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Exact solution of the boundary-dissipated transverse field Ising model:
Structure of the Liouvillian spectrum and dynamical duality
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We study the boundary-dissipated transverse field Ising model described by a Lindblad master equation and
exactly solve its Liouvillian spectrum in the whole parameter space. By mapping the Liouvillian into a Su-
Schrieffer-Heeger model with imaginary boundary potentials under a parity constraint, we solve the rapidity
spectrum analytically and thus construct the Liouvillian spectrum strictly with a parity constraint condition. Our
results demonstrate that the Liouvillian spectrum displays four different structures, which are characterized by
different numbers of segments. By analyzing the properties of rapidity spectrum, we can determine the phase
boundaries between different spectrum structures analytically and prove the Liouvillian gap fulfilling a duality
relation in the weak and strong dissipation region. Furthermore, we unveil the existence of a dynamical duality,
i.e., the long-time relaxation dynamics exhibits almost the same dynamical behavior in the weak and strong
dissipation region as long as the duality relation holds true.
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I. INTRODUCTION

Advances in quantum engineering of dissipation in labo-
ratory have attracted a growing interest in the study of open
quantum systems in engineered condensed matter systems
[1-3], among which a particularly important class is the
boundary-driven system, where the system is coupled to the
environment only at the boundaries. Within the Markovian
approximation, the dynamic evolution process of a boundary-
driven quantum system is governed by the Lindblad master
equation [4] with the influence of environment described
by boundary dissipation operators. Understanding dynamical
processes driven by boundary dissipations have attracted in-
tensive theoretical studies [5-17].

As a paradigmatic system exhibiting quantum phase tran-
sition, the transverse field Ising model is exactly solvable and
has been well studied in the past decades [18-22]. However,
much less is understood for the corresponding boundary-
dissipation-driven model. Recently, exactly solvable dissi-
pative models have attracted many interests [9—12,23-26].
Usually, the solvability of these models mainly relies on
free-fermion (boson) techniques or Bethe-ansatz method. One
specific class that has been widely studied is the open quan-
tum systems with quadratic Lindbladian, which can be solved
by third quantization [7-12]. Although the third quantization
method can reduce the problem of solving quadratic Lind-
bladian to the diagonalization of a non-Hermitian matrix,
analytical solutions are still limited except for some specific
cases or for a special set of parameters [11-13]. The cal-
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culation of full Liouvillian spectrum and understanding the
spectrum structure in the whole parameter space is still a
challenging work.

In this work, we shall present an exact solution to a
transverse field Ising chain with boundary dissipations in the
whole parameter space and construct the Liouvillian spectrum
from the rapidity spectrum under the constraint of parity. By
vectorizing the density matrix, solving the Lindblad master
equation with boundary dissipation can be mapped to the
solution of the Su-Schrieffer-Heeger (SSH) model with imag-
inary boundary potentials [27], which enables us to obtain
analytical results of the rapidity spectrums. We stress that
the Liouvillian spectrum can be constructed correctly only
when the constraint of parity is properly taken into account.
Focusing on the case with equal boundary dissipations, we
demonstrate that the Liouvillian spectrum displays four dif-
ferent structures in the whole parameter space. We unveil that
the different structures of the Liouvillian spectrum are deter-
mined by number of the complex solutions of equation for
solving eigenvalues of the odd-parity rapidity spectrum. The
boundaries between different regions can be analytically de-
termined via a theoretical analysis in the thermodynamical
limit. Furthermore, we prove that the Liouvillian gap fulfills a
dual relation in the weak and strong dissipation region and
uncover the existence of a dynamical duality of the relax-
ation dynamics. Our work demonstrates novel phenomena of
dynamical duality from the perspective of an exact solution
and provides a firm ground for understanding structure of
Liouvillian spectrum [24,28].

The paper is organized as follows. In Sec. II, we rigorously
establish the mapping relation between the model and the
non-Hermitian matrices associated with parity and emphasize
the importance of both even and odd parity. In Sec. III, we
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solve the rapidity spectrum analytically and construct the Li-
ouvillian spectrum via the rapidity spectrum under the parity
constraint. Focusing on the case with equal boundary dissipa-
tion strengthes, we demonstrate that the Liouvillian spectrum
has four different structures. In Sec. IV, we investigate the
Liouvillian gap and the relaxation dynamics and unveil the
existence of a dynamical duality. A summary is given in
Sec. V.

II. MODEL AND FORMALISM

We consider the boundary-dissipated open system with
the time evolution of the density matrix p described by the
Lindblad equation:

d 1 .
d—f = LIp] == —i[H.pl + ) (LupLL — 5Ly, p}>,
"
8

where we have set /i = 1, and H is the Hamiltonian governing
the unitary part of dynamics of the system described by a
transverse field Ising chain [19,21]:

N
:42 ot — Za;. )
j=1

Here N is the total number of lattice sites and o} (j =
1,...,N,a =x,y, z) are Pauli matrices at per site. The dis-
sipative processes are described by the Lindblad operators L,
with the index u denoting the dissipation channels. Here we
consider that the dissipations appear at left and right edges,
ie.,

Ly = /yLor, Lg = ./vroy, 3)

where y;, yg = 0 denote the boundary dissipation strengths.
Here we take y;, = yg = y and set J = 1 as the energy units.
The Liouvillian £ is a superoperator acting in the space of
density matrix operators.
By using the Choi-Jamiolkwski isomorphism [29-33], the
density matrix is mapped into a vector:

P =2 pulmnl = 1p) =" pulm) ® n),

mn mn

and thus the Liouvillian can be expressed by the 4V x 4V
matrix,

LZI(1QH"—-H®1)
1
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which gives rise to

N
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By using the Jordan-Wigner transformation [13],
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it follows that the Liouvillian £ can be represented as
N-1
L=—h Z(a,b +a;bj)+J Y (bjajii +bjia;)

Jj=1 Jj=1

+ iP(yLbiar + yrbyay) — (1L + vr), @)
where a;, b;, a;, and b ; are Majorana fermion operators. Here
P is the parity operator defined as

N N
[T |TT= | ®)
j=1 j=1

The eigenvalue of the parity operator P takes a specific value
with P = +1. It can be checked [£, P] = 0. When P = —1,
the Liouvillian £ is in the operator space with odd parity,
whereas P = 1 corresponds to the operator space with even
parity. We notice that the parity operator P gives a strong
constraint on the mapping between the spin Hilbert space
and the fermionic Hilbert space. Because the total degrees
of freedom of the Liouvillian with odd parity £|p—_; and
even parity £|p_; is twice as the degrees of freedom of the
Liouvillian £, this gives rise to redundant degrees of freedom.
To eliminate the redundant degrees of freedom, we apply the
projection and the mapping relation as follows:

L=PLO|poiPT + P L |p P, )
where the projectors are defined as
*=1a+P). (10)

For convenience, we use the creation operator and the
annihilation operator of fermions, defined as

. _ 1
aj=cyj-1+cy 4, bj= T(CZj—l - C;j_]), (1)

1
aj =)+ b= (05—}, (12)

to rewrite the Liouvillian as

N-1

£P =2i hZ(czj 1027 + He) +7 ) (¢} icaj41 + Hee)
j=1 Jj=1

1 1
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= 2ic'T e + y(P — 1), (13)
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where the spinors are denoted as ch = (CT, ...,c;N), c=
(c1,...,con)T, and TP is represented in terms of a 2N x 2N
non-Hermitian matrix as follows:

Piyy h 0
h 0o J
J 0
T" = L .14
.0 h
0 Y

In terms of fermion operator, the parity operator is repre-
sented as P = (—1)" with Ny = Zfﬁl cjc j being the total
complex fermion number operator. The parity of the Liouvil-
lian £ corresponds to the total number of complex fermions
being even or odd, with P = 1 and —1 corresponding to the
even and odd parity, respectively. For the case with y;, = yg =

y, the Liouvillian with a specific parity is written as
£F =2ic"TPe+y(P - 1), (15)

where T” is given by

Piy h 0
|
1 0 -
TP = . - 316
.0 h
0 cee e h iy

Here we have set J = 1. It is clear that T” describes a
non-Hermitian SSH model [34] with imaginary boundary po-
tentials [13,27,35].

By using the eigen-decomposition TP =
Zilzlej’p“yj’P)(q)]‘ﬁpL we can get the diagonal form of
the Liouvillian:

2N
£r=2i ZE,,PEj,Pd,,P +y(P-1), a17)

Jj=1

where dj,p = leivl gj’p,,'C[ and Ej,p = lelzvl Ej,p,[cj»-. The pa-
rameters &;p; and ¢;p; are the ith element of |¥;p) and
(@ pl, respectively. Here we take the Bogoliubov modes as
dj.p, d j,p) instead of (d; p, d; p)» which satisfy the canonical
anticommutation relations [36,37]

{dip,djp}=38;;,
{djp,dyp}={d;p,d;p}=0.

According to Eq. (9), the eigenstates of the Liouvillian £
comes from two parts which contain all occupied states of
even complex fermions from £f|p—; and of odd complex
fermions from £F|p__;. Thus, we can get the full eigenstates
and the spectrum of Liouvillian £ by the reorganizations of
the rapidity spectrum of £F|p_; and LF|p—_;.

III. STRUCTURE OF LIOUVILLIAN SPECTRUM

The full spectrum of Liouvillian £ can be obtained by
reorganizing the rapidity spectrum of £”|p—; and LF|p__i,
which can be analytically derived by solving the eigenvalues
of T?, i.e.,

TP Wp = EpWp, (18)

where Wp denotes the eigenvector corresponding to the eigen-
value Ep (the rapidity spectrum). We can exactly solve the
eigenvalues by applying the analytical method in Ref. [38]. In
terms of the parameter 6, the eigenvalue can be represented as

Ep = £+/1 + h% 4+ 2hcos6. (19)

The value of 6 is determined by the boundary equations [38],
which leads to the following equation (the details are shown
in Appendix A):

p1SIin[NO] — p, sin[(N + 1)8] + p3sin[(N — 1)0] = 0,
(20)

where p; =i(P+ 1)yEp — (1 — Py?), po=h, and p; =
hPy?.

By solving Eq. (20), we can obtain the value of 6; and thus
the rapidity spectrum. Explicitly, we rewrite Eq. (20) in even
channel (P = 1) and odd channel (P = —1) as

[2iyE, — (1 — y*)]sin[NO] — hsin[(N + 1)0]
+ hy?sin[(N — 1)8] = 0, (1)
and
(14 y2)sin[NO] + hsin[(N + 1)0]
+ hy?sin[(N — 1)0] = 0, (22)

respectively. For convenience, we denote the solutions of
Eq. (21) as 6, and of Eq. (22) as 6,, respectively. Substituting
them into the formula of eigenvalue in Eq. (19), we can get the
rapidity spectrum, denoted as E;, and E;, which are eigen-
values of T¢ and T, respectively, with j=1,...,2N. By
considering the constraint of the parity operator and Eq. (9),
the full spectrum of the Liouvillian £ can be exactly expressed
as

. 2i Y v eEje (j.e =0, 1), o3

2330 v =2y (v, =0,1),

where Zfﬁl v is even and Zfﬁl v;, is odd. The constraint
on the total complex fermion number removes the redundant
degrees of freedom.

In Fig. 1 we demonstrate the Liouvillian spectrum and the
corresponding rapidity spectrum for four typical cases. The
rapidity spectrum is obtained by numerically solving Egs. (21)
and (22) and thus the Liouvillian spectrum is obtained from
Eq. (23). The Liouvillian spectrum displays different struc-
tures in the four parameter regions, as schematically displayed
in Fig. 2. We have checked our Liouvillian spectra by com-
paring with the numerical results via the diagonalization of
Liouvillian and find that they agree exactly.

We observe that the Liouvillian spectrums from the odd
channel present distinct stripes and from the even channel are
scattered near these stripes, as shown in Figs. 1(al)-1(a4). For
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FIG. 1. The Liouvillian spectrum and the rapidity spectrum with N = 6, and (al, bl) A = 0.3,y = 0.2, and (a2, b2) h =3,y = 0.2, and
(a3,b3) h =3,y =5, and (a4, b4) h = 3, y = 8. The red points represent the Liouvillian spectrum of odd channel with P = —1, while the
blue ones represent that of even channel with P = 1. The Liouvillian spectrum in panels (al, a2, a3, a4) can be constructed by the rapidity
spectrum in panels (b1, b2, b3, b4), respectively. The eigenvalues of Liouvillian spectrum in panels (al, a2, a3, a4) satisfy %i[A] < O and the
data of Liouvillian spectrum are consistent with ones by exact diagonalization. The red points in (b1, b2, b3, b4) represent the rapidity spectrum
from odd channel and the blue empty prisms represent the rapidity spectrum from even channel.

convenience, we call one stripe and points surrounding this
stripe as one segment. The distance between each segment is
determined by the imaginary part of rapidity spectrum of the
odd channel, and the width of the segments is determined by
the imaginary part of rapidity spectrum of the even channel
close to the real axis. The number of segments is closely
related to number of complex solutions of the rapidity spec-
trum of the odd channel, which correspond to the boundary
bound states of 7° [27]. Since T° fulfills &7 (parity and
time-reversal) symmetry, solutions of Eq. (22) are either real

Nine—segment

1.5
h/J

1.0 2.0 2.5 3.0

FIG. 2. The schematic phase diagram for the structure of the
Liouvillian spectrum. The green dashed lines denote the bound-
aries between different regions with different number of eigenvalue
segments.

or occur in complex conjugated pairs. In the &7 -symmetry
region of 4 > 1 and y < 1, all N solutions of Eq. (22) are
real. The corresponding rapidity spectrum has no pure imag-
inary eigenvalues, and the Liouvillian spectrum displays a
structure composed of one segment. In the region of & < 1,
the odd rapidity spectrum has one pair of purely imaginary
eigenvalues [see Fig. 1(bl) and Figs. 3(al) and 3(b1)], and
the Liouvillian spectrum is composed of three segments. For
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FIG. 3. The rapidity spectrum from the odd channel. The red
lines denotes the nonreal roots and green dash lines indicate the
boundaries of regions with different complex solutions. We set the
parameters with (al, bl) N = 100, y = 0.2, (a2, b2) N =100, y =
5, and (a3, b3) N = 100, h = 3.
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h > "L—” and y > 1, the odd rapidity spectrum has two con-

jugated pairs of complex eigenvalues which are symmetrical
about the imaginary axis [see Fig. 1(b3) and Figs. 3(a3) and
3(b3)], and the Liouvillian spectrum displays a structure of
five segments. For 4 = 3 and y = 8§, the odd rapidity spectrum
has two conjugated pairs of purely imaginary eigenvalues,
inducing that the Liouvillian spectrum presents a structure of
nine segments.

For the even channel, 7 fulfills the reflection symmetry
and K symmetry. The corresponding solutions of Eq. (21)
are complex and distribute symmetrically about the imaginary
axis (see Appendix A for details). As shown in Figs. 1(b1)—
1(b4), the rapidity spectrum from the even channel has a
one-to-one correspondence to the spectrum from the odd
channel. For the eigenvalues close to the real axis, their
imaginary part determines the width of the segments in the
Liouvillian spectrum. There also exist complex eigenvalues
farther away from the real axis, which are degenerate and
almost overlap with one (ones) of the corresponding com-
plex conjugated pairs (in the upper half-plane) from the odd
channel, as shown in Figs. 1(b1), 1(b3), and 1(b4). Similarly,
the number of segments is determined by the number of this
kind of complex solutions, which correspond to the boundary
bound states of 7°.

As shown in Fig. 2, different structures of Liouvillian
spectrum are characterized by different numbers of segments
in four regions. Boundaries of phases with different spec-
trum structures can be determined by boundaries of parameter
regions with different numbers of complex rapidity eigen-
values. To see it clearly, in Fig. 3, we show the change of
the odd-parity rapidity spectrum with the parameter / (by
fixing y = 0.2 and 5, respectively) and y (by fixing & = 3),
for the system N = 100. In the thermodynamic limit, we can
analytically determine the boundaries of regions with different
spectrum structures (the details are shown in Appendix B).
The odd-parity rapidity spectrum has one pair of pure imag-
inary eigenvalues in the region with # < 1, two pairs of pure
imaginary eigenvalues in the region with 7 > 1, y > 1 and

2
h > land y < 1, and two pairs of complex eigenvalues in the
1+V

1492 . . . . . .
h < +—]’: no pure imaginary eigenvalue in the region with

region with i > andy > 1.

As a companson we also demonstrate the even-channel
rapidity spectrum. To see clearly how the rapidity spectrum
changes with parameters, in Fig. 4, we show the change of
the even-parity rapidity spectrum with the parameter i (by
fixing y = 0.2 and 5, respectively) and y (by fixing & = 3),
for the system N = 100. Compared with the ones from the
odd-parity rapidity spectrum in Fig. 3, the real part of the
boundary bound states is the same as the ones of the odd-
parity rapidity spectrum and the imaginary part of them is only
half of the ones of the odd-parity rapidity spectrum. Here the
boundary bound states are doubly degenerate. It is shown that
the boundaries of different structures of Liouvillian spectrum
can be also obtained from the even-channel rapidity spectrum.

IV. LIOUVILLIAN GAP AND RELAXATION DYNAMICS

Next we discuss the Liouvillian gap A, which is given by
the eigenvalue with the largest nonzero real part, i.e., Ag :=

\W\ﬂ“ﬂW\”WHﬂW”WHWWWH o o |
:; mn||||||]l|||[||| I!||H|][|“H”Hm -0:1 l
% g::m|||{::{H}II”m|||||||||]|||||||[ ||||\||][||l|||||\|[||]|||||||||||||[[|]|||||||[ﬂﬂ % z'iﬁfi'
& . i ||||||||||l|||||||l||l|||||]l|]]|||||||[|][||’||||||||||[[|]||||”|l[ ) Z .......
|mﬁﬂmﬂﬂﬂl|||V|||||||||||||Il||]||i|||[||]1||\||[|||]|||||||||]|||\||]||ﬂ|||||||||l||ﬂ 4%
j]'||\||||||||||‘||][||3|||||||||]l||“|I[||]||||||l||]|||\||[|||l|||||||||]|||\||1||ﬂ|||||||||]|||1 N -

FIG. 4. The rapidity spectrum from the even channel. The red
lines denote the nonreal roots corresponding to the boundary bound
states and green dash lines indicate the boundaries of regions with
different complex solutions. We set the parameters with (al, bl) N =
100,/ =1,y =0.2, (a2, b2) N =100,J = 1,y =5, and (a3, b3)
N =100,/ =1,h=3.

—max R[A]|mpx20 [15,39]. Explicitly, the Liouvillian gap can
be represented as

A %[21( Ji.e + Ejz ‘-’)] (24)

where £, . and E}, , are two eigenvalues with minimum imag-
inary part in the rapidity spectrum from the even channel. As
shown in Figs. 1(b1)-1(b4), the eigenvalues always distribute
symmetrically about the imaginary axis, i.e., Ej, . = —E} ,,
due to the K symmetry. We note that the sum of E; , and
E;, . in Eq. (24) is due to the constraint of parity. If the
constraint is not properly accounted, then the Liouvillian gap
is underestimated and takes only half of the value of A,.

In the weak and strong dissipation limit, we can derive an
analytical expression for the Liouvillian gap by applying a
perturbative expansion in terms of the small parameter y or
1/y, which leads to

Agx yN~?
for y < 1 and

Ag XX —

for y > 1 (the details are shown in Appendix C). In the
thermodynamic limit, we can prove the Liouvillian gap fulfills

a dual relation
1
A, <—, h) , 25)
14

which holds true for arbitrary y and is irrelevant to & (see
Appendix D for the proof). From the dual relation, we can
conclude that the Liouvillian gap takes its maximum at y = 1
in the whole parameter region of h. As shown in Fig. 5,

Ag(y. h) =

024404-5
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FIG. 5. The Liouvillian gap with (a) J = 1, h = 0.3 and (b) J =
1,h=3.

our numerical results also confirms that the Liouvillian gap
increases with the increase of y in the regime of weak dissipa-
tion whereas decreases with the increase of y in the region of
strong dissipation. From the numerical results for system with
different sizes, it can be inferred that the inflection point is
at y = 1 when N tends to infinity, consistent with the duality
relation obtained in the thermodynamical limit.

The duality relation of Liouvillian gap also suggests
that the relaxation times in the weak (y < 1) and strong
dissipation regions (y’ = 1/y > 1) should be the same. Fur-
thermore, we find that the most of rapidity spectrum satisfies
the duality relation E(y) = E (%) in the thermodynamic limit
(see Appendix D), except of those corresponding to the bound
states, which contribute to the distance between segments of
Liouvillian spectrum. The existence of such a duality relation
means that the rightmost segment of Liouvillian spectrum (the
one close to the steady state) in the weak (y < 1) and strong
dissipation regions (y’ = 1/y > 1) are almost the same. So
we can predict that the system in the weak and strong regions
should display almost the same relaxation dynamics when the
evolution time enters the region dominated by the rightmost
segment, i.e., the existence of a dynamical duality in the weak
and strong dissipation regions.

To get an intuitive understanding, next we investigate the
dynamical behavior by calculating the time-dependent aver-
age magnetization denoted as

1 N
(mi (1)) = <ﬁ Zaﬁ(z)>. (26)
i=1

The initial state is assumed as |pg) and the vectorizing form
of the initial state is |pg) = vec(pp). Then the time-dependent
state can be denoted as |p(t)) = e“'|py), where the eigen-
expansion form of £ is performed as £ =Y, ;[ )(¥!].
Then, the average magnetization is rewritten as

(m* () = Trlm* ()] = (m*(1)] p(1))
= m O\ po), 27)

where (m?(t)| = [vec(m?(t)")]". Here, we choose the state
with all spin up as the initial state.

Because the Liouvillian of our model is quadratic form,
alternatively we can calculate the average magnetization by
using Lyapunov equation method [40] (see Appendix E),
which enable us to calculate the dynamics of systems with

1.0
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t

FIG. 6. The dynamical evolution of the average magnetization
with N = 100, (a) 2 = 0.3 and (b) h = 3.

large sizes. We calculate the time-dependent average magne-
tization in both the weak and strong dissipation regions. By
choosing the state with all spin up as the initial state, we
display the time evolution of the average magnetization for
various parameters in Fig. 6. It is shown that the relaxation
dynamics for systems with y = 0.2 and 5 are almost iden-
tical except in very short time. As the short-time dynamics
is mainly determined by the leftmost segment of Liouvillian
spectrum, whose center position is determined by the bound-
ary bound state, at the beginning time (m*(¢)) decays more
slowly for the case with y = 0.2 than that with y =35 as
shown in the left insets of Fig. 6.

V. SUMMARY

We have exactly solved the transverse field Ising model
with boundary dissipations described by the Lindblad master
equation. Under a parity constraint, the Liouvillian spectrum
is constructed strictly via the rapidity spectrum from both odd
and even channels. We find the Liouvillian spectrum display-
ing four different structures in the whole parameter space and
determine the phase boundaries of different structures ana-
lytically in the thermodynamical limit. Our analytical results
also unveil that the Liouvillian gap fulfills a duality relation
in the weak and strong dissipation region and the relaxation
dynamics also exhibits a dynamical duality.

Our analytical results unveil that the number of stripes is
closely related to the number of complex boundary states in
the odd-parity rapidity spectrum. Therefore, we expect that
the stripe structures are stable against perturbations. To verify

024404-6



EXACT SOLUTION OF THE BOUNDARY-DISSIPATED ...

PHYSICAL REVIEW B 108, 024404 (2023)

this, we introduce random onsite disorder perturbation in the
transverse field of Hamiltonian (2) and numerically calcu-
late the corresponding Liouvillian spectrum. Our numerical
results show that the stripe structures are stable even the per-
turbed disorder strength is about ten percent of the strength of
transverse field. It is also interesting to explore to what extent
the dynamical duality exists in other open systems in future
works.
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APPENDIX A: ANALYTICAL SOLUTION OF THE
RAPIDITY SPECTRUM

The full spectrum of Liouvillian £ can be obtained by
reorganizing the rapidity spectrum of £f|p—; and LF|p__,
which can be analytically derived by solving the eigenvalues
of the matrix T”. We consider the general case with J # 0 and
h # 0 and solve the eigenvalue equation

T Wp = EpWUp (A1)

by following the analytical method in Ref. [38], where we

denote Wp = (Y14, Y18, Y24, -, Yn.8) .
By substituting Eq. (14) into Eq. (A1), we get a series of
bulk equations

JYu-1y,8 +h¥np — Eppa =0,

hw-1.4 +IYna — EpYu-18 =0, (A2)
withn =2, ..., N, and the boundary equations given by
Piypyia+hynp — Epia =0,
hYya +1yrYN.e — EpYng = 0. (A3)

Due to the spatial translational property of bulk equations, we
set the ansatz of wave function |Wp) as follows:

Wp = (26, 2. Z°¢Par bp, - 2 pa, 2 )T
By substituting it into the bulk equations Eq. (A2), we obtain
Jhe? + (J2 + W — E})z+Jh = 0. (A5)

(A4)

For a given E; p, there are two solutions z;(z1, z2). According
to Vieta’s theorem, we can get two constraint equations of
them from Eq. (AS):

E3—J?— W

tn=—"—"——,
i1 T2 Th

The constraint condition of Eq. (A6) suggests that the solu-
tions can be represented as

2122 = 1. (A6)

i —i0

=€, m=e (AT)

In terms of the parameter 6, the eigenvalue can be represented
as

Ep = £vJ2 + h2 + 2Jhcosf. (A8)

The value of 6 shall be determined by the boundary equations.

Since the superposition of two linearly independent solu-
tions is also the solution of bulk equations, the general wave
function takes the form of

Y = 1285 + 822505, (A9)
Vg = 1210y + $27505 (A10)
where n=1,2,...,N. To solve the eigenvalue equa-

tion (Al), the general ansatz of wave function should also
satisfy the boundary conditions. Substituting Eqs. (A9) and
(A10) into Eq. (A3), we obtain

g1\ _ (A, N) Az, N)\(g\ _
MB(82> B (B(zl,N) B(ZZ,N)> <g2) =0, (Al

with
Pl)/L
A(z;,N) = J +hz)—J, (A12)
Ep
B(z, N) = lEﬁ(h Iz — I (A13)
P

The condition for the existence of nontrivial solutions of
(g1, &2) 1s determined by det[Mp] = 0 [38,41], which leads
to the following equation:

p1SIN[NO] — pa sin[(N + 1)8] + p3 sin[(N — 1)8] = 0,
(A14)

where p; =iJ(PyL + vr)Ep — J3 = JPYLYR), P2 = J?h,
and p3 = hPy.yg. By taking y;, = yr = y, we get Eq. (9) in
the main text. If 6 is a solution of the above equation, then it
is clear that —0 should be also a solution of the equation. As
both 6 and —6 correspond to the same eigenvalue Ep, we can
only consider one of them. Then, we can rewrite Eq. (A14) in
even channel (P = 1) and odd channel (P = —1) as

[2iyE, — (1 — ¥?)]sin[NO] — hsin[(N + 1)8]

+ hy?sin[(N — )] =0 (A15)
and

(1 + y?)sin[NO]+h sin[(N + 1)8] + hy? sin[(N — 1)0] =0,

(A16)
respectively.
We note T* fulfills K symmetry, i.e.,
n~' TPy = —(T"y, (A17)
where 7 is a diagonal matrix with the elements

[-1,1,—1,...,(=1)*]. The existence of K symmetry
implies that if E is an eigenvalue of 77, then —E* is also an
eigenvalue of 7%, i.e., both the even-parity and odd-parity
rapidity spectra should distribute symmetrically about the
imaginary axis. For convenience, we shall use 7¢ and T to
denote T* with P = 1 (even parity) and P = —1 (odd parity),
respectively.
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FIG. 7. The solutions of Eq. (21) and the rapidity spectrum with N = 6, (al,bl)J =1,h =03,y =0.2,(a2,b2)J =1,h =3,y =0.2,
(a3,b3)J =1,h =3,y =5,and (a4, b4) J = 1, h = 3, y = 8. The red empty circles represent the solutions of Eq. (21), while the red points

represent the rapidity spectrum from the even-parity channel.

For the even parity (P = 1), T is invariant under the re-
flection operation, i.e.,

PTP =T¢. (A18)

For the odd parity (P = —1), T° fulfills the &7 symmetry,
ie.,

(2T, T°1=0.

The existence of &7 symmetry suggests that the eigenvalues
of T are either real or distribute symmetrically about the
real axis, i.e., if E is an eigenvalue of 77, then E* is also an
eigenvalue of 7°.

For convenience, we denote the eigenvalues as EL(6) =
+/J2 4+ h2 + 2Jhcos 6, with R[VJ? + h2 + 2Jhcos6] > 0.
While the solutions of 6 are always complex for the
even-parity case, they can be real or complex for the odd-
parity case. According to the expression of E.(6), we have
EL(6) = EL(6%). If we assume that E, () is an eigenvalue
of T¢, then we can get E_(6*) is also the eigenvalue of T,
i.e., when 6 satisfies the Eq. (A15) with E, = E, then 6*
satisfies the Eq. (A15) with E, = E_. According to Eq. (A15),
we can see that —6* is also the solution of Eq. (A15) and
E_(—06*) = E_(0%). In the odd-parity channel, the matrix 7°
has 7T symmetry and K symmetry. We can get that when
E, (09)is an eigenvalue of T°, then E(6%), E_(0), E_(0) are
also the eigenvalues of 7°. So, when 6 satisfies Eq. (A16),
then 6* also satisfies Eq. (A16).

To see clearly how the solutions of 6 are related to the ra-
pidity spectrum, in Figs. 7 and 8 we demonstrate the solutions
of Egs. (AlS5) and (A16), respectively, and the correspond-
ing even-parity and odd-parity rapidity spectrum for the four
typical cases in Fig. 1. In Fig. 7, the solutions satisfying
with 9[0] > 0 correspond to E, and the solutions satis-
fying with R[O] < O correspond to E_. In Fig. 7(a3), we
note that the solutions of 6 given by 2.61894 — 1.60997i
and 2.61962 — 1.60891i are nearly degenerate. Similarly, the
solutions given by —2.61894 — 1.60997; and —2.61962 —
1.60891i are nearly degenerate. These solutions become ex-
actly degenerate in the thermodynamical limit N — oo.

(A19)

APPENDIX B: DETERMINE THE BOUNDARY OF THE
SCHEMATIC PHASE DIAGRAM

In the limit of N — oo, we can determine the boundary
of schematic phase diagram by analyzing the solutions of
Eq. (22) and the odd-parity rapidity spectrum. We note that,
in three-segment and nine-segment regions of the schematic
phase diagram, the odd-parity rapidity spectrum has one pair
and two pairs of pure imaginary eigenvalues, respectively.
Next we look for conditions for the existence of pure imag-
inary rapidity eigenvalues. Without loss of generality, we
assume the solution of Eq. (22) as 0 = 6 + i16; and 6, 6; are
purely real. Then, we can rewrite the corresponding eigen-
value as

E, = /1 + h% + 2hcos[fg + i;]. (B1)

If the eigenvalue E, is pure imaginary, then we should have
Or = m, and thus the eigenvalue can be expressed as

E, = +/1 4+ h* — 2h cosh[6;]. (B2)
Substituting & = m + i6; into Eq. (22), we can get
fisinh [N0;] — f>sinh [(N + 1)6;]
— f3sinh [((N — 1)6;] =0, (B3)

where fi = (1 +y2), /o =h, f; = hy? In the thermody-
namic limit of N — oo, we can use the formula

2sinh [N6;] ~ sign[6;]e""!, (B4)
and thus Eq. (B3) is simplified to
FreVOl _ g N DO _ g (N=Dlorl o (B5)
which gives rise to
fied" — fp? — fy = 0. (B6)
Let x = ¢!%!, and the solutions of x are given by
2
R R et o G,

2h
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FIG. 8. The solutions of Eq. (22) and the rapidity spectrum with N = 6, (al,bl)J =1,h =03,y =0.2,(a2,b2)J =1,h =3,y =0.2,
(a3,b3)J =1,h =3,y =5,and (a4,b4) J = 1, h = 3, y = 8. The red empty circles represent the solutions of Eq. (22), while the red points

represent the rapidity spectrum from the odd-parity channel.

For convenience, we denote the above two solutions as x4 =
¢! ®)I For any nonzero solution of 6;, we always have x > 1.
If xx > 1, then we have two solutions 6;(%), corresponding
to two pairs of pure imaginary eigenvalues. If only one of
x4 is larger than 1, then we have one pair of pure imaginary
eigenvalues. If x; < 1, then no pure imaginary eigenvalue
exits.

Next, we discuss in detail and set 2 > 0, y > 0. When
x+ > 1, we get the constraint equations as follows:

(14 y*)? —4n*y* >0,

x 1+y2+\/(1 +y2)* —4h2y22h > 1,

Ly = /(4920 — a2y
x 2h
Thus, we can get the boundary of nine-segment phaseis I < y
and1 < h < %
For the three-segment phase, only one of x. is larger than
1, and the constraint equations are as follows:

(14 y?)? —4n*y* > 0,

> 1.

(B3)

1+ 2+ \/(1 + y2)° — 4h2y?
X

2h >1,
L2 = /(4 2 — dn2y?
x — <1.  (BY)

Here, it is easy to certify x; > x_. Then we can get the
boundary of three-segment phaseis 0 < h < 1 (orh =1 and

y > 1).
When y = 1, Eq. (22) reduces to

—25sin[NO] — hsin[(N + 1)0] — hsin[(N — 1)0] =0,
(B10)
which leads to

sin[NO](1 4+ hcos[0]) = 0. (B11)

From the above equation, we see that the solutions are deter-
mined by

sin[N0] = 0, 1+ hcos[f] =0, (B12)

which give rise to 6 = jﬁn, (G=1,...,N) and 0=
arccos —%]. Here, 0 = should be abandoned, because
6 =m corresponds to z; =z, and thus Egs. (A9) and
(A10) are not linearly independent. When h < 1, the
equation 1+ Acos[#] = 0 has no purely real solution, and
the solution is given by 6 =  + i6; with 6; = arcosh[1/h],
corresponding to the existence of one pair of imaginary
eigenvalues in the rapidity spectrum. When #h > 1,
0 = arccos[—%] is purely real and the odd-parity rapidity
spectrum is purely real. The line of y =1 and & > 1 is the
phase boundary between the five-segment and one-segment
regions. In the region of 2 > 1 and y < 1, all solutions of
Eq. (22) are real.

Next we analyze the boundary bound states of the even-
channel rapidity spectrum in the thermodynamic limit of N —
oo. In Figs. 4(a2) and 4(b2), it is shown that the even-parity
rapidity spectrum has one degenerate imaginary eigenvalue
and two degenerate imaginary eigenvalues in three-segment
and nine-segment regions of the schematic phase diagram,
respectively. So, we assume the solution of Eq. (21) as 8 =
Or + 10; and O, 6; are purely real. Then, we can rewrite the
corresponding eigenvalue as

E, = £/1 + h2? + 2hcos[6g + i6;]. (B13)

If the eigenvalue E, is pure imaginary, then we should have
Or = m, and thus the eigenvalue can be expressed as

E, = +/1 + h? — 2h cosh[6;]. (B14)
Substituting 6 = 7 + i6; into Eq. (21), we can get
4y2E? sinh[N6;1* 4 [(2 — f1) sinh[N6;]

— fasinh[(N 4 1)6,] + f3 sinh[(N — 1)§,]]> = 0,
(B15)
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where fi = (1 +y2), /o =h, f; = hy? In the thermody-
namic limit of N — o0, we can use the formula

2sinh [N6;] ~ sign[6;]eM%!, (B16)
and thus the Eq. (B15) is simplified to
(freVr! — fre® 00l _ g =Dl — (B17)
which gives rise to
fid" = fr? — fy = 0. (B18)
Let x = ¢!, and the solutions of x are given by
L4 y2 (142 — iy
x = (B19)

2h

It is easy to see that the results are the same as the analysis
about Eq. (B7).

APPENDIX C: SCALING RELATION OF LIOUVILLIAN
GAP

For the case of y, = yg = y, the Liouvillian gap comes
from even channel, i.e., determined by the solutions of

(y* — 1 + 2iE,y) sin[NO] + hy? sin[(N — 1)0]
— hsin[(N 4+ 1)8] = 0. (C1)

In general, solutions of the above equation are always com-
plex. In the limits of weak and strong dissipation, we can
derive analytical expression of Liouvillian gap by applying
perturbation theory.

First, we consider the weak dissipation limit with y < 1
andE, = \/1 + h2 4 2h cos[0]. By taking y as a small param-
eter for the perturbation calculation, the zero-order solution of
6 is determined by

sin [N60©] + hsin [(N + DO ] = 0. (C2)
Thus, we can get

§-win[F] (h< 7).

0 2j —
60 ~ § M (h=1), (C3)
' T 1 1
N]_L + e S0 [I\{_-tl] (Z < ﬁ)’
where j = 1,2,..., N. Then we use the perturbation theory

and assume 0; = 9;0) + y@;l) with y « 1. Substituting it into
Eq. (C1), we can get

hsin [(N + 1D0{"] + sin [N6” ]

o = —
! (AN + 1)cos [(N + 1)6;”] + N cos [N6”])
L 2E( sin [N6\")] |
h(N + 1)cos [(N + 1)9_,(-0)] + N cos [N@J(.O)]

(C4)

where E©) = \/ 1+ h2+2h cos[@_](.o)]. Thus, to the first order

of y, the spectrum can be approximately written as

(1) o3 )
Ee?%’Ee(o) 1_2hy9j s1n[9j ]

(EL)?
£0( hy@}l) sin 91(.0)
o (£0)°
1oV sin®
g0 _ _J T
=E, £0 Y, (€5

and the imaginary part of rapidity spectrum from the even
channel can be written as

2y hsin [0”] sin [N6(”]

. (C6
h(N + 1)cos [(N 4 1)9](0)] + N cos [N@J(.O)] (C6)

j=

~ ‘

We find that I; with j =1 is the minimum, which is the
same as the numerical result. So, we set §©) = 61(0). Thus, the
Liouvillian gap is given by

A, =41,
B ‘ 8y hsin [0©] sin [NO©]
[N + 1) cos [(N + 1DOO] + N cos [NO©]

It follows that the scaling of the Liouvillian gap with lattice
size N is given by

. (CT)

Agx yN72, (C8)
where sin[60@] o« N~!, sin[NO@] o« N~!, cos[NOD] x N°
in the thermodynamic limit.

Now we consider the strong dissipation limit with y >> 1.
We can rewrite Eq. (C1) as

1 2iE,\ . .
(1 - ﬁ + > )sm[N@] + hsin[(N — 1)6]

— iz sin[(N + 1)0] = 0. (C9)
Y

Fory > 1 and E, =1 + h* + 2hcos[0©], we can take 1/y
as a small parameter for perturbation calculation, and the zero-
order solution of ; is determined by

sin[NO©] + hsin [V — DO P] = 0. (C10)
Thus, we can get
ybsin[2] (h< ),
00 ~ L 4 (h=1), (C11)
1% - h(lel) sin [1%] (% < %)’
where j = 1,2,..., N. Then we use the perturbation theory

and assume 6; = 91(-0) + 59](.1) with y >> 1. Substituting it into
Eq. (C9), we can get

; 0) ; (0)
(hsin[(N + 1)6;”] + sin [N6”])y

o = —
! h(N — 1)cos [(N — 1)8”] + N cos [N6|" ]
N 2E() sin[N6{”]
h(N = 1)cos [(N — 1)8"’] + N cos [N6|"]’

(C12)

where E(?) = \/ 1+h2+20 cos[é);o)].
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Thus, to the order of 1/y, the spectrum can be approxi-
mately represented as

(M (0)
£~ E9 |28 sin [0 ]

e y(EDY
1) ;0 nO)
~po(1_ hyo; sm29j
v (E?)
ho'" sin 6
= Ee(o) — %, (C13)
E;"y

and the imaginary part of rapidity spectrum from the even
channel can be written as

_ 2hsin [01”] sin [NO” ]

(AN = 1ycos [(N — DOV + N cos [NO])y |
(C14)

We find that I; with j =1 is the minimum, which is the

same as the numerical result. So, we set 80 = 6‘1(0). Thus, the
Liouvillian gap is given by

I;

Ay =41,
B 8hsin [0©] sin [NO©]
(AN = Dycos [(N — DOO] + N cos [NO©])y |
(C15)

It follows that the scaling of the Liouvillian gap with lattice
size N is given by

N—3
A, X —,
Y

(C16)
where sin[@go)] o« N7L, sin[N9<0)] xN7!, cos[NH;O)] x N°
in the thermodynamic limit. We note that if we choose E, =

—\/ 1 + W% + 2h cos[0O)], we get the same result of Liouvil-
lian gap.

APPENDIX D: DUALITY RELATION OF RAPIDITY
SPECTRUM AND LIOUVILLIAN GAP IN THE
THERMODYNAMIC LIMIT

The rapidity spectrum of the even-parity channel is deter-
mined by solving the following equation:

(y* = 1 + 2iyE,) sin[NO] + hy? sin[(N — 1)0]

— hsin[(N 4+ 1)§] = 0, (D1)

where E, = :I:\/ 1 4+ h2 4+ 2hcos[0]. Here, we should notice
the solutions corresponding to two equations (Ei(6y) =
:l:\/ 1 4 h2 4 2h cos[6+]) and denote the solutions of them as
04, respectively, i.e.,

sin[NO+] + hy? sin[(N — 1)0+] — hsin[(N + 1)6+] = 0,
(D2)

where  Ei(0+) = +/1 +h2 +2hcos[f+].  According
to Eq. (D2), if 6, is a solution of the equation with
eigenvalue E,(6;), then 67 should be a solution of

the equation with eigenvalue E_(6_-), i.e., we have
6_(A) =03 (1). Similarly, we can prove 6,(A)=6(1).
So we have E_(0_)=E_(0}) = —E (0}) = —(E;(64))"
and £, (01) = —E_(0*) = —(E_(0-))*, which are consistent
with the requirement of the K symmetry.

First, we consider the case of E, and get the equation as
follows:

sin[NO,] + h)/2 sin[(N — 1)04+] — hsin[(N + 1)0,] = 0.
(D3)

Then we consider the equation of E_ with the dissipation
strength y’, and Eq. (D2) can be rewritten as

(y"* — 1 +2iy’E_(0_)) sin[NO_] + hy'* sin[(N — 1)6_]
— hsin[(N + 1)6_] = 0. (D4)

By using the relation E_(0_) = —(E,(6,))* = —E(6]) and
0_ = 07, Eq. (D4) can be rewritten as

(v — 1 = 2iy'E(07))sin[NO] + hy” sin[(N — 1)} ]
— hsin[(N + 1)0%] = 0. (D5)

Now we assume y’ = 1 and thus the above equation can be
represented as follows:

(y? — 1 4 2iyEL(07)) sin[NOF] + hy? sin[(N + 1)07]
— hsin[(N — 1)67] = 0. (D6)
When the real part of 6, is proportional to ﬁ and the
imaginary part of 6 is proportional to #, we have sin[(N —
)6, ] =~ sin[(N + 1)64] in the thermodynamic limit. Com-
paring Eqgs. (D3) and (D6), we can consider them to be the
same in the thermodynamic limit. Since Eqgs. (D4) and (D6)
are equivalent, then we get 6, (y) =~ Gf(%) in the thermody-

namic limit. Using the relation Qf(%) = 04.(%), we can get
0. (y) =~ 9+($). According to the above analysis, we have
E.(y)= E+(%) in the thermodynamic limit. Similarly, we

canget E_(y) = E,(%) in the thermodynamic limit. So, we

can get
1
Ee(y) =E| —
Y

in the thermodynamic limit. Notice that for the boundary
bound states, the real parts of them are not proportional to
and thus the approximation sin[(N — 1)6;] &~ sin[(N + 1)6,]
does not hold true.

According to the definition of Liouvillian gap, it follows

that the Liouvillian gap fulfills

1
Ay(y. h) = Ag(;,h).

We have proven that the most of rapidity spectrum (except
for those corresponding to the boundary bound states) satis-
fies the duality relation E(y) = E (%) in the thermodynamic
limit. The eigenvalues of boundary bound states do not satisfy
the duality relation, e.g., the imaginary part of the boundary
bound state (the one with larger imaginary part) increases

(D7)

(D8)
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FIG. 9. The rapidity spectrum from even channels (except for
eigenvalues corresponding to the boundary bound states) with N =
20, (al) h=0.3, and (a2) h =3, and N = 60, (bl) h = 0.3, and
(b2) h =3, and N = 100, (c1) h = 0.3, and (c2) h = 3. We take
parameter y = 0.2 which corresponds to the red points and y =5
which corresponds to the blue empty prismatic.

with the increase of y as displayed in Fig. 4(b3). In Fig. 9,
we show the rapidity spectrum of the even channel except for
the boundary bound state. While the number of bound states
in the weak and strong dissipation regions are the same in
the region of 4 < 1, they are different in the region of 2 > 1.
This leads to the spectrum E(y) and E(1/y) in the region of
h = 0.3 coinciding much better than in the region of 7 = 3, as
shown in Figs. 9(al) and 9(a2) for N = 20. With the increase
of lattice size, the spectrum E(y) and E(1/y) coincide much
better. While the spectrum E(y) and E(1/y) do not coincide
very well for the case of 7 = 3 with N = 20, they are almost
the same with N = 100.

APPENDIX E: CALCULATION OF THE AVERAGE
MAGNETIZATION BY USING LYAPUNOV
EQUATION METHOD

Here we show the details of calculation of the av-
erage magnetization by using Lyapunov equation method
[40]. Lyapunov equation method enables us to calculate
the dynamics of systems with large sizes. In terms of the
representation of Majorana fermion, we can rewrite the trans-
verse field Ising chain and the dissipation operators as H =
2o, Wil ), L,= > 1y, jW;. The matrix I' is also defined
as Majorana fermion I'j; = i(;y) — %(Sj,k. And then we
have

o =XIr+rXx’ 4+v, (E1)

where the matrix X, Y are defined as X = —2iH —
R, L)), Y =3, L), respectively. And [, can be

expressed as [, = [L1, Luas -+ Luon]”.

First, we apply the Jordan-Wigner transformation
1 =
al = 5(a;f +io?) [J(ef) (A <j<N). (B2
I=1
Here, a; and &T obey the canonical anticommutation relations

{a,,a } = aa —i—aTa, =36;; and ({a;a;} = {aT AT}—
And then the transverse field Ising chain can be ertten as
fermion form

N-1 N
H =7 (a}—a)@,, +aj)—h)y (a;—a)@; +a).

j=1 j=1

(E3)

Then, we employ the self-adjoint Majorana operators ¥ + =
(Wj+)" [40],

()= A 5@ e
and we get
N-1 N
Iy iy i +hYy e | (ES)
j=I j=1
For convenience, we denote
W;:=w;4+ and Wy :=1W;_. (E6)

The Majorana operators with j=1,...,
anticommutation relations

N. They obey the

{ﬁ)i,ﬁ}j}z&',]‘ for l,]=],,2N (E7)

Thus, we get the transverse field Ising chain as

A= Z WH; ;. (E8)
i,j

And the boundary dissipation operators can be rewritten as

Ly =2yl 4, Ly =102y 10N -, (E9)

where Q = ]_[?]=1 o]f’ is the parity operator. In our case, the
initial state is the even fermion state and the operator m® is
also even fermion. Thus, the distribution of the odd channel is
zero, so we can only consider the average magnetization in the
even channel, i.e., Q = 1. Thus, the matrix X, Y is represented
in terms of a 2N x 2N non-Hermitian matrix as follows:

—2y 2h
0 —2J
0 2] 2h
X=|—=m 27 0 ,
2J 0
L —2h —2y |
Y = 02}\/.
(E10)
And then we give the spectral representation of X,
ON
X =) silp) Wil (E11)

j=1
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FIG. 10. The Liouvillian spectrum of odd channel (al-a4) and even channel (b1-b4) with disorder strength § = 0.1 for systems with
N =06,and (al,bl) h =03,y =0.2, (a2,b2) h=3,y =0.2, (a3, b3) h =3,y =5, and (a4, b4) h = 3, y = 8. The data are obtained by

taking over 50 random configurations.

and get Eq. (E1) as
2N

L@y =Y [e9™ (W DO W) [Wr) (Yirl]-

k=1

in which [Y) = [(Wie |17, (Yl = [[¥ir)]” - So, the average
magnetization is

(m (1)) =< Yo Z(t)>
P

(E12)

=

ZIN.

N
E FN+]] ]N+j)

1 0 I
= NTr([_yN ON}r(z))

where the matrix I" of the initial state of all spin up is denoted
as

(E13)

Oy

ro)= [IN/Z (E14)

—lIy /2}

—ily

APPENDIX F: STABILITY OF STRIPE STRUCTURE
AGAINST RANDOM ONSITE DISORDER PERTURBATION

Here we demonstrate that the stripe structures are stable
against random onsite disorder perturbation in the transverse
field. The boundary-dissipated transverse field Ising model
with transverse field strength being perturbed by random on-
site disorder is described by

N
. z

_—JE 07074 h,g o,
j=1

where h; = h(1+§;) (j =1,2,...,N) is uniformly dis-
tributed in the interval [2(1 — &), h(1 + )], 1i.e., §; is arandom
number uniformly distributed in (-4, §).

To see clearly how the disorder changes the structure of
Liouvillian spectrum, we display the Liouvillian spectrum
from the odd and even channels in Figs. 10(al—a4) and 10(b1-
b4), respectively. To compare with Fig. 1, we set the same
parameters and the strength of the disorder as 10% (§ = 0.1).
It is shown that the structures of the stripes are still discernible
even we introduce random onsite disorder, i.e., the spectrum
structure is stable against random onsite disorder perturbation.
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