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Spatiotemporal quenches in long-range Hamiltonians
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Spatiotemporal quenches are efficient at preparing ground states of critical Hamiltonians that have emergent
low-energy descriptions with Lorentz invariance [Agarwal, Bhatt, and Sondhi, Phys. Rev. Lett. 120, 210604
(2018)]. The critical transverse field Ising model with nearest-neighbor interactions, for instance, maps to free
fermions with a relativistic low energy dispersion. However, spin models realized in artificial quantum simulators
based on neutral Rydberg atoms, or trapped ions, generically exhibit long-range power-law decay of interactions
with J (r) ∼ 1/rα for a wide range of α. In this paper, we study the fate of spatiotemporal quenches in these
models with a fixed velocity v for the propagation of the quench front, using the numerical time-dependent
variational principle. For α � 3, where the critical theory is suggested to have a dynamical critical exponent
z = 1, our simulations show that optimal cooling is achieved when the front velocity v approaches c, the effective
speed of excitations in the critical model. The energy density is inhomogeneously distributed in space, with
prominent hot regions populated by excitations copropagating with the quench front, and cold regions populated
by counterpropagating excitations. Lowering α largely blurs the boundaries between these regions. For α < 3,
we find that the Doppler cooling effect disappears, as expected from renormalization group results for the critical
model, which suggest a dispersion ω ∼ qz with z < 1. Instead, we show that excitations are controlled by two
relevant length scales whose ratio is related to that of the front velocity to a threshold velocity that ultimately
determines the adiabaticity of the quench.
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I. INTRODUCTION

Modern quantum simulators hold immense potential for
studying fundamental aspects of quantum many-body sys-
tems and materials. Recent experiments in ultracold atoms
[1–4] and trapped ions [5–7] have successfully demonstrated
many unique quantum phenomena—a variety of spin models
[8–13], topological quantum numbers [14–18], many-body lo-
calization [19–24], and lattice gauge theories [25–28], among
others [29–31]—and have emerged as candidates for pro-
grammable quantum computing [32,33]. A key application of
such artificial quantum matter is to simulate strongly corre-
lated phases of electrons in conventional materials [34–37].
Although Hamiltonians of many such systems can be approx-
imately realized using a combination of fixed potentials and
driving, it remains a challenge to prepare the system in a state
corresponding to a low enough effective temperature at which
the ground-state properties can be reliably explored [34].

Conventionally, state preparation proceeds via adiabatic
evolution [38]. The system is initialized in (or close to) the
ground state of a Hamiltonian that is easy to prepare—the
Hamiltonian is usually gapped and the ground state has low
entanglement. The parameters of the Hamiltonian are then
tuned such that the state evolves into the target state, which
is often the ground state of a target Hamiltonian. If the pa-
rameters are tuned slowly enough, the quantum state stays in
the ground state of the instantaneous Hamiltonian. However,
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the time required to adiabatically prepare a state scales as the
square of the inverse of the smallest energy gap encountered
when tuning to the target Hamiltonian [38]. If the gap closes
during evolution, excitations are inevitably produced and adi-
abatic techniques fail to produce the target state with high
probability.

In cases where adiabatic evolution fails or takes longer
than the coherence time of the quantum simulator, shortcuts
to adiabaticity are required. For this purpose, counterdiabatic
driving was introduced to counter the production of excita-
tions using auxiliary time-dependent Hamiltonians [39–41].
Optimal control protocols such as bang-bang protocols have
been developed [33,42–44] and rely on classical optimization
of the protocol. Spatially inhomogeneous quenches have also
been developed, where portions of a system function as a sink
for excitations [45,46].

For systems that exhibit emergent Lorentz symmetry, an
efficient route to preparing the ground state of Hamiltonians is
via spatiotemporal quenches [47–51]. This class of protocols
can be used to rapidly produce the ground state of such Hamil-
tonians even in the critical case, characterized by a linearly
dispersing mode with a minimum energy gap that vanishes
as ∼1/L, where L is the linear dimension of the system. In
particular, the system is initialized in a low-entanglement state
corresponding to the ground state of a Hamiltonian that has a
gapping perturbation on top of the critical Hamiltonian. The
gapping perturbation is then turned off along a quench front
moving at a time-dependent velocity v(t ) greater than the
speed of light c of the critical theory. In the simplest version
of the protocol, v(t ) is constant in time and optimal cooling
is obtained in the limit v → c+; see Fig. 1. (Such velocity
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FIG. 1. Energy density during a spatiotemporal quench in the
LR-TFI model with α = 6 expressed in terms of the percentage of
the critical spectral bandwidth. The quench front acts as a source
of excitations, populating modes in a chiral way. At the end of
the quench, the modes left in the wake of the front are populated
according to a redshifted temperature leaving a cold region of size
2�c = Lc/v at energy εc. Modes copropagating with the front are
populated according to a hot blueshifted temperature carrying energy
εh and confined to a region of size 2�h = L(1 − c/v)

thresholds are also observed with mobile defects [52,53].)
Such methods should be applicable to quantum simulators
trying to obtain low-energy states of the Hubbard model in
two dimensions [34,54] (in particular, at half filling and large
U , where a linear spin-wave dispersion emerges) and in one-
dimensional quantum gases where a low-energy Luttinger
liquid description often applies [55].

Intuitively, the protocol uses Doppler shifts to result
in cooling. In particular, the quench front excites modes
in a chiral way. Modes copropagating with the front are
blueshifted while counterpropagating modes are redshifted.
As the velocity of the front approaches the speed of light,
counterpropagating excitations are completely suppressed,
and all energy is carried by excitations propagating along
with the quench front, leaving behind a system with criti-
cal ground-state correlations. This method thus prepares the
ground state of critical models in a time that scales linearly
with system size, providing a parametric advantage over adia-
batic evolution, which requires a time increasing quadratically
with system size [48].

In this paper, we study these spatiotemporal quenches
with particular emphasis on an aspect inherent to many ar-
tificial simulators based on trapped ion setups or neutral
Rydberg atoms. These systems generically realize effective
spin models with long-range hopping and interactions, with
terms decaying as 1/rα in distance r, for 0 < α � 6. These
long-range interactions (LRIs) inherent to quantum simulators
introduce an extra layer of complexity to the effective model
realized, and it is vital to understand the effect of LRIs on
the efficacy of spatiotemporal quenches to implement them
on existing platforms.

For brevity, we focus our studies on spatiotemporal
quenches in one specific model—the long-range transverse
field Ising (LR-TFI) model with ferromagnetic power-law
interactions and interaction amplitude J (r) ∼ 1/rα , for a

range of α. Previous work studied spatiotemporal quenches
in the short-range TFI and Heisenberg models [47,49] whose
low-energy theories exhibit Lorentz invariance, and thus
a maximal speed of propagation of information, and the
presence of a linear light cone that captures causality. We
investigate three experimentally motivated values of α. We
show that for values of α = {3, 6}, where the critical dy-
namics is relativistic [56], Doppler-shift cooling persists and
approximately follow the exact results for free fermions if
ultraviolet (UV) modes remain unexcited by the quench front.
Furthermore, our simulations reveal that there is a clear local
minimum in the energy density of excitations as a function
of the velocity of the quench front at v ≈ c. These results
highlight the efficacy of such spatiotemporal quenches and
underline the fact that optimal diabatic cooling is obtained
in the limit where the quench front velocity approaches the
emergent speed of light, v → c.

For α = 2, the critical dynamics are nonrelativistic; the
protocol accordingly loses its Doppler cooling effect. Instead,
we focus on identifying the relevant length scales that con-
trol correlations and excitations—we find that both the usual
quantum Kibble-Zurek mechanism (QKZM) length ξKZ that
governs the formation of defect density in a homogeneous
quench, and a length scale ξSP that governs relaxation of
correlations near a domain wall separating regions on either
side of a phase transition, as introduced in Ref. [47], are
relevant. This generalized QKZM can be used to predict the
behavior of correlations and the energy density of excitations
as the velocity of the quench front is varied; we illustrate this
using appropriate scaling collapses. These generalized QKZM
arguments, in principle, also apply to the relativistic case but
the scaling function itself has nontrivial behavior that can
only be predicted using an understanding of Doppler shifts.
Importantly, these Doppler shifts predict a local minimum in
the excitation of the system in the relativistic case around
v ≈ c; such a minimum is entirely absent for α = 2.

This paper is organized as follows. In Sec. II, we introduce
the models studied and their critical properties. In Sec. III,
we show that the energy density and correlation length at the
end of the quench are qualitatively consistent with Doppler
cooling for α = 3 and α = 6. We compare our findings to
exact calculations computing quench dynamics in a system
of free relativistic fermions; these calculations are relegated to
Appendix B for readability of the main text. We briefly discuss
the effect of boundaries on the cooling efficacy. In Sec. IV,
the case α = 2 is studied, where using appropriate scaling
collapses, we identify the length scales governing excitations
and correlation functions. We discuss the growth of entangle-
ment entropy during the quench at the end of each section.
We conclude with a summary of findings and potential future
directions in Sec. V.

II. MODELS STUDIED AND QUANTUM
KIBBLE-ZUREK SCALING

We study spatiotemporal quenches in one-dimensional LR-
TFI models with Hamiltonians

H = −J

⎛
⎝∑

i< j

σ x
i σ x

j

|i − j|α + gc

∑
i

σ z
i

⎞
⎠ − h

∑
i

fi(t )σ z
i , (1)
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where σ
μ
i are the Pauli matrices, J is the interaction strength,

gc is the critical transverse field, and h is the initial gapping
perturbation. In what follows, we set J = 1 and let h = 4
for all three systems. The perturbation is quenched along
smooth fronts moving at velocity v such that fi(t ) = 1

2 +
1
2 tanh[(|xi| − vt )/vτ ], where τ is the smoothing parameter.
The quench is started at time t0 = −2τ , ensuring that fi(t0) ≈
1 at every site. At t = ∞, fi(t ) = 0∀i, and the critical Hamil-
tonian is obtained. The quench time is halved by starting the
quench in the center of the chain. In this paper, we restrict the
study of quenches in chains of up to N = 256 spins with all
time-dependent results presented for N = 128.

The system is initialized in the ground state of the para-
magnetic phase with large h. The initial wave function
is obtained using ITensor’s density matrix renormalization
group (DMRG) algorithm [57]. Concretely, the Hamiltonian is
represented as a matrix product operator consisting of a sum
of k exponentially decaying Hamiltonians with different de-
cay lengths that together approximate power-law interactions
[58,59]. The error in the LRI amplitude at any site is restricted
to 10−6J by using k = 3, 6, 8 exponentials for α = 6, 3, and
2, respectively. The quality of the approximation is verified by
a scaling collapse of the energy gap for all three systems—see
Appendix A—where we find that the critical transverse fields
and critical exponents are consistent with previous numerical
studies [60–63]. Next, time evolution is carried out with the
fourth-order time-dependent variational principle [64,65]. At
every time step, the spin correlations, the (von Neumann)
entanglement entropy, and the total energy with respect to
the critical Hamiltonian are calculated using standard matrix
product state (MPS) techniques [66].

We also compute the energy density; we define this locally
over each bond between sites i, i + 1, as the expectation value
of the operator

hi = −
∑

odd r�1

1

rα
σ x

i− r−1
2

σ x
i+ r+1

2
− 1

2

∑
even r�2

1

rα

× (
σ x

i− r
2
σ x

i+ r
2
+ σ x

i− r
2 +1σ

x
i+ r

2 +1

) − gc

2

(
σ z

i + σ z
i+1

)
(2)

where i ∈ [1, N − 1]. Here we used the critical value of the
transverse field as we are interested in finding the energy
above the ground state of the critical system. Note further
that

∑
i hi = H − gc

2 (σ z
1 + σ z

N ); thus, the local energy density
defined in this way sums to the total energy besides irrelevant
boundary terms.

The choice of α studied in this work is motivated ex-
perimentally. Dipole-dipole interactions and Van der Waals
interactions between neutral Rydberg atoms in optical traps
naturally yield effective spin models with α = 3 and α = 6
power-law interactions [67], respectively. Trapped ion ex-
periments can simulate effective spin models with phonon
mediated LRIs with 0 < α < 3. In practice, experiments
are limited to α � 1.5 [7]. We note that in general one-
dimensional spin models, the tightest Lieb-Robinson bounds
for 1 < α < 2 predict a logarithmic light cone with a
boundary t ∼ log(r), polynomial light cones with t ∼ rκ for
2 < α � 3 [68] and linear light cones t ∼ r for α > 3 [69],
with α = 2 and α = 3 being limiting cases of these three
regimes.

The LR-TFI model has a second-order phase transition
separating a ferromagnetic phase for g < gc and paramagnetic
phase for g > gc. The critical points of the Hamiltonians in
Eq. (1) are found by performing a scaling collapse of the
energy gap calculated with DMRG as a function of the trans-
verse field, for various system sizes up to N = 192; details are
presented in Appendix A. We find that the calculated critical
fields gc and critical exponents ν agree well with previous
quantum Monte Carlo and DMRG investigations [60–63].
Moreover, renormalization group (RG) calculations of the
LR-TFI model with α = 1 + σ predict relativistic dynamics
(z = 1) for σ > 7/4. The critical theory for α � 3 is under-
stood to be the same as the short-range model, thus described
by a free fermion theory. For 2/3 < σ < 7/4, the dynamical
critical exponent is calculated in an epsilon series expansion
with ε = 3σ/2 − 1, giving z = σ/2 + ρ(σ )ε2 + O(ε3) with
ρ(σ ) ≈ 1/[24(1 + σ 2)]. For α = 2, z ≈ 0.505 and the critical
dynamics are nonrelativistic.

Near criticality, the equilibrium properties of the system
become universal and are described by a correlation length
ξ ∼ |g − gc|−ν , where ν is the critical exponent and g − gc

measures the distance to criticality. The corresponding en-
ergy gap is � ∼ |g − gc|zν , where z is the dynamical critical
exponent. In homogeneous phase transitions, where the pa-
rameter g(t ) is globally tuned to or across the critical value
gc at a rate 1/τ , the Kibble-Zurek mechanism describes
the typical length- and timescales at which adiabatic evolu-
tion breaks down [70–72]. Adiabatic evolution stops when
the instantaneous correlation length diverges at a rate faster
than a threshold velocity. For a general dispersion relation
ω ∼ qz, the group velocity of modes at length scales ξ (or
q ∼ 1/ξ ) is given by vq ∼ ξ 1−z. Solving dξ/dt = vq gives
ξKZ ∼ τ ν/(1+zν), called the healing length of the system. It
describes the typical size of symmetry-broken regions caused
by the excitations produced during the quench. The threshold
velocity can be estimated [47,51] as

v∗ ∼ vq(q = 1/ξKZ) ∼ ξ 1−z
KZ ∼ τ (1−z)ν/(1+zν). (3)

In systems with z = 1, the threshold velocity is a constant
and given by the maximum group velocity of quasiparticle
excitations. The system evolves adiabatically when the corre-
lation length changes at a rate much slower than this threshold
velocity (the exact dependence of excitation energy on the
quench front velocity may exhibit important nonmonotonicity
as we discuss in Sec. III).

In inhomogeneous phase transitions, the QKZM must be
generalized to account for the moving quench front [47,51].
At fixed time T , the quench front is at location xc = vT and
g(x) ∼ gc + x−xc

vτ
near the front. Even at equilibrium, the cor-

relation length diverges as ξ (x) ∼ g(x)−ν , which influences
the behavior of correlations near the front. In a static system
with an inhomogeneous perturbation g(x), a length scale ξSP

describing the decay of the order parameter to equilibrium in
the symmetry broken phase [73,74] can be found by compar-
ing the instantaneous correlation length ξ (x) with the distance
x − xc to the critical point on the quench front. This yields

ξSP ∼ (vτ )ν/(1+ν). (4)

The correlation functions and the energy density in our sys-
tem generally depend on several length scales—the prominent
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ones being ξKZ and ξSP—and the spatial region in which the
correlator is being calculated. We attempt to identify these
length scales in the various cases studied and provide scaling
functions where appropriate in the following sections.

III. DOPPLER COOLING OF LONG-RANGE
MODELS WITH z ≈ 1

The heat-wave picture developed in Ref. [48] summarizes
the relativistic (or Lorentz) cooling mechanism for superlumi-
nal quench fronts presented in this section. In the heat-wave
picture, the population of modes excited by the quench front
is approximated by spatially segregated thermal distributions
as shown in Fig. 1. Modes copropagating with the front
are confined to the region ct < |x| < vt and populated at a
blueshifted temperature, while the counterpropagating modes
occupying the region 0 < |x| < ct are populated at a red-
shifted temperature. For free relativistic fermions, as pertains
to the short-range limit of the critical TFI model, one can
perform detailed calculations of these mode populations; see
Appendix B for details. The Pauli exclusion principle here
prevents the ∼1/k population of modes calculated in the case
of spatiotemporal quenches in free bosons [48,49]. Instead,
the population of modes is given by

NF
θ (k) ≈ 1

2
for ck 	 m

γ η(θ )
, (5)

where γ = 1/
√

1 − β2 is the Lorentz factor with β = c/v,

η(0) ≡ η =
√

1+β

1−β
is the relativistic Doppler factor associated

with copropagating modes and η(π ) = 1/η is associated with
counterpropagating modes. In the hot region, modes are occu-
pied up to k ∼ m

c
η

γ
while those in the cold region are occupied

up to k ∼ m
c

1
ηγ

. As v → c+, the Doppler factor diverges and
the cold region is left completely unexcited. Integrating over
momenta yields the result that the energy density carried by
right- and left-moving modes is ∼1/[γ 2η(θ )2].

We note further that even in the nearest-neighbor limit of
the TFI model, where an exact free fermion description holds,
the mode dispersion deviates from the relativistic form in the
limit k → π . These modes are not cooled with the above
Doppler factors as their group velocity deviates significantly
from c. Thus, it is necessary to consider a smoothing param-
eter τ (which is finite) that prevents UV modes from getting
excited—these are expected to be exponentially suppressed
for ck � τ ∼ O(1), which prevents heating at energies where
the dispersion relation deviates from the linear relation
ω = ck.

We begin by presenting results of spatiotemporal quenches
for the LR-TFI models with α = 6. A scaling collapse of the
energy gap reveals that the critical exponents exactly match
those of free fermions (z = 1, ν = 1)—see Appendix A. The
system is quenched to criticality with gc(N = 128) = 1.01.
Note that gc(∞) = 1.031 reported in Appendix A corre-
sponds to the critical value in the thermodynamic limit. The
excitation energy density at the end of the quench at time
tq = N/2v + 2τ closely follows the theoretical prediction for
free fermions with speed of light c = 2.036 as shown in Fig. 2.
For free fermions (which should closely describe the critical
properties of the LR-TFI models with α � 3), we can compute

FIG. 2. (a) The total energy density for α = 6 at time tq is shown.
(b) The average energy density in the center of the spin chain is
shown. The averaging is done over the cold region −R < x < R,
where R = min(N/4, ctq ) centered about x = 0 and over a time in-
terval T = 2. The red-dotted lines show the free fermion prediction
with c = 2.036 and the black dotted line shows the energy density at
the beginning of the quench

exactly the energy and spatial distribution of excitations due to
the spatiotemporal quench. In particular, the energy density εc

in the cold region |x| < ctq is found to be εc ∼ 1/η2γ 2 while
that in the hot region ctq < |x| < vtq is εh ∼ η2/γ 2—see Ap-
pendix B. The average energy density over the entire length
of the system must then be εavg ≈ (1 − c

v
)εh + c

v
εc ∼ 1

γ 2 , as
shown in Fig. 2(a). Near v = c+, the quench excites higher
frequency modes that are less efficiently cooled because of
their nonlinear dispersion. Increasing τ restores the cooling
effect by adiabatically suppressing the excitation of modes
ck � τ−1 in the laboratory frame. This effect is particularly
strong in the cold region, where the energy density follows
∼1/η2γ 2 more closely as τ is increased as shown in Fig. 2(b).

The apparent minimum that can be seen near v = c in
Fig. 2(b) is due to Doppler cooling in both limits of v → c.
For subluminal quenches, the modes excited by the moving
front continue interacting with it during the entirety of the
quench. The waves simply bounce back and forth between the
right and left propagating quench fronts. A classical solution
to a moving front is presented in Appendix C. It shows that
in the limit of v → c−, modes reflecting off of the moving
front are redshifted by 1/η2 while no modes are transmitted.
This leads to a ∼1/η2 cooling. Note that the Doppler cooling
factor η as defined in the subluminal case is the same as
in the superluminal case but with β → 1/β. Both lead to
near-perfect redshifts in the limit v → c.)

The heat-wave picture motivated in Ref. [48] is also
supported by the spin correlations. The correlations decay
exponentially with two length scales that can be associated
with the cold and hot regions as shown in Fig. 3(a). Using the
observation that the excitation energy scales as ε ∼ ξ d+z near
criticality, the correlation length ξc = ηγ can be identified in
the cold region (corresponding to an energy density εc).

The correlator decays away from x = 0 on two different
length scales corresponding to the cold and hot regions, as
seen in Fig. 3(a). Additionally, the correlation length increases
as the quench front velocity v approaches c in the cold re-
gion, while it decreases in the same limit in the hot region,
which agrees again with the heat-wave picture. Quantitatively,
we examine the autocorrelator in the cold region using the
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FIG. 3. (a) The spin correlations for α = 6 are shown for τ = 0.4
and various velocities once the quench front reaches x ≈ 50. The
cold region is identified with circles while the hot region is identified
with triangles. Crosses seen for v = 2 represent sites that are still in
the gapped region locally (and thus have a decay length different
from the cold and hot regions altogether). (b) A scaling collapse
of the spin correlations with ξ = ηγ is shown for different τ . The
critical exponent of the correlation 2� = 0.25 is found by doing a
scaling collapse of the critical correlations (see Appendix A). Note
that for τ = {0.7, 1}, the velocities v < 4.0 are excluded from the
scaling collapse as the correlation length approaches N/2 and we are
limited by finite size effects.

following ansatz:

Cx(r < ct ) = 〈
σ x

0 σ x
r

〉 = ξ−2�
c FC

(
r

ξc

)
, (6)

which identifies the scaling of the correlation length ξc with
the quench velocity according to the heat-wave picture. We
note that the autocorrelation function shows good scaling col-
lapse with ξc over multiple quench front velocities, as seen in
Fig. 3(b).

In the spatiotemporal quench we study, the von Neumann
entanglement entropy (SvN) also appears to increase slower
than the expected linear growth in homogeneous quenches
[75,76] as shown in Fig. 4. Optimal quench protocols with
v → c and large τ show nearly logarithmic growth of the
entanglement and SvN at tq approaches the ground-state value

FIG. 4. The growth of the von Neumann entanglement entropy
during the quench for α = 6 is shown for τ = 1. The red-dotted line
shows linear increase and the black-dotted line shows a logarithmic
1
6 ln(ct ) growth, as would be expected for the short-range TFIM in its
ground state over a region of size L = ct . Inset: The entanglement
entropy at the end of the quench is shown for different τ as a func-
tion of front velocity. The black-dotted line shows the entanglement
calculated at criticality using DMRG.

calculated at criticality with DMRG, as shown in the inset of
Fig. 4.

The heat-wave picture persists in spatiotemporal quenches
in the LR-TFI model with α = 3, as shown in Fig. 5(a).
The system is again initialized with h = 4 and quenched
to criticality with gc(N = 128) = 1.38. For this system, RG
calculations predict that z = 1 and that critical dynamics are
relativistic. However, a fit of the minimum energy gap as a
function of the system size gives z ≈ 0.9. The critical field
and critical exponents obtained from a collapse of the gap
energy using z = 0.9 closely match the results reported in
Refs. [60–63]. Despite this deviation from z = 1, the rela-
tivistic cooling effect persists, as can be seen from the energy
density in the center of the chain at t = tq as shown in
Fig. 6(a), where a clear minimum is realized as a function
of the quench front velocity, and the appearance of hot and
cold regions, as seen in Fig. 5(c). We note that, in principle, a
τ−dependent threshold velocity v∗ as estimated by QKZM
arguments [Eq. (3)] can replace the critical velocity c in a
putative heat-wave picture that does not rely on relativistic
Doppler cooling. However, the velocity v∗ as understood in
these arguments merely distinguishes quenches that proceed
adiabatically (for v < v∗) from those that proceed nonadiabat-
ically (for v > v∗). It cannot explain the minimum observed in
the energy density as a function of the quench front velocity.
The latter requires a Doppler cooling interpretation and sug-
gests the applicability of such relativistic physics even in the
α = 3 case.

We note further that the results are not in as close agree-
ment with the free fermion findings as for α = 6. The energy
density in the cold region appears to follow the free fermion
result for velocities v � 5 with the critical velocity c = 3.705
(calculated by fitting a light cone for correlations arising from
a local quench; see Appendix A) but fails to show good agree-
ment at smaller quench front velocities. Unlike the α = 6
case, the interface between the hot and cold regions does not
appear to coincide with |x| = ct , as seen in Fig. 5(a), with
the velocity c as identified above. This is putatively due to
the longer range of interactions which also smooth out the
separation between hot and cold regions as α is lowered, as
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FIG. 5. The energy density during a spatiotemporal quench
shown as the ratio of e(x, t )/e(t = 0). (a) Quenches in systems
with α = 3 show a persisting heat-wave picture. The white dotted
line shows the light cone with c estimated via a collapse of the
spin correlations. The initial energy is e(t = 0) = 4.9% of spectral
bandwidth. (b) For α = 2, large front velocities are necessary to see
a separation of higher and lower energy density regions. This is due
to the existence of the dynamical threshold velocity v∗ and is not a
relativistic effect. Initially, e(t = 0) = 1.8% of spectral bandwidth.
(c) Comparing e(x, tq )/e(t = 0) for different α.

seen in Fig. 5(c), and make identification of a clear boundary
between these regions challenging. A scaling collapse with
the correlation length ξ = ηγ is provided in Fig. 6(b). The
best collapse using c = 3.705 reveals that 2� = 0.17, which
deviates slightly from the ground-state value of 1/4 calculated
from a scaling collapse of the spin correlations (see Ap-
pendix A). The discrepancy can arise from two sources—we
are not precisely at the ground state after these quenches, and
the correlation length can exceed the finite system size studied
for a range of velocities.

These results show in summary that the heat-wave picture
extends even to α = 3, and the physics of Doppler cooling can

be seen even though we obtain a dynamical critical exponent
that deviates slightly from z = 1. The entanglement entropy
produced during the quench grows slower than linearly as
shown in Fig. 6(c) and grows nearly logarithmically for v � 3.
Together, these data show that the Doppler cooling effect in
spatiotemporal quenches continues to offer a strong advantage
over homogeneous quenches in preparing critical states of the
LR-TFI model for α � 3 where z ≈ 1.

At time tq, the quench produces a hot region of size �h =
L(1 − c/v) that is reflected at the boundaries of the system, as
can be seen in Fig. 1. The energy density in this region scales
as εh ∼ m

L
η2

γ 2 → 4m
L (v → c+), as calculated in Appendix B.

As v → c+, �h → 0 and the energy is now localized in a
region scaling with ξSP ∼ (vτ )ν/(1+ν), resulting in an excess
energy density in the system scaling as ∼εhξSP/L ∼ 1/L2.
To utilize the cooling scheme developed in this paper, the
reflections off the boundaries must be damped. Adiabatically
decoupling small regions of the system close to the bound-
aries could trap the excitations at the edges of the system
and leave the central part unexcited. Rydberg and trapped
ion experiments might already allow for such damping at the
boundaries by increasing the interparticle spacing as studied
in Ref. [46]. The study demonstrated that reducing the size
of the effective Hamiltonian in a region acting as a heat bath
removed entropy from the system, resulting in a conformal
cooling effect. Further investigation is needed to determine if
a dynamical decoupling scheme can prevent reflections at the
boundaries in the cooling protocol presented in this paper.

IV. KIBBLE-ZUREK MECHANISM FOR α = 2

Increasing the range further to α = 2 leads to different
dynamics. The system is quenched to criticality with gc(N =
128) = 2.3285. Higher and lower energy regions, as shown
in Fig. 5(b), are still visible in the quenches although higher
velocities are needed to observe this distinction. The presence
of hot and cold regions may be explained by the existence of
the dynamical threshold velocity v∗ in Eq. (3). As was the case
with α = 3, there is no sharp interface between these regions
as shown in Fig. 5(c).

To analyze the properties of the system during the quench,
we use the dynamical critical exponent z ≈ 0.505 calculated
using RG in Ref. [56]. The critical theory is suggested to have
dispersion modes with a dispersion ω ∼ q1/2, and Doppler-
shift cooling arguments cannot be applied here. Instead, we
show that the dynamics are dominated by a competition be-
tween the homogeneous-quench QKZM healing length ξKZ ∼
τ ν/(1+zν) and the static inhomogeneous length scale ξSP ∼
(vτ )ν/(1+ν). The ratio of ξKZ and ξSP in fact relates to the ratio
of the quench front velocity to the τ−dependent threshold
velocity of the quench,

ξSP

ξKZ
∼

(
v

v∗

)ν/(1+ν)

, (7)

where v∗ = τ (1−z)ν/(1+zν) is the dynamical threshold velocity
identified in Eq. (3).

At fixed time t∗, a scaling ansatz for the spin correla-
tions and excitation energy density involving these two length
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FIG. 6. (a) The average energy density for α = 3 at time tq is shown. The averaging is done over the cold region −R < x < R, where
R = min(N/4, ctq ) centered about x = 0 and over a time interval T = 2. The red-dotted line shows the free fermion prediction for c = 3.705
(as found in Appendix A and the black-dotted line shows that initial energy density. (b) The spin correlations are collapsed using ξ = ηγ . The
best collapse for c = 3.705 is obtained for 2� = 0.17, a value smaller than the predicted 2� = 0.25 (see Appendix A). (c) The growth of von
Neumann entanglement entropy is shown. The red-dotted line shows linear increase while the black-dotted shows a 1/6 ln(t ) increase.

scales yields

ε(t∗) = ξ
−(d+z)
SP Fε

(
v

v∗

)
, (8)

Cx(x, t∗)

Cx(xc, t∗)
= FC

(
x − xc

ξSP
,

v

v∗

)
, (9)

where Fε and FC are unknown functions and the ratio of the
length scales ξKZ and ξSP is considered inside the scaling
functions via the ratio v/v∗. Note that the scaling ansatz of
Eqs. (8) and (9) also works for α = {3, 6} but only an exact
calculation can reveal the Doppler cooling effect that leads to
nonmonotonic cooling as a function of v.

We begin by performing a scaling collapse of the total
energy density at the end of the quench according to Eq. (8)
as shown in Fig. 7(a). The collapse confirms that the dy-
namics are influenced by a non unique threshold velocity v∗
determined by the quench rate τ . We also note that there
does not appear to be any minimum in the energy density as
a function of the quench front velocity. The energy density
simply decreases as this velocity is lowered, in a marked

difference from the result for α = 3, 6. This further confirms
that the α = 2 system is not characterized by Doppler cool-
ing. A collapse of the spin correlations is done when the
quench front reaches x = 40 (at time t = 40/v) according to
Eq. (9), as shown in Fig. 7(b). The collapse works reasonably
well for −10ξSP < x − xc < 5ξSP for velocities v < 8 and it
shows that ξSP is indeed the correct length scale determining
correlations close to the quench front. This length scale also
appears to play a role in determining the energy density over
the entire spin chain. For v > 8, ξSP is large enough at x = 40
that the collapse of correlations does not work well due to
strong interaction with the system boundaries, as can be seen
in the inset of Fig. 7(b).

The von Neumann entanglement entropy also grows
differently for α = 2 than for α = 3, 6. The growth is approx-
imately linear in time until the quench front reaches the edges
of the spin chain, where it saturates close to the expected value
of the entanglement entropy in the ground state of the system
(as found from DMRG), as can be seen in Fig. 7(c). However,
the entanglement entropy appears to show larger oscillations

FIG. 7. (a) The total energy density for α = 2 at time tq is shown to collapse according to Eq. (8). Inset: The energy density at time tq is
shown, with the black-dotted line indicating the initial energy density. (b) The spin correlations near the quench front are collapsed for v � 8,
which shows that ξSP is the dominant length scale. The quench front is located at xc ≈ 40 in all cases. Inset: The uncollapsed correlations are
shown, including v = 10 and 15. (c) The growth of von Neumann entanglement entropy is shown. The red-dotted line shows linear increase
and the black-dotted line shows the entanglement entropy calculated with DMRG at criticality.
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about this mean value for larger velocities of the quench
front, in agreement with the reduction in energy density of
excitations as the quench front velocity is lowered. [We note,
in general, that the entanglement entropy can be tricky to
interpret as low entanglement (as in a product state) and high
entanglement (as found for excited eigenstates) both imply
heating.] The linear increase of SvN is putatively due to the
nearly logarithmic light cone t ∼ log r (see Ref. [68]) quickly
spreading information over the entire spin chain. It is an
open question whether a faster protocol with a time-dependent
quench front velocity could be used to create low-energy
states in this system.

The above results largely imply that for α = 2, the front
velocity serves as another adiabatic parameter with optimal
cooling achieved in the limit v → 0; a threshold velocity v∗
here can be used as a guideline approximately demarcating
adiabatic and nonadiabatic quenches.

V. CONCLUSION

In this paper, we show that smooth spatiotemporal
quenches can efficiently prepare critical ground states of one-
dimensional LR-TFI models. We confirm that for models
with z ≈ 1, when interactions J (r) ∼ 1/rα decay faster than
the case α = 3, a smooth quench front moving along x =
vt leaves a large section of the spin chain unexcited when
v → c, the velocity of excitations in the critical system. This
is evidenced by the close resemblance between the energy
density computed numerically for these LR-TFI models and
that calculated exactly for free relativistic fermions. In par-
ticular, the excitation energy shows a local but pronounced
minimum as a function of the quench front velocity v for
v ≈ c. For general v > c, a heat-wave picture emerges where
one obtains spatially separated hot and cold regions in the
system populated by excitations emanating from the quench
front and either co- or counterpropagating with respect to the
moving quench front. Going from α = 6 to α = 3 smooths
the separation between these hot and cool regions without
qualitatively impacting the results. Simple scaling relations
accompanied by a collapse of the spin correlations show that
the correlations decay on the diverging length scale ξc ∼ ηγ .
The optimal quench protocol also shows a nearly logarithmic
growth of the von Neumann entanglement entropy. It remains
to be shown whether the deleterious boundary reflections can
be neutralized by dynamically decoupling regions at the edges
of the system.

When the dynamical exponent z deviates sufficiently from
unity as for α = 2 [J (r) ∼ 1/r2], one still obtains an ap-
proximate heat-wave picture of excitations in the system for
large velocities of the quench front, with areas of high- and
low-energy density; a threshold velocity v∗ determined using
QKZM arguments potentially serves the role played by the
critical velocity in the z ≈ 1 case in separating hot and cold
regions. However, there is no local minimum in the energy
density of excitations at a function of the front velocity, which
suggests an important departure from the Doppler cooling
picture prevalent in the above cases. Instead, we considered
a general scaling picture in this case—we find that energy
density and spin correlations are determined by the interplay
between two length scales, one corresponding to the size of

broken symmetry clusters in a homogeneous quench accord-
ing to usual QKZM expectations and another corresponding to
the healing length of correlations in a system with a spatially
inhomogeneous gap with g < gc on one side of the system and
g > gc on the other side. The ratio of these lengths is in fact re-
lated to the ratio of the velocity of the quench front to a thresh-
old velocity v∗ that controls adiabaticity of the quench. The
state prepared grows monotonically closer to the target critical
ground state as the velocity of the quench front is reduced.

This paper motivates the implementation of spatiotemporal
quenches in one-dimensional spin chains on modern quan-
tum simulators. It remains to be shown that Doppler cooling
persists for two-dimensional systems with nonlinear disper-
sions. Spatiotemporal quenches are not expected to provide a
cooling advantage in all long-range systems. For power-law
interactions with α � 1, Lieb-Robinson bounds do not exist
and, as such, there is no light cone [68]. In that case, we could
expect that the optimal protocol is homogeneous as argued in
Ref. [43] concerning the preparation of the critical state of the
fully connected (α = 0) TFI model. It, however, remains to
be understood whether a quench with a time-dependent front
velocity v(t ) (see, for instance, Ref. [50]) could be used to
optimize the speed and efficacy of ground state preparation
for models with z < 1 where some kind of light cone exists.
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APPENDIX A: PROPERTIES OF LR-TFI MODELS

The critical properties of the LR-TFI models presented
in this paper are determined by doing a collapse of the en-
ergy gap between the ground state and first excited state of
the models calculated for different transverse fields h using
DMRG. It also serves as a consistency check for the ap-
proximation of power-law interacting Hamiltonian by a sum
of exponentially decaying Hamiltonians. For α = 6, we use
the dynamical critical exponent z = 1 based on Ref. [56].
The best collapse is obtained for the critical field gc ≈ 1.031
and critical exponent ν = 1 as shown in Fig. 8(b), closely
matching previous investigations [60–63].

For α = 3, the minimum gap at different N is not consistent
with z = 1 as expected from RG calculations [56]. A fit of
minh � = N−z is done to determine z ≈ 0.901. Although this
result differs from Ref. [56], it is still consistent with the
expectation that α = 3 is at the limit between linear and poly-
nomial Lieb-Robinson light-cones [69]. The best collapse is
obtained for gc ≈ 1.424 and ν ≈ 1.050 as shown in Fig. 8(b),
also consistent with previous studies [60–63].

For α = 2, the dynamical critical exponent is chosen
to be the corrected mean-field value of z ≈ σ/2 + ρ(σ )ε2

calculated in Ref. [56]. Here, σ = 1, ε = 3σ/2 − 1 and
ρ(σ ) ≈ 1/[24(1 + σ 2)], giving z ≈ 0.505. The best collapse
gives gc ≈ 2.522 and ν ≈ 1.285 as shown in Fig. 8(b), con-
sistent with the previously cited quantum Monte Carlo and
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FIG. 8. The energy gap between the ground state and first excited state is shown for spin chains of different lengths N . The insets show
the collapsed energy obtained with the indicated critical field gc, critical exponent ν, and critical dynamical exponent z. (a) α = 6. (b) α = 3.
(c) α = 2.

DMRG studies [60–63]. Out of the three data sets shown in
this section, α = 2 has the worst collapse. We believe this is
attributed to the large finite-size effects coming from using
open boundary conditions with longer range interactions.

The scaling collapse of the spin correlations presented in
Sec. III require knowledge of the scaling dimensions of the
correlator at criticality. We calculate these critical correlations
systems sizes of up to N = 256 spins, as shown in Fig. 9. We
use the system size dependent critical fields gc(N ), which can
be estimated by finding minh � at N = 128. The collapse is
done using

Cx(r) = N−2�FC

(
r

N

)
, (A1)

where we assume the only relevant length at criticality for
these systems is the system size N . The collapse works well
for the scaling dimensions predicted by the RG calculations
in Ref. [56]. For σ > 7/4, RG predicts that the scaling di-
mensions of Cx is the same as the free fermion theory. Thus,
we use 2� = 0.25 for α � 3. For 2/3 < σ < 7/4, the scaling

FIG. 9. A scaling collapse of the spin correlations calculated
with DMRG at criticality for α = 6, 3, 2. The scaling exponents
2� are taken from the RG calculations in Ref. [56]. For α � 3,
2� = 0.25 and for α = 2, 2� ≈ 0.505.

dimension is calculated using an epsilon series expansion giv-
ing 2� = 1 − σ/2 + ρ(σ )ε2 + O(ε3). In the case of α = 2,
it gives 2� ≈ 0.505, which collapses the data very well.

The last property that we are interested in is the speed of
light c in these systems. The following is inspired by previous
work on the light-cone spread of correlations in long-range
interacting systems [77]. To include the same finite-size ef-
fects found in the spatiotemporal quenches, we restrict the
calculation to chains of N = 128 spins. The critical ground
states of the LR-TFI models with α = 2, 3, 6 are perturbed
with the Pauli matrix σ z at site N/4 (which we refer to as
x = 0), as shown in Fig. 10. The wave function is evolved
with the time-dependent variation principle following the per-
turbation and the block von Neumann entanglement entropy
is calculated at each MPS bond at every time step. For α � 3,
the difference SvN(x, t ) − SvN(x, t = 0) evolves into a linear
light cone from which we can estimate the speed of light,
as shown in Figs. 10(a) and 10(b). The estimate is done by
finding when SvN(x, t ) grows by a certain amount (which we
call the cutoff) compared to the ground state. The cutoff is
chosen to be 0.1, a value that closely follows the light cone
boundary for α = 3, 6. For α = 2, the light cone is expected
to spread as t ∼ exp(3

√
log r) [68], such that no attempt at

calculating a speed of light was made.

APPENDIX B: FORMALISM FOR FREE FERMIONS AND
SOLUTION TO INSTANTANEOUS

SUPERLUMINAL QUENCH

1. Problem statement

The problem we would like to solve is specified by the
following action and commutation relations:

S =
∫

dt
∫ L/2

−L/2
dx

[
i

2
(ψ̄γ α∂αψ − ∂αψ̄γ αψ )

− m�(x − vst )ψ̄ψ

]
,

{ψa(x, t ), ψ†
b (x′, t )} = iδ(x − x′)δa,b, and

[ψa(x, t ), ψb(x′, t )] = 0. (B1)
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FIG. 10. The speed of light c is estimated by doing a local per-
turbation of the ground state of the LR-TFI model and time evolving
with TDVP. The difference SvN(x, t ) − SvN(x, t = 0) evolves into a
light cone following the perturbation. The black-dotted lines repre-
sent the first instance of the difference being larger than a cutoff of
0.1. (a) In α = 6, c ≈ 2.036. (b) In α = 3, c ≈ 3.705. (c) In α = 2,
the light-cone is expected to be logarithmic and no attempt is made
to determine the speed of light.

We set the speed of light c = 1. We will work in the Weyl
basis, wherein γ 0 = γx and γ 1 = −iσy, σx,y are Pauli matrices
(see Sec. 4.2.4 in Ref. [78] and, more generally, Ref. [79]),
ψ̄ = ψ†γ 0, where ψa(x, t ) is the field of the Weyl fermion
with spinor index a = 1, 2 and ∂μ = (∂t , ∂x ). Note that we will
use superscript for the spinor index while the subscript will be
used to distinguish different solutions of the Dirac equation.
The quench occurs locally along a front that propagates to-
wards the right at a fixed, supersonic speed vs > 1. We define
the inverse subsonic velocity us ≡ v−1

s < 1.
While the Hamiltonian before and after the quench satisfies

the usual discrete symmetries associated with free relativistic
fermions, imposing a boundary necessitates the breaking of
some of these symmetries, see Ref. [80]. We work with natural
states without parity (P) and charge-conjugate (C) symmetries

but that keep time-reversal (T) and the combined CPT sym-
metry. These states also satisfy the condition that the current
cψ†σzψ is zero at the edges of the system. This is affected
with the following set of boundary conditions: ψ1(L/2) =
ψ2(L/2), ψ1(−L/2) = −ψ2(−L/2). One can check for these
conditions that T ψ (x, t ) = −σxψ

∗(x,−t ) and CPT ψ (x, t ) =
−σzψ (−x,−t ) satisfy the same boundary conditions while
Pψ (x, t ) = σxψ (−x, t ) and Cψ (x, t ) = σzψ

∗(x, t ) do not.

2. Method of solution

a. General principle

We work in the Heisenberg picture and describe the field
operator prior to the quench (t < x/vs) by a mode expansion
in terms of the complete set of solutions of the massive Dirac
equation, iγ μ(∂μ − m)ψ = 0. These are positive-frequency
particle (or electron) modes vn(x, t ), and negative-frequency
anti-particle (or hole) modes ṽn = Cvn = σzv

∗
n , such that

ψ (x, t < x/vs) =
∑

n

[ fnvn(x, t ) + f̃ †
n ṽn(x, t )]. (B2)

The coefficients fn and f̃n satisfy the usual fermionic an-
ticommutation relations: all operators anticommute besides
{ fn, f †

m} = δn,m and { f̃n, f̃ †
m} = δn,m. The initial state is defined

via the relation fn |0〉 = 0 and f̃n |0〉 = 0 for all n. Note that
this amounts to setting the initial state as being the vacuum of
holelike and particlelike excitations, which is the relevant case
for a critical system. As before, the above expansion is valid
for all times t < x/vs, since this quench occurs on a spacelike
hypersurface.

After the quench, the field operator evolves according to
the massless KG equation and the mode expansion above is
not valid for t > x/vs. To find correlations for subsequent
times, we expand the massive modes in terms of the massless
modes. We reserve the notation un(x, t ) and ũn(x, t ) for the
massless modes, and define

vn|x=vst =
∑

m

[α∗
n,mum + βn,mũm]|x=vst ,

ṽn|x=vst =
∑

m

[αn,mũm + β∗
n,mum]|x=vst , (B3)

where αn,m and βn,m are the Bogoliubov coefficients, and the
second equation follows from the first upon application of the
charge-conjugate operation. Then, the evolution of the field
operator for times t > x/vs can be described by the expansion

φ(x, t > x/vs) =
∑

n

[γn(x, t ) fn + γ̃n(x, t ) f̃ †
n ], (B4)

where

γn(x, t ) =
∑

m

[α∗
n,mum(x, t ) + βn,mũm(x, t )],

γ̃n(x, t ) =
∑

m

[αn,mũm(x, t ) + β∗
n,mum(x, t )]. (B5)

b. Dirac inner product and normalization of modes

We use a coordinate-system invariant normalization
scheme for the modes that allows us to determine the Bogoli-
ubov coefficients. We define the Dirac inner product between
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two solutions ψa and ψb as

(ψa, ψb) =
∫

dx
√

gnμJμ

(a,b)(x), where

Jμ
(ψa,ψb) = ψ̄γ μφ. (B6)

Here, the integral is over all space, g is the determinant of
the induced metric on the spacelike coordinate,

√
gdx is the

covariant volume element, nμ is a future-directed time-like
unit vector normal to the spacelike hypersurface, and Jμ

(a,b)
is the Dirac current. If ψa and ψb satisfy the same Dirac
equation (massive or massless), then it is easy to check that
∂μJμ

(a,b) = 0. Thus, the integral over all space of the charge as-
sociated with the current nμJμ is constant over time. Note that:

(a) If the modes vn and ṽn form a complete set of modes
according to the Dirac inner product, that is, (vn, vm) = δn,m,
(vn, ṽm) = 0, and the mode operators fn and f̃n satisfy the
usual fermionic anticommutation relations, then it can be
shown that the field operators (and its conjugate) satisfy the
correct commutation relations as described in Eqs. (B1).

(b) From its formulation in Eqs. (B6), it is explicit that
the Dirac inner product is invariant under transformation
into a coordinate system which admits a separation between
timelike and spacelike coordinates, that is, the metric is
of the form ds2 = [N (x, t )]2dt2 − g(x, t )dx2. Thus, the nor-
malization relations (un, um) = δn,m, (vn, vm) = δn,m, etc. are
invariant under such coordinate transformations.

(c) The above two properties imply that under a Lorentz
transformation of the coordinates (without any change in the
operators fn, f̃n), the field operators continue to satisfy the
commutation relations in Eqs. (B1) in the transformed coor-
dinates, as appropriate for a relativistic field.

(d) The Dirac inner product has the symmetry that
(ψa, ψb) = (ψ̃a, ψ̃b). Thus, both particle and antiparticle
modes follow the same normalization scheme (un, um) =
(ũn, ũm) = δn,m.

c. Determination of αn,m and βn,m

To determine the coefficients αn,m and βn,m, we must
evaluate the Dirac inner product between modes along the
curve x = vst . It is useful to Lorentz boost into a coordinate
frame given by x′ = γs(x − ust ), t ′ = γs(t − usx) with γs =
1/

√
1 − u2

s , as in this frame, the quench trajectory is simply
t ′ = 0.

The Dirac inner product evaluated at time t ′ = 0 in this
frame reads

(ψa, ψb) =
∫ L/2γs

−L/2γs

dx′ ψ†
a ψb

∣∣∣∣
t ′=0

. (B7)

Assuming Eqs. (B3) hold at t ′ = 0, one may evaluate
(un, vm) and (un, ṽm) to find

(un, vm)|t ′=0 =
∑

m

(un, α
∗
n,mum + βn,mũm)

∣∣∣∣
t ′=0

= α∗
n,m,

(un, ṽm)|t ′=0 =
∑

m

(un, αn,mũm + β∗
n,mum)

∣∣∣∣
t ′=0

= β∗
n,m, (B8)

where we used (un, ũm)|t ′=0 = 0 and (un, um)|t ′=0 = δn,m. The
above suggests that if Eqs. (B3) are simultaneously satisfiable,
then the coefficients αn,m and βn,m must be given by Eqs. (B8).

To confirm that these are indeed the correct solutions, we can
substitute these solutions into Eqs. (B3). Using the commuta-
tion relations on the field operators [as in Eqs. (B1)] at t ′ = 0
directly confirms the validity of the result.

By the methods above, we may also show the inverse
expansion at t ′ = 0:

um|x=vst =
∑

n

[αn,mvn + βn,mṽn]

∣∣∣∣
x=vst

,

ũm|x=vst =
∑

n

[α∗
n,mṽn + β∗

n,mvn]

∣∣∣∣
x=vst

. (B9)

Using these, one can easily prove that these fermionic Bogoli-
ubov coefficients have the following useful property:

(un, um) =
∑

a

[α∗
a,nαa,m + β∗

a,nβa,m] = δn,m. (B10)

3. Solution of the problem

a. Normalized modes

We now provide details of the solution of the problem de-
fined in Eqs. (B1). The massive particle modes are defined as

v±,k = 1√
2L

(vk ± iv−k ) for k > 0, where

vk =
(

cos (θk/2)
sin (θk/2)

)
e−ikx+i�kt , (B11)

ṽ−k =
(

sin (θk/2)
cos (θk/2)

)
eikx+i�kt ,

while the antiparticle modes are defined as

ṽ±,k = 1√
2L

(ṽk ± iṽ−k ) for k > 0, where

ṽk =
(

cos (θk/2)
− sin (θk/2)

)
eikx−i�kt , (B12)

v−k =
(

sin (θk/2)
− cos (θk/2)

)
e−ikx−i�kt .

In the above, cos(θk/2) =
√

1
2 + 1

2
k

�k
, sin(θk/2) =√

1
2 − 1

2
k

�k
, and �k = √

m2 + k2. The modes satisfy

the CPT symmetry conserving boundary conditions for
kL = nπ + π/2, with n ∈ [0, 2, 4, ...) for modes v+,k and
n ∈ [1, 3, ...) for modes v−,k .

An analogous set of massless modes u±,k>0 and ũ±,k>0 can
be found by setting the mass to zero in the corresponding
formulas for the massive modes. This is enforced by the
substitutions �k → ωk = |k|, cos(θk/2) → 1, sin(θk/2) → 0.

It is also useful to note the form of these modes in the
Lorentz-boosted frame. The coordinates and momenta are
boosted in the usual way, with k′x − �k′t → k′

Rx′ − �k′
R
t ′

and −k′x − �k′t → −k′
Lx′ − �k′

L
t ′. The spinor part is trans-

formed by multiplication with the matrix � ≡ −ie
iω
8 [γ 0,γ 1] =

(1/
√

η 0
0

√
η). Note that ω = tanh−1(−us) is the rapidity asso-

ciated with the Lorentz boost and η = √
(1 + us)/(1 − us) is

the usual relativistic Doppler factor.
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b. Bogoliubov coefficients

The Bogoliubov coefficients can be evaluated by expressing these modes in the Lorentz boosted coordinates and evaluating
the Dirac inner product at time t ′ = 0 as per Eqs. (B7) and (B8). The coefficients read

βε,ε′
k,k′ = (uε,k, ṽε′,k′ )∗ = 1

2L

[
cos(θk′/2)

η
F (kR + k′

R) − iε′ sin(θk′/2)

η
F (kR − k′

L )

− iε η sin(θk′/2)F (k′
R − kL ) − εε′ η cos(θk′/2)F (−kL − k′

L )

]
,

αε,ε′
k,k′ = (uε,k, vε′,k′ )∗ = 1

2L

[
cos(θk′/2)

η
F (kR − k′

R) − iε′ sin(θk′/2)

η
F (kR + k′

L )

+ iε η sin(θk′/2)F (−k′
R − kL ) + εε′ η cos(θk′/2)F (−kL + k′

L )

]
, (B13)

where F (x) = L
γs

sinc( xL
2γs

) and the Doppler shifted momenta are given by

kR = γs(k − usωk ) ∈
[

π

2Lη
,∞

)
, kL = γs(k + usωk ) ∈

[πη

2L
,∞

)
,

k′
R = γs(k − us�k ) ∈ [k′

0,−,∞), k′
L = γs(k + us�k ) ∈ [k′

0,+,∞), (B14)

with k′
0,± = γs

π
2 (1 ±

√
1 + 4m2/π2, which correspond to frequencies

ωR = kR = γs(ωk − usk), ωL = kL = γs(ωk + usk),

�R =
√

k2
R + m2 = γs(�k − usk), �L =

√
k2

L + m2 = γs(�k + usk). (B15)

c. Infinite-size limit, chiral excitations populations

We now work in the infinite-size limit and analyze the creation of excitations from the vacuum. We look at the creation of
massless antiparticles from the massive particle modes sitting in the vacuum (and vice versa) since this conversion precisely
amounts to the excitation of the system about the vacuum of the massless modes. Noting that the function F (x) → 2πδ(x) in
the limit L → ∞, we find

vε′,k′ (t ′ = 0) = cos

(
θk′

2

)
[ũ+,k + ũ−,k]

∣∣∣∣
k=k−1

R (−k′
R )

− i sin

(
θk′

2

)
[ũ+,k − ũ−,k]

∣∣∣∣
k=k−1

L (k′
R )

− iε′ sin

(
θk′

2

)
[ũ+,k + ũ−,k]

∣∣∣∣
k=k−1

R (k′
L )

+ particle content ∝ u±,k . (B16)

The above is a direct result of the integration over the four-momentum-conserving delta functions of the Bogoliubov
coefficients and one of these terms, ∝ δ(−kL − k′

L ), does not contribute. Two of these terms are associated with the production of
right movers [ũR,k = (ũ+,k + ũ−,k )/

√
2], and one term is associated with left movers (ũL,k = −i(ũ+,k − ũ−,k )/

√
2). We focus on

the first and second terms since the third term can be shown to be continuously related to the first term but carries a momentum
k > k0 while the first carries momentum k < k0, where k0 = k−1

R usγsm is of the order of the mass m.
We now evaluate the energy of the system after the quench. Note that the Hamiltonian H ≡ ψ† · h · ψ , with h ≡ −iσz∂x.

For ψ (x, t > x/vs) = ∑
ε′,k′ [γε′,k′ (x, t ) fε′,k′ + γ̃ε′,k′ (x, t ) f̃ †

ε′,k′ ], and the state being a vacuum of operators fε′,k′ and f̃ε′,k′ , we
find

〈H〉 =
∑ [(

α
ε1,ε

′
k1,k′

)∗(
α

ε2,ε
′

k2,k′
)(

ũ†
ε1,k1

· h · ũε2,k2

)] +
∑ [(

β
ε1,ε

′
k1,k′

)(
β

ε2,ε
′

k2,k′
)∗(

u†
ε1,k1

· h · uε2,k2

)]+ ∼ (ũ† · u and u† · ũ)

=
∑

ũ†
ε,k · h · ũε,k −

∑ (∑
βε,ε′

k,k′ ũε,k

)†
· h ·

(∑
βε,ε′

k,k′ ũε,k

)
+

∑ (∑
βε,ε′

k,k′ uε,k

)†
· h ·

(∑
βε,ε′

k,k′ uε,k

)
≈

∑
k

[
1 − NF

L (k)
]
(−k)ũ†

L,kũL,k +
∑

k

[
1 − NF

R (k)
]
(−k)ũ†

R,k ũR,k +
∑

k

NF
L (k) k u†

L,kuL,k +
∑

k

NF
R (k) k u†

R,kuR,k .

(B17)
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(a) (b)

FIG. 11. (a) Population of fermions before the quench. The par-
ticle states are unoccupied while the hole/antiparticle states are fully
occupied. (b) The population of hole and particle states is changed
after the quench for momenta k < m/η for left-moving modes and
k < ηm for right-moving modes. In the limit vs → 1+, η → ∞, and
we see that the left-moving modes are left entirely unexcited

In the above, all indices within any brackets are assumed
to be summed over. After the first equation, we neglect the
oscillating (in time) terms of the form ũ† · u and u† · ũ that are
expected to average out due to the integral over momenta. We
also used Eq. (B10) to eliminate the α coefficients in favor of
the β coefficients. The last equation follows by substituting
the result of Eq. (B16) into the second equation while neglect-
ing time-dependent terms of the form ũ†

ε,kũε′,k′ and u†
ε,kuε′,k′

that come with k �= k′. The chiral populations read

NF
L (k) = �kL − ωkL

2�kL

,

NF
R (k) = �kR − ωkR

2�kR

, (B18)

where kR = k/η and kL = ηk.
There is a cooling effect for fermions because the pop-

ulation starts decaying at a Doppler-shifted energy scale:
NF

L (k) ∼ 1/2 for k 	 m/η while NF
R (k) ∼ 1/2 for k 	 ηm,

and both decrease as 1/k2 for larger k. The population of
fermions before and after the quench is illustrated in Fig. 11.
The factor of 1/2 occurs due to spinor overlap between the
massive and massless modes: at k = 0+, the massless modes
have a spinor wave function (1, 0)T or (0, 1)T , but the massive
modes have a wave function 1√

2
(1,±1)T . Thus, the overlap

cannot exceed 1/2 due to Pauli exclusion. Another signifi-
cant difference is that the above result has a UV singularity
∼1/k2. Thus, the result corresponds to a UV singularity even
in d = 1. This UV singularity can be eliminated by adding a
time-scale to the quench.

4. Quench with a finite timescale

In this section, we discuss how the 1/k2 UV singular-
ity is removed by adding a timescale to the quench. This
problem has been analyzed in the context of particle pro-
duction in inflationary cosmology [81]. There, the metric
undergoes a scale change that is equivalent to a scaling of
the mass as it is the only term that breaks the conformal

invariance of the theory. For the sake of completeness, we note
the method used there and quote the result relevant for our
purposes.

We again study the case where the quench occurs uni-
formly in all space and impose periodic boundary conditions.
A generic solution to the time-dependent Dirac equation of
motion is then given by

χk (t ) = 1√
L

[
αk (t )

(
cos(θk (t )/2)
sin(θk (t )/2)

)
e−i

∫ t
ωk (t ′ )dt ′

+ βk (t )

(
sin(θk (t )/2)
cos(θk (t )/2)

)
e
∫ t

ωk (t ′ )dt ′
]
, (B19)

where αk (−∞) = 1, βk (−∞) = 0, ωk (t ) =
√

m2(t ) + |k|2,
and the angle θk (t ) is decided by the instantaneous frequency
of the mode ωk (t ). Note that χk (t → −∞) reduces to the
massive mode solution vk , while in the t → ∞ limit it is a
linear combination of massless particle and antiparticle solu-
tions with momentum k. We are interested in |βk (t = +∞)|2,
which is the population of excitations at momentum k after
the quench is over.

Plugging in the ansatz of Eq. (B19) into the time-dependent
Dirac equation of motion, we find

dαk

dt
= −βk

k dm/dt

2ω2
k

e2i
∫ t

ωk (t ′ )dt ′
,

dβk

dt
= αk

k dm/dt

2ω2
k

e−2i
∫ t

ωk (t ′ )dt ′
. (B20)

We assume βk (t ) 	 1 and αk (t ) ≈ 1 (justified a posteriori)
and solve for |βk|2. We now use the result from Ref. [81]
for this integral: it is approximated using the steepest de-
scent method and is a reasonable approximation when τ−1 �
ωk (t )—thus it is valid for τ−1 � m and k � m. The result for
the mass m(t ) = m f (−t/τ ) = 1

2 + 1
2 tanh(−t/τ ) is

Nk ≈
k�τ−1,m

|βk|2 ≈ e−2mτ−2 k2

m τ . (B21)

Thus, the excitation of modes with momentum k � τ−1 is
suppressed exponentially. The case where the quench occurs
nonuniformly via a space- and time-dependent mass m(x, t ) =
m f [(x − vs)/(vsτ )] cannot be analyzed exactly due to the lack
of momentum conservation. While one can boost to a frame
in which the quench does occur uniformly, the boundaries in
this frame can provide momentum kicks, making an exact
analysis difficult. Nevertheless, we expect that the analysis
above should remain valid for modes with momenta � 1/L
that are not particularly sensitive to the boundaries.

In the boosted frame, the quench occurs as m(x′, t ′) =
m f [− t ′

τγs
]. Thus, we expect the inverse of the timescale in the

boosted frame, τ ′−1 = τ−1/γs, to become the relevant energy
scale above which excitations are suppressed in the boosted
frame. In the laboratory frame, this implies a population

NF
θ (k) ≈ 1

2
for k 	 m

γsη(θ )
, (B22)
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and decaying exponentially in the opposite limits. To remind
the reader, for left-moving modes, θ = 0, η(θ ) = η, and for
right-moving modes, θ = π , η(θ ) = 1/η. Thus, the energy
density of the left- and right-moving modes is given by

εθ (τ )|τ−1≈m ∝
∫ m

γsη(θ ) k

2
dk ∝ m

Lm

1

(γsη(θ ))2
, (B23)

where Lm = m/c has dimensions of length.

APPENDIX C: SUBLUMINAL COOLING

In spatiotemporal quenches in the LR-TFI models with
z = 1, the energy density shows a minimum when the speed
v of the front approaches the speed of light. The superluminal
case is studied in Appendix B. Here, we offer a classical
argument for the existence of this minimum due to relativistic
effects in the subluminal case. In the following, we assume
that v < c. We note here as well that in the limit v → 0, the
energy density will again be suppressed, this time because it
corresponds to the adiabatic limit.

The modes excited by a subluminal moving quench front
interact with both fronts throughout the entirety of the
quench—the excitations released from, say, the right-moving
quench front will eventually bounce off the left-moving
quench front and interact again with the right-moving front.
Classically, the incoming wave will be transmitted through
and reflected by the front. The moving front forces moving
boundary conditions that change the transmitted and reflected
waves frequencies and momenta. The following is based
on previous work on front induced wave-packet engineering
[82,83]. The fields on both sides of the moving front are given
by

φ−(x, t ) = aine−i(ωint−kinx) + are−i(ωr t+kr x), (C1)

φ+(x, t ) = at e
−i(ωt t−kt x), (C2)

where ai are the amplitudes, ωi the frequencies, and ki the
wave vectors of the incoming, reflected, and transmitted
waves. The boundary conditions at x = vt are Dφ+ = Dφ−,

where D = {1, ∂t , ∂x}, leading to the phase matching condi-
tions

ωr

ωin
= 1 − v/Vin

1 + v/Vr
, (C3)

ωt

ωin
= 1 − v/Vin

1 − v/Vt
, (C4)

where Vi = ωi/ki is the phase velocity of the different waves.
The modes in the x < vt region are massless and have

dispersion ω = ck. The phase velocity is simply V = c, such
that Eq. (C3) becomes

ωr

ωin
= 1 − β

1 + β
= 1

η2
, (C5)

where β = v/c, which we recognize as a Doppler redshifting
of the frequency. Therefore, the energy of reflected modes is
redshifted leading to a strong cooling effect as v → c−. We
note that the Doppler shift factor employed here is different
(with β inversed to be precise) from the one employed in the
superluminal case, but the net result is the same—cooling is
strongest close to v → c.

The modes transmitted into massive region x > vt acquire
a mass such that their dispersion becomes ω = c

√
m2 + k2.

The phase velocity is Vt = c/
√

1 − m2/ω2
t and is now fre-

quency dependent. Plugging it into Eq. (C4) and solving for
ωt gives

ωt

ωin
= 1 + n′β

1 + β
, (C6)

where

n′ =
√

1 − η2m2

ω2
in

(C7)

is used to define a cutoff frequency. Indeed, only modes
with ηm < ωin can be transmitted into the massive region. In
the limit v → c−, η diverges and no modes are transmitted.
Therefore, the energy density depends only on the modes ex-
cited and reflected by the moving quench front. Having shown
that the latter is red-shifted, the energy density is dominated
by the modes excited by the subluminal moving quench front,
a subject of future investigation.
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