalization (Appendix A). There are two kinds of solutions
in the space for the two spin flips. One is the two-magnon
continuum, where the two-magnon excitations deviate from
the two free magnons only a little and can be considered
two individual particles. The other is the bound state. The
two-magnon bound state can be regarded as the confinement
of two magnons which not only are spatially close to each
other but also bear rich entanglement [2].

A. Magnon pair correlation spectra

The bound states are hard to identify with conventional
spin-spin correlation functions due to their negligible spectral
weight. As is known, the two magnons in a bound state are
always paired along a bond. To observe the bound states,
we can check the magnon pair correlation functions, whose
spectra are given by

Pα (ω, k) = − 1

Nπ

∑
r

Im

[ ∑
tk

|〈F |S+
r S+

r+δα|tk〉|2
ω − Ek + i0+

]
eik·r, (3)

where |tk〉 and the corresponding Ek are solved by the exact
diagonalization and α indicates the direction of the bond
〈r r + δα〉 along which the two magnons are paired. For
high-dimensional square lattices, since two magnons can
pair along different bonds, the bound states manifest them-
selves as different branches. Therefore, we calculate Px(ω, k)
and Py(ω, k) for the 2D model and Px(ω, k), Py(ω, k), and
Pz(ω, k) for the 3D model.

B. Spin entanglement entropy

Quantum entanglement is used to understand many-body
systems [28–34]. One of the best ways to quantify the entan-
glement is to calculate the entanglement entropy. Therefore,
we calculate the SEE to characterize spin excitations and the
confinement of the bound states [2–4]. Unlike the traditional
entanglement defined in real space, the SEE is based on a
bipartition of the system into different spin regions. For in-
stance, the 1D spin chain can be viewed as a two-leg ladder,
with the upper leg representing spin up and the lower leg
representing spin down. The SEE is then defined by parti-
tioning the system into these two legs. Therefore, the SEE
of two-magnon excitations can be obtained with the Schmidt
decomposition of their wave functions (2) with respect to this
bipartition,

S =
∑
r1,r2

−ψ (r1, r2)2ln[ψ (r1, r2)2], (4)

and its difference from the ground state can be used to analyze
the excitations. As one of their intrinsic attributes, the scalings

of SEEs can distinguish different excitations. Since the spin-
up and -down space of magnons has to be entangled at every
site to serve the spin-flipping excitations, the SEE of magnons
will be logarithmically divergent from the system size N in
the thermodynamic limit. The standard ln N behavior aptly
illustrates the single-entity property of one magnon. If there
are two free magnons, the SEE is expected to be 2 ln N , which
is a simple sum of that of each magnon. But when the two
magnons are bound together, the SEE of the new quasiparticle
of the bound state is [2]

S = ln N + D. (5)

As a result of the inevitable interactions between magnons,
a nonzero intercept D exists and acts as the correction to
the natural logarithm law of the SEE. In particular, it can be
taken to reflect the confinement of two magnons in the bound
states [2].

C. Two-magnon separation

One of the major features of bound states is the spatial
proximity of magnons in the bound states, so we also discuss
the separations of the two magnons in the bound states as a
supplement to the SEE analysis. The separation is defined as
the average distance between two magnons with the periodic
boundary condition in different dimensions,

dα =
∑
r1,r2

min(|rα
2 − rα

1 |, Lα − |rα
2 − rα

1 |)ψ (r1, r2)2, (6)

where Lα is the length of the lattice in the α direction. The
separation in 2D and 3D square lattices is the simple sum of
dα ,

d =
∑

α

dα. (7)

This separation can be interpreted as the minimum number
of bonds to connect the two magnons. For bound states, the
separation is convergent, while for two free magnons, the
separation increases with the system size. When the bound
state is merging into the continuum, its oscillating decon-
finement crossover is also embodied in the oscillation of the
separation [2].

We have shown that the intercept of the SEE of a 1D bound
state has a relation to the two-magnon separation [2],

D = d ln d − (d − 1) ln(d − 1). (8)

The increasing of the SEE with the separation d implies
that the larger the separation is, the more entangled the
two magnons are. As a particle physics analog, it could be
attributed to the confinement of the bound states. In the con-
tinuum limit, Eq. (8) will approach ln d + 1.

III. TWO-DIMENSIONAL SQUARE LATTICES

We begin with the 2D square lattice. The energy spectra
of two-magnon excitations are shown in Fig. 2(a). Below
the two-magnon continuum denoted by gray shaded regions,
there are two branches of two-magnon bound states, denoted
by different colored lines. To distinguish the bound states,
we calculate the pair correlation spectra of magnons along
different bonds, and the results are presented in Fig. 2(b) for
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(a) (b) (c)

FIG. 2. (a) Energy spectra of two-magnon excitations in the 2D square lattice with system size L×L = 80×80. The two-magnon continuum
is denoted by the gray shading, and the two-magnon bound states are denoted by the colored lines. Magnon pair correlation spectra (b) Px (ω, k)
and (c) Py(ω, k) for the two-magnon excitations in a 2D square lattice.

Px and Fig. 2(c) for Py. The bound states with highest spectral
intensities locate in the BZ corner (π, π ), where the two
branches are degenerate [8]. Then, the bound states disperse
down to the BZ center with gradually decreasing spectral in-
tensities. From (π, π ) to (0,0), both branches of bound states
have the same spectral weights in both the Px and Py spectra.
The higher-energy branch enters directly into the continuum at
about (4π/5, 4π/5), which is in agree with the threshold point
(2 arccos(4/π − 1), 2 arccos(4/π − 1)) at which the branch
merges with the continuum in the thermodynamic limit [8],
and then spreads its spectral weight rapidly by transferring it
into the continuum. This suggests that the bound states are
damped or deconfined when immersed in the continuum. The
lower branch appears to extend to zero energy and clings to
the lower boundary of the continuum [8]. However, the bound
states are found to be dissolved at about (π/2, π/2) in the
calculations with system size L×L = 80×80, which is caused
by the finite-size effect. Along another path from (π, π ) to
(π, 0), the two branches behave quite differently at the BZ
edge. The higher-energy branch of bound states has higher
intensities in the Py spectra, while the lower-energy branch
has higher intensities in the Px spectra. Furthermore, the
higher-energy branch clings to the bottom of the continuum
until (π, 0) and then becomes immersed in it. After the (π, 0)
point and along the path from (π, 0) to (0,0), the lower branch
contributes intensities in both the Px and Py spectra and is
always situated below the continuum.

To quantitatively identify these bound states, we calculate
their SEE according to Eq. (4). For a system of size L×L, the
SEEs of both the bound states and continuum are verified to
satisfy the logarithmic relation with respect to system size:

Sbound = 2 ln L + D (9)

for the bound states and

Scontinuum = 4 ln L + D (10)

for the continuum. The intercept D, as a correction to the
ln L scaling, is due to the many-body interactions between
magnons. The intercepts of the continuum in Eq. (10) are
mostly around −1 because of the indistinguishability and co-
herence of the magnons [2]. On the other hand, the intercepts
of the bound states in Eq. (9) can be used to characterize the
confinement of the bound states by examining their relation to
the two-magnon separation [2]. The calculated results for this

relation are illustrated in Fig. 3(a), where the colored lines de-
note the results for the bound states labeled by the same color
in Fig. 2(a). The bound states denoted by both the red and pur-
ple lines approach the asymptote scaling relation 2 ln d + 1.3
with the increase of the separation d; 2 ln d + 1.3 can be
explained as ln S + const, where S ∝ d2 is the area enclosing
the two magnons. Therefore, the 2D bound states are different
from 1D bound states, which can be simply pictured as being
bound by a string, and the more rapid divergence of the SEE
implies more unstable bound states in two dimensions. In
short, the term 2 ln d indicates that these bound states have
a 2D character. From Fig. 2, one can see that the bound state
denoted by the blue line extends to only a limited momentum
space near (π, π ) along the diagonal direction before it enters
the continuum. Therefore, we can calculate the separation d
for only a limited range to approach the asymptotic behav-
ior. Nevertheless, from its tendency shown in Fig. 3(a) and
the close-up in the inset, it is expected to approach 2 ln d +
1.3. Thus, we have shown that, among the four branches of

FIG. 3. (a) Intercept-separation relations of the bound states in
the 2D square lattice. The colors are in line with those in Fig. 2(a).
The inset is a zoom-in image in the range of d = (1.0, 1.2). The
intercept of the SEE and the two-magnon separation in the bound
states are independent of system size, so they are calculated in an
L×L = 80×80 lattice. (b) Scaling of the SEE of the immersed bound
state at (4π/5, 4π/5). For the determination of the immersed bound
state, see the text. The red line indicates the oscillating SEE, and
the blue line indicates the oscillating two-magnon separations of
the immersed bound state. The lowest state is the branch of the
bound state with the lowest energy, which is preserved below the
continuum, and the second-lowest state is the state at the bottom of
the continuum. The gray lines are the reference lines.

024407-4



TWO-MAGNON BOUND STATES AND THEIR OSCILLATING … PHYSICAL REVIEW B 108, 024407 (2023)

two-magnon bound states, the three branches denoted by the
red, purple, and blue lines exhibit 2D character. For the fourth
branch, we suggest that this bound state (denoted by the green
line) will behave as a 1D bound state based on the magnon
pair correlation spectra presented in Fig. 2(a). This spectral
analysis is verified by the SEE calculation. Figure 3(a) shows
that the intercept of the SEE follows exactly the relation
D = d ln d − (d − 1) ln(d − 1), which is in agreement with
that in the 1D ferromagnetic chain. Moreover, the presence
of nonzero separations only in the y direction also indicates
that the states are bound only in the y direction. Therefore,
we conclude that only the bound states along the BZ edge,
i.e., from (π, π ) to (π, 0) [see Fig. 1(b)], are 1D bound states,
although they are in 2D lattices.

We also note that the intercept of the bound states denoted
by the purple line seems to tend to ln d + 1, which is the con-
tinuum limit of D = d ln d − (d − 1) ln(d − 1), when along
the BZ edge from (π, π ) to (π, 0), as shown for d < 2 in
Fig. 3(a). We find that their separation are nonzero in both
directions, and especially, those in the x direction are exact,
dx = 1, so they have the highest intensities in Px and look like
1D bound states. However, the real 1D bound state denoted
by the green line has separation in only one direction with
dx = 0; that is, the two magnons are bound in one dimensions.
Furthermore, as the separation in the y direction increases
gradually, it deviates from the exact relation D = d ln d −
(d − 1) ln(d − 1). Then, when turning to the BZ center after
(π, 0), it approaches 2 ln d + 1.3 rapidly. Consequently, we
think that the bound states labeled with the purple line are
still 2D bound states but are just bound very tightly in the x
direction.

After identifying the bound states, we turn to study the fate
of the bound states immersed in the continuum. As shown in
Fig. 2(a), the bound states denoted by the blue line enter the
continuum rather than clinging to the continuum like others.
In this case, damping or deconfinement of the bound state is
expected when it enters the continuum at about (4π/5, 4π/5).
Since the immersed bound state hybridizes with the contin-
uum, it is difficult to identify this state using the usual analysis
based on the spectral function shown in Fig. 2(a). However,
in the SEE analysis, the prefactor of the natural logarithm
law scaling for the bound states is only half of the SEE of
continuum states, as shown by Eqs. (9) and (10). When the
bound states merge into the continuum, although the exact
ratio no longer holds, the immersed states will still have the
minimum SEE. So the state with the smallest SEE is identified
as the bound state immersed in the continuum. In Fig. 3(b), we
present our results for the scalings of three typical SEEs of the
two-magnon excitations at (4π/5, 4π/5), where the state im-
mersed in the continuum is determined above, the lowest state
is the bound state below the continuum with a gap [denoted
by the red line in Fig. 2(a)], and the second-lowest state is
at the bottom of the continuum. One can see that the SEE of
the lowest state has a standard 2 ln L + D scaling like that for
the bound states, and the second-lowest state has a 4 ln L + D
scaling like that for the two-magnon continuum. In contrast,
the SEE of the immersed state [shown by the red line in
Fig. 3(b)] does not agree with either 2 ln L + D or 4 ln L + D
and oscillates with the system size. Its behavior is similar
to that in the 1D ferromagnetic chain [2]. This oscillation

FIG. 4. Energy spectra of two-magnon excitations in the 3D
square lattice with system size L×L×L = 20×20×20. The two-
magnon continuum is denoted by the gray shading, and two-magnon
bound states are denoted by the colored lines.

indicates that the bound state cannot be considered conven-
tionally to be preserved as a quasiparticle with damping or
deconfined into two individual magnons after encountering
the continuum. Obviously, the two magnons confined as a
bound state will experience an oscillating crossover before be-
ing deconfined. Accordingly, the separation of two magnons
in the immersed bound state also exhibits an oscillation, as
shown by the blue line in Fig. 3(b). The oscillation of the
two-magnon separation also characterizes the deconfinement
crossover [2]. Moreover, the fact that the separation does not
approach d = L/2, which is the average distance between two
free magnons, indicates that the immersed state is not yet
deconfined completely. It is also noted that the SEE oscillation
seems to fade away when L > 80. Given that the oscillation
of the two-magnon separation is still severe when L > 80, it
is reasonable that the oscillation of the SEEs merely meets
the node at about L = 85. Therefore, we show that the bound
state will undergo an oscillating crossover from a confined
state to a deconfined state when it enters the two-magnon
continuum.

IV. THREE-DIMENSIONAL SQUARE LATTICES

The 3D square lattice and the corresponding BZ are shown
in Figs. 1(c) and 1(d), respectively. In Fig. 4, we show the
energy spectra of two-magnon excitations in the 3D square
lattice. As the magnon-magnon interactions in the high-
dimensional system are not as prominent as in the 1D system,
the bound states in fact assemble around the BZ corner in
3D square lattices [7,8,17]. There are three branches of bound
states since the magnons can form pairs along three different
bonds, and the three branches are degenerate at the BZ corner
(π, π, π ) [8]. Along the path from (π, π, π ) to (0,0,0), the
branch with the lowest energy clings to the continuum until
it cannot be identified from the spectra, and the other two
degenerate branches disperse from (π, π, π ) and then enter
the continuum directly. Along the edge from (π, π, π ) to
(π, π, 0), the lowest two branches are degenerate, and the
other branch, shown by the green line in Fig. 4, clings to
the continuum and then enters it at (π, π, 0). When turning
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(b) (c)(a)

FIG. 5. Magnon pair correlation spectra in the 3D square lattice with system size L×L×L = 18×18×18: (a) Px (ω, k), (b) Py(ω, k), and
(c) Pz(ω, k).

to (π, 0, 0) from (π, π, 0), the degeneracy of the lowest two
branches is lifted. At the surface from (π, π, π ) to (π, 0, 0),
all three branches are nondegenerate, although the two lower
branches are very close. Among these three branches, after
dispersing from (π, π, π ) the highest branch enters the con-
tinuum soon and then cannot be identified.

Now that we have discussed the dispersions of the bound
states, let us examine the properties of the three branches of
bound states based on the magnon pair correlation spectra.
The results are presented in Figs. 5(a)–5(c) for Px, Py, and
Pz, respectively. Similar to those in the 2D case, the bound
states with the highest spectral intensities locate at the BZ
corner (π, π, π ). Along the diagonal path from (π, π, π )
to (0,0,0), one can identify a branch with high intensities;
then it enters the continuum and dissipates with only a hint
of the original state. From the dispersion relation shown in
Fig. 4, we can ascribe this branch to the two degenerate bound
states with higher energy discussed above. These bound states
distribute their spectral weights equally in the Px, Py, and Pz

spectra. Along this diagonal path, the third branch as a whole
is not very easy to distinguish from the continuum due to
the limited lattice sizes we can treat, but we can still find it
near (π, π, π ), and it also displays an equal spectral weight
distribution among Px, Py, and Pz. Therefore, these bound
states along the diagonal direction of the BZ have the usual 3D
character. At the BZ surface from (π, π, π ) to (π, 0, 0), the
branch with the highest energies has intensities in only the Py

and Pz spectra, as shown in Figs. 5(b) and 5(c). So they seem
to be 2D bound states. Along the BZ edge from (π, π, π )
to (π, π, 0), the two lower-energy degenerate branches are
distributed in the Px and Py spectra, while, the highest-energy
branch exhibits intensities only in the Pz spectra. Hence, at the
BZ edge, the two lower-energy branches seem to be 2D bound
states, while the highest-energy branch consists of 1D bound
states.

As shown in the last section, different bound states have
different intercept-separation relations. So we examine the re-
lation like we did for the 2D system, and the results are shown
in Fig. 6(a). The lines and the markers denote the bound states,
with the colors and symbols corresponding to those shown in
Fig. 4. The separations of the bound states along the (π, π, π )
to (π, π, 0) direction denoted by the green line are nonzero
only in the z direction, and their intercept-separation relation
is in good agreement with D = d ln d − (d − 1) ln(d − 1). So
the SEE scaling analysis evidences that these bound states

at the BZ edge are 1D bound states. The bound states at
the BZ surface from (π, π, π ) to (π, 0, 0) denoted by the
blue line have nonzero separations in the y and z directions.
Their intercept-separation relation, as shown by the blue line
in Fig. 6(a), approaches 2 ln d + 1.3, which is the relation
for 2D bound states. Therefore, these bound states at the BZ
surface are 2D bound states. The bound states from (π, π, π )
to (0,0,0) denoted by the red line are definitely 3D bound
states with separations dx = dy = dz. Because of the limited
computing power, there are only two states to simulate the
relation, which is about 2.7 ln d + 1.4. Although this relation
approximates the intercept-separation relation for 3D bound
states, it is, in fact, hard to determine the exact relation due
to the limitation of the computing capacity. The bound states
at the BZ edge from (π, π, π ) to (π, π, 0) denoted by the
red line have the exact relation dx + dy = 1 for the separation
of two magnons in the x and y directions and a dz increasing
from zero. So they have a tendency toward ln d + 1 but deviate
from it when turning to (π, 0, 0), as shown by the red pluses
in Fig. 6(a). In addition to the 2D bound states with higher
energies at the BZ surface from (π, π, π ) to (π, 0, 0) denoted
by the blue line, the lower-energy bound states denoted by the
red line have exact separation in the x direction, dx = 1. So
their relations appear to be 2D bound states with a tendency

2nd Lowest

Lowest

Immersed

(a) (b)

FIG. 6. (a) Intercept-separation relations of the bound states in
the 3D square lattice. The lines and the markers are in line with the
corresponding bound states in Fig. 4. (b) Scaling of the SEE of the
immersed bound state at (π, 4π/5, 4π/5). The red line indicates the
oscillating SEE, and the blue line indicates the oscillating separations
of the immersed bound state. The lowest and second-lowest states
are the other two branches of the bound states with the lowest and
second-lowest energies, which are preserved below the continuum.
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toward 2 ln d + 1.3. Despite this, the bound states denoted by
the red line should be 3D bound states that are merely bound
too tightly in some directions. In addition, some individual
bound states, which are hard to simulate using the relation,
are shown as red and blue triangles in Fig. 6(a). In summary,
based on the combined analysis of the magnon pair correlation
spectra and the spin entanglement entropy, we elaborate that
the bound states denoted by the green line in Fig. 4 appear to
be 1D bound states, those denoted by the blue lines appear to
be 2D bound states, and those denoted by the red lines appear
to be 3D bound states. In summary, there are 1D bound states
at the BZ edge and 2D bound states at the BZ surface in the
3D lattice.

From the magnon pair correlation spectra shown in Fig. 4,
one can see that there are branches of bound states which will
eventually enter the continuum. They have higher energies
along the corresponding paths, denoted by the red marked
line along the (π, π, π ) to (0,0,0) direction, the green line
along the (π, π, π ) to (π, π, 0) direction, and the blue dashed
line along the (π, π, π ) to (π, 0, 0) direction. Due to the
addition of one more dimension, the identification of the posi-
tion where the bound states are immersed becomes much less
possible except at some special k points. Therefore, to check
the deconfinement transition of the immersed bound states, we
will choose the immersed bound state at (π, 4π/5, 4π/5) as
an example. At (π, 4π/5, 4π/5), the higher-energy branch of
bound states begins to encounter the continuum and exhibits
diffusive intensities. We calculate the SEE and the separation
of two magnons with a 4×L×L system, and the results are
shown in Fig. 6(b). The red line denotes the result for the
immersed bound state, while the dashed orange lines label
the two branches with the lowest and second-lowest energies
at the same k, and the blue line denotes the separation of
the two magnons in the immersed state. The SEEs of the
bound states with the lowest and second-lowest energies are
the standard 2 ln L + D of bound states. The SEE of the im-
mersed bound state shows the characteristic oscillation with
L. Correspondingly, the two-magnon separation also shows an
oscillation. Therefore, the deconfinement of the bound states
in 3D systems also has to experience the oscillating crossover.

V. DISCUSSION AND CONCLUSION

Two-magnon bound states involve the motion of two
magnons but act as a single emergent entity. The spin en-
tanglement entropy analysis illustrates that the two magnons
are confined in the bound state by unveiling the fact that
the intercept of the SEE increases monotonically with the
separation between magnons [2]. It is known that bound
states are expected to decay when encountering the inevitable
continuum of magnons. From the spectral perspective, this
decay is signaled by the suppressed quasiparticle peak and the
increased full width at half maximum. However, with the help
of the SEE, we were able to analyze the process of the decon-
finement quantitatively. The SEE study revealed an unusual
oscillating crossover rather than a transition with a critical
point for the bound states immersed in the two-magnon con-
tinuum. The oscillation indicates that the deconfinement of
the bound states is such a complicated process that it deserves
further investigation. Moreover, the oscillating deconfinement

crossover is probably not a feature exclusive to magnon
bound states. In the ferromagnetic Luttinger liquid of edge
states in graphene, magnons have been shown to deconfine
into spinons in the Stoner continuum [3]. As we show in
Appendix B, the SEE and the two-spinon separation of the
immersed mode at π/24, which is near the Goldstone mode,
also exhibit a similar oscillation with a system size up to
lattice size N ∼ 4800. So the deconfinement of a magnon into
two spinons in the ferromagnetic edge states of graphene also
experiences an oscillating process when the spin-flip excita-
tions deviate from the Goldstone mode. Another possibility
is related to the phenomenon of the anomalous spectra of
high-energy magnon excitations at certain k points observed
in quantum antiferromagnetic magnets [35–47]. A possible
explanation for the anomalies is partial deconfinement of
magnons when they are coupled to the two-spinon continuum
[36,48–60]. We expect that this kind of deconfinement of
magnons into spinons will experience a similar oscillating
crossover. Since all the current calculations are carried out on
systems with a finite size, it is hard to exclude the possibility
that the oscillating deconfinement crossover results from the
finite-size effect. However, in most cases, the oscillations are
not weakened and are even enhanced with the increase of the
system size. Especially in the 1D chain [2], the oscillations
are distinctly enhanced even when the chain length N > 2000.
This behavior can hardly be ascribed to a simple finite-size
effect which should vanish asymptotically as the system size
increases. Thus, even if the oscillation is forbidden in the ther-
modynamic limit, it should be observed in a nanosize system
with thousands of sites. Recently, ultracold atoms offered an
ideal setting in which to find magnon bound states by tracking
the spin dynamics with single-spin and single-site resolution
[61,62]. It was implied that the deconfinement oscillations
could be detected in such experiments and adapted to possi-
ble applications. Admittedly, as an unusual phenomenon, the
oscillating crossover of the deconfinement of magnon bound
states remains to be verified in the thermodynamic limit in the
future.

In conclusion, we studied the properties and deconfinement
crossover of the two-magnon bound states in 2D and 3D
square lattices based on a combined analysis of the magnon
pair correlation spectra and the spin entanglement entropy.
There are two and three branches of bound states in 2D and
3D lattices, respectively. The SEE of bound states in one
dimension is related to the separations between magnons as
D = ln d + 1. The two magnons appear to be bound by a
string along the one dimension. In two dimensions, the SEE
of bound states turns out to be related to the area enclosing
the two magnons, so the relation involves a square of sepa-
rations as D = ln d2 + const, where d2 stems from the area
enclosing the magnons. It seems that 2D bound states are not
as simple as those in one dimension, which can be pictured as
being bound by a string. In this case, we may guess that the
3D bound states are related to the volume of two magnons.
Unfortunately, we did not achieve D = ln d3 + const for 3D
bound states to prove this speculation. However, the coeffi-
cient of 2.7 in the relation D = 2.7 ln d + 1.4 suggests that
the bound states in three dimensions are complicated, and
the enlargement implies that the bound states become more
fragile in high dimensions. On the other hand, with the SEE
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analysis, we verified that even in the high-dimensional lattices
some magnons tend to be bound only in certain directions,
such as the BZ edges and surfaces. Although the attraction
between magnons in high dimensions is not as efficient as that
in one dimension, there are still special 1D bound states at the
BZ edges and 2D bound states at the BZ surface around the
BZ corner that are preserved from being deconfined into indi-
vidual magnons. The intercept of the SEE for the 1D bound
states at the BZ edges satisfies the exact relation with the
separation d of two magnons D = d ln d − (d − 1) ln(d − 1),
which is the same as that found in the case of a 1D chain [2],
and that for the 2D bound states at the BZ surface satisfies
D = 2 ln d + const. These bound states exist in certain mo-
mentum regions and will dissolve in the continuum. Different
from the 1D case, the higher-energy branches of magnons
will enter the continuum rather than cling to the continuum.
We showed that the intercept of their SEE and the magnon
separation exhibits an oscillation with the system size when
entering the continuum. So these immersed bound states are
neither preserved nor deconfined completely when entering
the continuum and experience the oscillating deconfinement
crossover. The oscillation behaviors were also shown in the
ferromagnetic edge states of graphene and in the 1D alterna-
tive ferromagnetic chain [2]. Therefore, we suggest that the
oscillating deconfinement of collective modes immersed in a
many-particle continuum could be a general property.
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APPENDIX A: EXACT DIAGONALIZATION
WITH THE MOMENTUM BASIS

Since the translation symmetry is present, the system can
be divided according to the eigenstates of the translation op-
erator T ,

T |ak〉 = eik|ak〉, (A1)

where |ak〉 can be constructed using a reference state and all
its translations,

|ak〉 = 1√
Na

L∑
r=1

eikrT r |a〉,

where T L = 1 is the periodic boundary condition and Na is
the normalization constant. Since the periodicity of the state
|a〉 may be less than L,

T La |a〉 = |a〉.
Then the normalization constant Na = N2/La.

It is then clear that the momentum states are orthogonal,
and we can construct the Hamiltonian matrix in the basis

with momentum states referring to momentum k. The matrix
elements of the Hamiltonian read

〈bk|H |ak〉 = 〈b|H |a〉e−ikl

√
Nb

Na
, (A2)

where l satisfies H |a〉 ∝ T −l |b〉.
To calculate the excitations in the space with two spin flips,

the reference state is chosen to be |a〉 = |r1, r2〉 = S−
r1

S−
r2
|F 〉,

with |F 〉 being the ferromagnetic ground state as defined in
the main text. Then the eigenstate of the excitations reads

|tk〉 = 1√
Na

∑
r1.r2,r

φk (r1, r2)eikrT r |r1, r2〉, (A3)

where φk (r1, r2) is the eigenvector of the matrix of the Hamil-
tonian (A2).

APPENDIX B: OSCILLATING DECONFINEMENT
CROSSOVER OF THE MAGNONS IN FERROMAGNETIC

EDGE STATES OF GRAPHENE

In Ref. [3], we studied the spin excitations of the ferro-
magnetic edge states of graphene. Different from traditional
magnets, the well-defined magnons are absent, and the spin
excitation spectra exhibit an entire continuum. An SEE anal-
ysis showed that the magnons were deconfined into spinons
in the Stoner continuum except for the zero-energy Goldstone
mode. The immersed magnons can be identified by the broad
peaks in the SEE spectra in Fig. 3 of Ref. [3]. When carefully
examining these modes, one will find an unusual oscillation in
the SEE as a function of momentum near the Goldstone mode
in Fig. 3(c) of Ref. [3]. To check this observation, we study
the SEE of the mode at momentum π/24, and the numerical
results are shown in Fig. 7. The oscillations of the SEE and
the two-spinon separation show that the deconfinement of the
magnons also has to experience an oscillating crossover.

FIG. 7. Scaling of the SEE of the immersed mode at π/24 in
the ferromagnetic edge states of graphene. The red line indicates the
oscillating SEE, and the blue line indicates the oscillating separation
between the particle and hole in the mode. The gray line denotes the
divergent SEE for magnons.
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