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Sublattice extraordinary-log phase and special points of the antiferromagnetic Potts model
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We study the surface criticality of a three-state antiferromagnetic Potts model on a simple cubic lattice, whose
bulk critical behavior belongs to the universality class of the XY model because of emergent O(2) symmetry.
We find that the surface antiferromagnetic next-nearest-neighboring interactions can drive the extraordinary-log
phase to an ordinary phase, and the transition between the two phases belongs to the universality class of the well-
known special transition of the XY model. Further enhancing the surface next-nearest-neighboring interactions,
the extraordinary-log phase reappears, but the main critical behaviors are shown in the sublattices; the special
point between the ordinary phase and the sublattice extraordinary-log phase belongs to a different universality
class.
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I. INTRODUCTION

For a system at the critical point of a continuous phase
transition, the correlation function and order parameter and
some other physical quantities exhibit power-law scaling be-
haviors, which are called critical behaviors. At a critical point,
the critical behaviors not only manifest in the bulk but also on
the surface, which are called surface critical behaviors [1,2].
Depending on the strength of the surface interactions, the
surface critical behaviors can be richer than the bulk critical
behaviors. Generally, there are three types of surface critical
phases, dubbed “ordinary phase,” “special point,” and “ex-
traordinary phase.” An ordinary phase refers to the case when
the surface interactions are not too strong, and the surface crit-
ical behaviors are purely induced by the bulk critical state; the
extraordinary phase refers to the case when the surface inter-
actions are strong enough, and the surface has become ordered
or critical with logarithmic scaling behaviors (extraordinary-
log phase); the special point is the transition point between the
ordinary phase and the extraordinary phase. Typical examples
can be found in classical O(n) spin models [3–6].

The research on surface critical behaviors has a long his-
tory, and the interest in this field is renewed by recent works
on quantum spin models [7,8]. A series of related studies
has greatly promoted the research in this field [9–23], which
includes the prediction of an extraordinary-log phase [11], a
different type of surface criticality. In such a phase, the surface
two-point correlation function G‖(r) decays logarithmically
with r as

G‖(r) ∝ [ln(r/r0)]−q, (1)
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where q is a universal decaying exponent and r0 is a nonuni-
versal parameter; this is very different from the power-law
decaying correlation function of a traditional critical point.
The extraordinary-log phase has already been numerically
found in both classical spin models [5,6,20] and also quantum
spin models [22,23].

In our recent work [20], we found an extraordinary-log
phase in the three-state antiferromagnetic Potts model on a
simple cubic lattice, which has a bulk critical point belonging
to the universality class of the XY model because of the
emergent O(2) symmetry [24], although the spin symmetry of
the model is discrete. Tuning the surface nearest-neighboring
(NN) interactions leads to a surface phase diagram similar
to that of the XY model. More importantly, by adding ferro-
magnetic next-nearest-neighboring (NNN) interactions to the
surface, a phase transition from the extraordinary-log phase
to a symmetry-breaking phase is found, whose critical behav-
iors are very different from the traditional ordered-disordered
phase transition. That such a type of phase transition can be
realized is related to the bulk critical point with emergent O(2)
symmetry and that a two-dimensional (2D) (square-lattice)
three-state Potts model with antiferromagnetic NN interac-
tions and ferromagnetic NNN interactions can be ordered in
the low-temperature region [25].

However, according to our understanding, if both NN and
NNN interactions are antiferromagnetic, the 2D square-lattice
three-state Potts model cannot be ordered even when the tem-
perature is zero [26]; the interplay between such 2D physics
and 3D bulk criticality may lead to interesting surface critical-
ity. Therefore, in the current paper, we add antiferromagnetic
NNN interactions to the surface of the three-state antifer-
romagnetic Potts model on a simple cubic lattice, and we
find that the antiferromagnetic NNN interactions can drive
the surface from the extraordinary-log phase to an ordinary
phase, then driving the system to an extraordinary-log phase
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FIG. 1. Surface phase diagram of the antiferromagnetic Potts
model (2) with T = T bulk

c = 1.226 03 and Js = 5.

whose main critical behaviors are shown in the sublattices if
the strengths of the NNN interactions are strong enough. The
universality class of the special point between the ordinary
phase and the sublattice extraordinary-log phase is different
from the well-known special point of the XY model.

The paper is organized as follows: In Sec. II, we intro-
duce the model and the method; in Sec. III, we present the
numerical results, which include the critical properties of
the two special points, the ordinary phase and the sublattice
extraordinary-log phase. We conclude our paper in Sec. IV.

II. MODEL AND METHOD

The Hamiltonian of the three-state antiferromagnetic Potts
model with surface NNN interactions on a simple cubic lattice
is defined as

H = J
∑
〈i, j〉

δσi,σ j + Js

∑
〈i, j〉s

δσi,σ j + J ′
s

∑
〈〈i, j〉〉′

δσi,σ j , (2)

where 〈i, j〉, 〈i, j〉s, and 〈〈i, j〉〉′ denote the bulk NN, the
surface NN, and the surface NNN sites, respectively. All the
interactions are antiferromagnetic, and the strength of the bulk
interactions is set to be J = 1. The spin σi can be mapped to a
unit vector on the plane,

�σi = (cos θi, sin θi ), (3)

with θi = 2πσi/3 and σi = 1, 2, 3. The bulk phase transition
of the model belongs to the XY universality class because of
emergent O(2) symmetry [24], and the critical point has been
refined by extensive Monte Carlo simulations in Ref. [20],
which is Tc = 1.226 03. When there is no NNN interaction
and the strength of the NN interactions Js > 2.041 19, the
surface is in the extraordinary-log phase [20]. Starting with
an extraordinary-log phase and tuning the surface NNN inter-
actions J ′

s of model (2), we get a phase diagram as shown in
Fig. 1; the relevant critical behaviors will be shown in Sec. III.

For the simulations of the model, we adopt a combination
of the local update (Metropolis algorithm) and the geomet-
ric cluster algorithm [27]. The geometric cluster algorithm
improves the efficiency of the simulations, which is demon-
strated in the Appendix. Each Monte Carlo step consists of
five local updates and two geometric cluster updates. Each
data point is an average over 107 Monte Carlo steps, and
the largest system size we reached is L = 128. The surface
variables we sampled include the surface squared (staggered)
magnetization m2

s1 and the surface magnetic susceptibility χs1,
which are defined as

m2
s1 = 〈

M2
s1

〉
, (4)

χs1 = L2
(〈
M2

s1

〉 − 〈|Ms1|〉2
)
, (5)

where Ms1 is defined as

Ms1 = 1

L2

∑
�R

(−1)x+y+z �σ �R. (6)

Here, �R = (x, y, z) is the coordination, where for the surface,
z should be 1 or L, and L2 is the number of sites of the
surface. We also sample the sublattice squared (staggered)
magnetization m2

s1A, which is defined similar to (4), but the
sites are restricted to be in sublattice A of the surface. Here,
we have divided the square-lattice surface into two equivalent
sublattices, because the square lattice is bipartite; sublattice A
is one of two sublattices.

We also sample the surface specific heat Cv1,

Cv1 = L2(〈E2
1

〉 − 〈E1〉2)/T 2, (7)

where T is the temperature, and E1 is the microscopic energy
density of the surface.

The surface correlation function is defined as

C‖(r) = 〈�σi · �σi+r〉, (8)

where the site i and i + r are restricted to be on the surface.
The surface correlation length ξ1 and “structure factor” F1 are
defined as

ξ1 =
(
m2

s1

/
F1 − 1

)1/2

2
√∑d

i=1 sin2
( ki

2

) , (9)

F1 = 1

L4

〈∣∣∣∣∣
∑

�R
(−1)x+y+zei�k· �R �σ �R

∣∣∣∣∣
2〉

, (10)

where �k is the “smallest wave vector” along the x direction,
i.e., �k ≡ (2π/L, 0). In the disordered phase, the correlation
length ξ1 is finite and the correlation ratio ξ1/L decreases to
zero, while in the ordered phase or extraordinary-log phase
ξ1/L diverges rapidly due to the rapid disappearance of the
“structure factor” F1. The correlation ratio ξ1/L in the critical
phase has a finite nonzero value in the thermodynamic limit.
Therefore, the correlation ratio ξ1/L is a good tool for locating
the critical point of a phase transition.

III. RESULTS

A. Two special points

By using the Monte Carlo method, we simulate the antifer-
romagnetic Potts model (2) with an open boundary along the z
direction and periodic boundaries along the x and y directions.
At the bulk critical point [20] T = T bulk

c = 1.226 03, setting
the system surface initially to the extraordinary-log phase
(Js = 5), and varying the surface NNN interactions J ′

s, we can
find two special points. As shown in Fig. 2(a), the surface
magnetic susceptibility χs1 of the system shows two peaks at
J ′(1)

sc ≈ 0.85 and J ′(2)
sc ≈ 3.3, where the former peak diverges

faster. The behaviors of the surface squared magnetization
m2

s1 and the surface structure factor F1, as shown in Figs. 2(b)
and 2(c), also demonstrate the two transitions. We can see that
m2

s1 tends to zero in the region between the two critical points,
when the system is in an ordinary phase; we will discuss the
properties of this phase specifically in the next section. The
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FIG. 2. Surface critical behaviors of the antiferromagnetic Potts
model (2) at T = T bulk

c = 1.226 03, Js = 5: (a) Surface susceptibility
χs1, (b) surface squared magnetization m2

s1, (c) surface structure
factor F1, and (d) surface specific heat Cv1.

specific heat Cv1, as shown in Fig. 2(d), demonstrates a rapidly
diverging peak at the second phase transition point; however,
it does not show a diverging peak for the first phase transition.

In order to quantitatively determine the two critical points,
we investigate the surface correlation ratio ξ1/L, as shown
in Fig. 3, which obviously shows the two critical points. In
the vicinity of the critical point, ξ1/L satisfies the finite-size

FIG. 3. Surface correlation ratio ξ1/L of the antiferromagnetic
Potts model (2) with T = T bulk

c = 1.226 03 and Js = 5; the dashed
line positions in (a) are J ′(1)

sc = 0.8478 and J ′(2)
sc = 3.3326. (b) and

(c) are the local enlargements of the vicinity of the two critical points,
respectively.

TABLE I. Critical properties of the three-state antiferromagnetic
Potts model (2), in correspondence to the phase diagram shown in
Fig. 1. In all the data fitting, the correction-to-scaling exponent [30]
y1 is set to −0.789. SP = special point; Ord = ordinary phase;
Ext-log = extraordinary-log phase; DOF = degree of freedom (in
the data fitting); EQ = equation (used in the fitting).

Phase Exponent EQ χ 2/DOF Lmin XY model

SP J (1)
sc = 0.8478(9) (11) 1.42 32
ys = 0.59(3) (11) 1.42 32 0.608(4)a

yh1 = 1.698(4) (12) 0.89 48 1.675(1)a

η‖ = −0.399(5) (13) 1.84 16
yh1A = 0.26(3) (15) 0.48 16

Ord yh1 = 0.77(2) (12) 0.55 32 0.781(2)a

Second SP J (2)
sc = 3.3326(8) (11) 1.14 32
ys = 1.44(4) (11) 1.14 32

yh1 = 1.56(2) (12) 1.19 24
η‖ = −0.59(3) (13) 1.56 24

yh1A = 1.80(2) (15) 1.65 24

Sublattice q = 0.57(3) (20) 1.32 32 0.59(2)b

Ext-log q = 0.59(3) (21) 1.43 32
q1 = 1.9(2) (22) 0.88 24

aReference [3].
bReference [6].

scaling (FSS) formula

ξ1/L = a0 +
kmax∑
k=1

ak (J ′
s − J ′

sc)kLkys + bLy1 . (11)

This formula is derived from the theory of renormalization
group (RG) [28,29], where ys > 0 is the critical exponent,
J ′

sc is the critical point, and bLy1 is the correction-to-scaling
term, which comes from the irrelevant field of RG, with
y1 < 0; a0, ak , and b are nonuniversal parameters. For the first
phase transition, the data of ξ1/L are fitted according to (11)
with kmax = 2 and y1 = −0.789 [30], which gives J ′(1)

sc =
0.8478(9) and ys = 0.59(4) with χ2/DOF = 1.42 (DOF =
degree of freedom). It should be noted that the correction-to-
scaling exponent y1 = −0.789 comes from the study of the
bulk criticality [30], and the reason why we take this value
for the surface criticality is that all the surface criticalities are
studied at the bulk critical point. The fitting results are listed
in Table I. We can see that the critical exponent ys coincides
with the result of the well-known special transition of the XY
model [3], which is ys = 0.608(4); in order to confirm that
such a transition is in the same universality class of the XY
model, we study the scaling behaviors of the squared mag-
netization m2

s1 and the correlation function C‖(L/2), and at the
critical point, they satisfy the following FSS formulas [28,29],

m2
s1L2 = c + L2yh1−2(a + bLy1 ), (12)

C‖(L/2) = L−1−η‖ (a + bLy1 ), (13)

where yh1 and η‖ are the critical exponents. The background
term c in Eq. (12) comes from the contribution of the short-
range correlation, in correspondence to the analytic part of
the free energy. Such an analytic term does not appear in the
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FIG. 4. (a) Log-log plot of C‖(L/2), m2
s1, m2

s1A, and m2
s1AL2 − c

vs L at the first transition point J ′(1)
sc = 0.8478. (b) Log-log plot of

C‖(L/2), m2
s1, and m2

s1A at the second transition point J ′(2)
sc = 3.3326.

scaling formula of the correlation function C‖(L/2), because
here we only consider the long-range correlation. The data
fitting, with y1 = −0.789, gives yh1 = 1.698(4) and η‖ =
−0.399(5), where χ2/DOF = 0.89 and 1.84, respectively.
These results are also listed in Table I. We can see that the
values of yh1 and η‖ satisfy the scaling formula [31,32]

η‖ = d − 2yh1, (14)

where d = 3 is the space dimension of the system. This means
that m2

s1 and C‖ should decay with the same power as the
increase of the system size, which is demonstrated in Fig. 4(a).
We can also see that the value of yh1 coincides with that of
the well-known special point of the XY model [3], which is
yh1 = 1.675(1), hence they belong to the same universality
class.

We also investigate the scaling behaviors of the sublattice
squared magnetization m2

s1A, which is the same as m2
s1; specif-

ically, m2
s1A satisfies

m2
s1AL2 = c + L2yh1A−2(a + bLy1 ), (15)

where we have written the exponent as yh1A. The data of m2
s1A

are also shown in Fig. 4(a). We can see that m2
s1A shows a

perfect power-law scaling, however, this is misleading, be-
cause such power-law scaling comes from the nonsingular
part, which is the first term on the right-hand side of Eq. (15).
Because in the current case yh1A < 1, m2

s1A is dominated by
the term c/L2. This is also the reason why we do not write
the scaling form as m2

s1A = c/L2 + L2yh1A−4(a + bLy1 ). The
log-log plot of ms

s1AL2 − c vs L is also included in Fig. 4(a),
and the data fitting according to Eq. (15) give yh1A = 0.26(3),
with χ2/DOF = 0.48. This result is also listed in Table I.

For the second special point, we fit the data according to
Eq. (11) with kmax = 3 and y1 = −0.789 [30], which gives
J ′(2)

sc = 3.3326(8) and ys = 1.44(4), with χ2/DOF = 1.14.
These results are also listed in Table I. We can see that the
critical exponent ys is obviously different from the first one;
in order to determine the universality class of this transition,
we investigate the scaling behaviors of the squared magneti-
zation m2

s1 and the correlation function C‖(L/2); at the critical
point, they satisfy the FSS formulas (12) and (13). By the
data fitting, we get yh1 = 1.56(2) and η‖ = −0.59(3); these
values are obviously different from the results of the first
phase transition. Furthermore, we can see that they do not
satisfy the scaling law (14), i.e., m2

s1 and C‖(L/2) decay with
different powers, which are demonstrated in Fig. 4(b). In order
to understand such a discrepancy and the nature of this phase

FIG. 5. (a) Log-log plot of the correlation function C‖(L/2),
the squared magnetization m2

s1, the sublattice squared magnetization
m2

s1A, and |m2
s1L2 − c| for the ordinary phase, with J ′

s = 2.5 and
c = 3.68; (b) the data of m2

s1L2 and m2
s1AL2.

transition, we investigate the sublattice squared (staggered)
magnetization m2

s1A, which is also shown in Fig. 4(b). The
data fitting is performed similarly according to Eq. (15), which
gives yh1A = 1.80(2). We can see that η‖ and yh1A satisfy
the scaling law (14), i.e., C‖ and m2

s1A decay with the same
power, as shown in Fig. 4(b). This result reveals the sublattice
nature of such a transition. In summary, the second transition
is characterized by the following critical exponents,

ys = 1.44(4), (16)

yh1 = 1.56(2), (17)

yh1A = 1.80(2), (18)

η‖ = −0.59(3). (19)

These results are also listed in Table I, including the fitting
details.

B. The ordinary phase

For the intermediate region J ′(1)
sc < J ′

s < J ′(2)
sc , the surface

is in an ordinary phase. As shown in Fig. 5(a), the surface
squared magnetization m2

s1 shows a very good power-law scal-
ing, which is the effect of the nonsingular term c/L2 because
yh1 < 1 here. This situation is very similar to the case of the
m2

s1A at the first special point. In Fig. 5(a), we also show the
log-log plot of |m2

s1L2 − c| vs L, which also indicates a good
power-law scaling; the data fitting according to Eq. (12) gives
yh1 = 0.77(2), with χ2/DOF = 0.55. We find that the value
of yh1 is consistent with that of the ordinary phase of the XY
model [3], which is yh1 = 0.781(2). These results are also
listed in Table I.

For the sublattice squared magnetization m2
s1A, the nonsin-

gular part is also dominated by the L−2 scaling, as shown
in Fig. 5(a), however, here we cannot perform an effective
fitting of m2

s1AL2 according to the scaling formula (15), be-
cause m2

s1AL2 converges to the constant c too fast, as shown in
Fig. 5(b); it can be compared to the data of m2

s1L2, which show
very good asymptotic behavior, also shown in Fig. 5(b).

As to the scaling behavior of the surface correlation func-
tion C‖(L/2), we find that in the short-range region, it decays
very fast, with a power of about L−5; however, in the long-
range region, it decays slower with a power of about L2yh1−4 =
L−2.46. This is also illustrated in Fig. 5(a). It should be noted
that the dashed line in Fig. 5(a) is not obtained by fitting
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FIG. 6. Log-log plot of C‖(L/2), m2
s1, and m2

s1A vs ln(L/L0), with
J ′

s = 3.8 and L0 = 0.519, 0.724, and 0.295 for the three variables,
respectively. The slopes of the lines of C‖(L/2) and m2

s1A are q =
0.59, and the slope of m2

s1 is q1 = 1.9.

the long-range part data of C‖(L/2) but only a self-consistent
check with yh1 = 0.77, which is obtained from the fitting of
m2

s1. The data in the long-range region are too small, which
makes it too difficult to give accurate data in Monte Carlo
simulations.

C. Sublattice extraordinary-log phase

We also try to investigate the properties of the phase with
J ′

s > J ′(2)
sc , but in this region, the efficiency of the algorithm de-

creases a lot, which makes it difficult to get good data for large
systems. However, according to the already known results in
our previous work [20] that strong enough surface NN inter-
actions will lead to an extraordinary-log phase, we infer that
the phase should be an extraordinary-log one; furthermore,
because the NNN interactions are already very strong, we
infer that the logarithmic decaying behaviors may be shown in
the sublattices. To confirm such inference, we investigate the
scaling behaviors of the surface correlation function C‖(L/2)
and the sublattice squared magnetization m2

s1A, and we find
that they satisfy the logarithmic decaying formulas

C‖(L/2) = a[ln(L/L0)]−q, (20)

m2
s1A = a[ln(L/L0)]−q. (21)

These formulas are subsequent finite-size scaling formulas of
Eq. (1), which have been numerically verified in Refs. [5,6].
It is a different type of surface criticality, where the exponent
q does not fall in the general scheme of a critical exponent,
although it is also referred to as a “critical exponent” in some
literature. The data fitting according to these formulas gives
q = 0.57(3) (from C‖) and q = 0.59(3) (from m2

s1A). These re-
sults and also the details of the fitting are listed in Table I. We
can see that the values of the decaying exponents for C‖(L/2)
and m2

s1A coincide with each other, and they are also consistent
with that of the XY model [6], which is q = 0.59(2). These
results are listed in Table I, including the fitting details; an
illustrative plot of C‖(L/2) and m2

s1A is shown in Fig. 6.
We also investigate the squared magnetization m2

s1, and we
find that it also satisfies a logarithmic scaling formula

m2
s1 = a[ln(L/L0)]−q1 , (22)

FIG. 7. Surface structure factor F (�k) for the extraordinary phase,
with J ′

s = 3.8; the system size is L = 16.

however, the decaying exponent is found to be q1 = 1.9(2),
which is much different from q; this result and also the details
of the fitting are listed in Table I, and the log-log plot of m2

s1
vs ln(L/L0) is also included in Fig. 6.

In order to further understand the properties of such a
sublattice extraordinary-log phase, we compute the surface
structure factor

F (�k)) = 1

L4

〈∣∣∣∣∣
∑

�R
ei�k· �R �σ �R

∣∣∣∣∣
2〉

(23)

in the full momentum space (kx, ky). The result is shown
in Fig. 7, in which we can see that the points (0,±π ) and
(±π, 0) are light, which means the system has a stripe order
(in a finite system), which is in correspondence to the sub-
lattice squared magnetization m2

s1A. The points (±π,±π ) are
also light but weaker than the points (0,±π ) and (±π, 0), in
correspondence to the squared magnetization m2

s1.
We also investigate the symmetries of the two types of

surface magnetization, as shown in Fig. 8, where we can see
that both of them are O(2).

FIG. 8. Histograms of the two types of surface magnetization
of the sublattice extraordinary-log phase, where J ′

s = 3.8 and the
system size L = 32. (a) Histogram of the sublattice magnetization
of the surface. (b) Histogram of the (whole lattice) magnetization of
the surface.
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IV. CONCLUSION AND DISCUSSION

In summary, we have tried to add antiferromagnetic NNN
interactions to the surface of the antiferromagnetic Potts
model, with the extraordinary-log phase as the starting point.
We find that as the NNN interactions increase, the system is
driven to an ordinary phase in which the correlation function
shares the same exponent of the ordinary phase of the XY
model in the long-range region but decays much faster in
the short-range region. Further strengthening the NNN inter-
actions can drive the surface to an extraordinary-log phase
whose main properties are shown in the sublattices of the
surface. The special transition from the ordinary phase to the
sublattice extraordinary-log phase belongs to a universality
class that is different from the well-known special transition
of the XY model.

It is well known that for a phase transition with sponta-
neous symmetry breaking, the universality class is determined
by the dimension of space and the symmetry of the order
parameter. For the special transition between the ordinary
phase and the extraordinary-log phase, it is also the case,
although the symmetry does not break in the extraordinary-
log phase. Typical examples have been studied in the XY
model [3], the Heisenberg model [5], the clock model [21],
and the three-state antiferromagnetic Potts model [20]. For
the antiferromagnetic Potts model we studied, the symmetries
of the bulk critical point and the extraordinary-log phase are
O(2) [20,24], which are the same as that of the XY model,
and this is the reason why the special point (shown in Fig. 1)
studied in the current paper belongs to the same universality
of the special point of the XY model. For the second special
point (also shown in Fig. 1), which is between the ordinary
phase and the sublattice extraordinary-log phase, the reason
why the universality class is different is also related to the
symmetry; the symmetry in the sublattice extraordinary-log
phase is O(2) × Z2, where the Z2 symmetry originates from
the equivalence of the two sublattices.

The present paper is closely related to Ref. [20], where in
both papers we are following the idea that the surface critical-
ity is a hybrid of the 3D bulk criticality and the 2D physics.
In Ref. [20], the surface NNN interactions are ferromagnetic,
while in the present paper the surface NNN interactions are
antiferromagnetic; technically, the present paper is an exten-
sion of Ref. [20], however, the physical results are really very
different. The reason is that a 2D (square lattice) three-state
antiferromagnetic Potts model with ferromagnetic NNN inter-
actions [25] is very different from that with antiferromagnetic
NNN interactions [26]. Our results can be helpful in exploring
the surface criticality.
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APPENDIX: AUTOCORRELATION TIME
OF THE ALGORITHMS

For a given variable f , the unnormalized autocorrelation
function is defined as

Cf (t ) = 〈 f (0) f (t )〉 − 〈 f 〉2, (A1)

where f (t ) means the microcosmic value of f at time t , and
the unit of time is one Monte Carlo step. Then the normalized
autocorrelation function is defined as

ρ f (t ) = Cf (t )/Cf (0). (A2)

Based on ρ f (t ), the integrated autocorrelation time is defined
as [33]

τint = 1

2

∞∑
t=0

ρ f (t ). (A3)

In order to demonstrate the efficiency of the algorithms we
adopt, we take f as the surface correlation C‖ for example,
and the results of τint for this variable are shown in Fig. 9.
We can see that the autocorrelation of the combined algo-
rithm composed of Metropolis and the geometric cluster is
obviously smaller than that of the Metropolis algorithm only.
Furthermore, τint is fitted according to

τint = τ0 + bLz, (A4)

where z is the dynamical exponent that describes the ef-
ficiency of the algorithm, and τ0 and b are nonuniversal
parameters. For the combined algorithm, we get z ≈ 0.07;
for the Metropolis algorithm only, we get z ≈ 0.33. This
demonstrates that the geometric cluster algorithm improves
the efficiency of the simulation.

FIG. 9. Integrated autocorrelation time τint of the surface corre-
lation function C‖. The simulation is performed at the first special
point shown in Fig. 3(b), where T = T bulk

c = 1.226 03, Js = 5, and
J ′

s = J ′(1)
sc = 0.8478.
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