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Bloch dynamics in monolayer phosphorene with broken inversion symmetry
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We investigate Bloch oscillations of wave packets in monolayer phosphorene with broken inversion symmetry.
We find that the real-space trajectories and Berry and group velocities of Bloch electron undergo Bloch
oscillations in the system. The strong dependence of Bloch dynamics on the crystal momentum is illustrated. It
is shown that the spin-orbit interaction crucially affects the dynamics of the Bloch electron. We also demonstrate
the dynamics in external electric and magnetic fields within the framework of Newton’s equations of motion,
leading to the geometric visualization of such oscillatory motion. In the presence of both applied in-plane electric
and transverse magnetic fields, the system undergoes a dynamical transition from confined to deconfined state
and vice versa, tuned by the relative strength of the fields.
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I. INTRODUCTION

Phosphorene is realized as an allotropic form of a mono-
layer black phosphorus (BP) that has been the focus of
intensive research efforts. Its exotic electronic properties
arise due to its highly anisotropic nature originating from its
puckered lattice structure [1–5]. It belongs to the D18

2h point
group, which has reduced symmetry compared with its group
IV counterparts having the D4

6h point-group symmetry. This
class of quantum matter provides a unique platform to study
the fundamental many-body interaction effects, high charge-
carrier mobility, and exotic anisotropic in-plane electronic
properties. Due to the unstable nature of the monolayer, it is
very difficult to realize the industrial applications of mono-
layer phosphorene. However, successful efforts have made it
possible to fabricate experimentally high-quality monolayer
phosphorene using a controlled thinning process with trans-
mission electron microscopy and subsequent performance of
atomic-resolution imaging [6]. Likewise, phosphorene can
also be synthesized experimentally using several techniques,
including liquid exfoliation and mechanical cleavage [7,8]. It
has been shown that spin-orbit interaction [9–13] and inver-
sion symmetry breaking [14] crucially affect the electronic
properties of phosphorene. Anisotropy in the band structure is
a characteristic feature of phosphorene, leading to its perspec-
tive optical, magnetic, mechanical and electrical properties
[5,15–17]. Interesting transport properties as such electri-
cal conductivity [18] and second-order nonlinear Hall effect
[19] in monolayer phosphorene have been investigated. Novel
applications of this quantum material have been envisioned
in transistors, batteries, solar cells, disease theranostics,
actuators, thermoelectrics, gas sensing, humidity sensing,
photodetection, biosensing, and ion-sensing devices [20]. Due
to high carrier mobility and anisotropic in-plane properties,
phosphorene is an appealing candidate for promising applica-
tions in nanoelectronics and nanophotonics [21–23].
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On the other hand, the intriguing feature of quantum me-
chanics in lattice systems is the Bloch oscillation of a particle
in the periodic potential of a perfect crystal lattice subjected to
a constant external force [24,25]. It shows coherent dynamics
of quantum many-body systems [26], originated from the
translational symmetry of crystals. It has been shown that
these oscillations appear with a fundamental period that a
semiclassical wave packet takes to traverse a Brillouin-zone
loop. Analysis shows that Bloch oscillations in two super-
posed optical lattices can split, reflect, and recombine matter
waves coherently [27]. It was found that Wannier-Stark states
(WS states) exhibit Bloch oscillations with irregular character
for irrational directions of the static field in a tilted hon-
eycomb lattice within the tight-binding approximation [28].
Theoretical study reveals that Berry curvature crucially mod-
ifies the semiclassical dynamics of a system and affects the
Bloch oscillations of a wave packet under a constant external
force, leading to a net drift of the wave packet with time.
Interestingly, loss of information about the Berry curvature
due to the complicated Lissajous-like figures can be recovered
via a time-reversal protocol. For experimental measurement,
a general technique for mapping the local Berry curvature
over the Brillouin zone in ultracold gas experiments has been
proposed [28]. Bloch oscillations can be observed in semicon-
ductor superlattices [29], ultracold atoms and Bose-Einstein
condensates [30–34], photonic structures [35–39] and plas-
monic waveguide arrays [40]. Moreover, Bloch oscillations
with periodicity to be an integer multiple of the fundamental
period have been reported [41]. It is emphasized that Bloch
oscillations essentially rely on the periodicity of crystal quasi-
momentum, as well as the existence of an energy gap, where
both are the basic features of a quantum theory of solids. From
a semiclassical point of view, Bloch oscillations originate
from the dynamics of a wave packet formed from a single
band. Using the acceleration theorem [42], the fundamental
period T of this oscillation is determined to be the time taken
by a wave packet in traversing a loop across the Brillouin
torus given by T = h̄|G|/F, with G being the smallest re-
ciprocal vector parallel to a time-independent driving force
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F. Fundamental Bloch oscillations may also be realized
as a coherent Bragg reflection originated from the discrete
translational symmetry of a lattice [26]. Remarkably, Bloch
oscillation based methods are effectively used in cold-atom
applications, such as for precision measurements of the fine-
structure constant [43], gravitational forces [31,44], and even
on very small length scales [45]. Bloch dynamics has been
studied in many condensed-matter systems, for instance, lat-
tices with long-range hopping [46], two-dimensional lattices
[47], two-dimensional optical lattices [48,49], Weyl semimet-
als [50], beat note superlattices [51], etc. Recently, the
experimental simulation of anyonic Bloch oscillations using
electric circuits has been reported [52].

In this paper, we investigate Bloch dynamics in monolayer
phosphorene with broken inversion symmetry. We find that
the wave packet exhibits Bloch oscillations that strongly de-
pend on the band structure of the system. It is shown that
the spin-orbit interaction has remarkable effect on the Bloch
dynamics. The dynamics is modified considerably under the
influence of an in-plane electric and transverse magnetic
fields.

The paper is organized as follows: In Sec. II, the tight-
binding Hamiltonian of a monolayer phosphorene with broken
inversion symmetry is presented. The Hamiltonian is reduced
to a two band system at the high-symmetry point �, fol-
lowed by the determination of eigenstates, eigenvalues, and
the Berry curvature. The dynamical equations are presented
in this section.

Sec. III contains the investigation of Bloch oscillations
in monolayer phosphorene with broken inversion symmetry.
The effects of spin-orbit interaction on the Bloch dynamics
are presented. Moreover, the effects of in-plane electric and
transverse magnetic fields are demonstrated in this section.
Finally, conclusions are drawn in Sec. IV.

II. METHODOLOGY

In this section, we present the model and related theoretical
background of the work.

A. Theory and model

We consider the band structure of black phosphorus (phos-
phorene) with a spin-independent tight-binding model using
a basis of s orbital and three p orbitals. The unit cell of
phosphorene consists of four phosphorus atoms, see Fig. 1(a),
leading to the formation of sixteen bands. The band structure
with band gap of monolayer phosphorene can be determined
by evaluating the hopping energy and overlaps between neigh-
boring atoms, indexing the symmetries of eigenstates at the �

point. In general, the wave functions constructed in this way
consist of sp3 hybridized atomic orbitals. Using the method
of tight-binding model, the Hamiltonian for monolayer phos-
phorene with broken inversion symmetry can be described
as [53,54]

H0(k) =

⎛
⎜⎜⎜⎜⎝

uA + � tAB(k) tAD(k) tAC (k)

tAB(k)∗ uB + � tAC (k)∗ tAD(k)

tAD(k)∗ tAC (k) uD − � tAB(k)

tAC (k)∗ tAD(k)∗ tAB(k)∗ uC − �

⎞
⎟⎟⎟⎟⎠, (1)

FIG. 1. Schematic realization of the lattice structure of mono-
layer phosphorene in which the shaded circles with different colors
represent atoms positioned in different planes within a single puck-
ered layer. The shaded region shows the unit cell containing four
atoms, whereas the factors t1, t2, t3, t4, t5 characterize the five hopping
parameters among the nearest neighbors in the tight-binding model.
(b) Schematic visualization of the bond lengths and bond angles in
monolayer phosphorene.

with eigenvectors [ψA ψB ψD ψC]T and uA, uB, uC , and uD

are the on-site energies, which are taken as U , with the A–D
subscripts characterizing the four sublattice labels shown in
Fig. 1. Moreover, tAB(k), tAC (k), and tAD(k) denote the cou-
pling factors. Considering the C2h group symmetry of the
black phosphorus lattice structure [55] and tAD(k)∗ = tAD(k),
a reduced two-band Hamiltonian for monolayer phosphorene
in the vicinity of the Fermi level can be obtained as [53]

H0(k) =
(

U + tAD(k) + � tAB(k) + tAC (k)

tAB(k)∗ + tAC (k)∗ U + tAD(k) − �

)
, (2)

where

tAB(k) = 2t1 cos[kxa1 sin(α/2)]e−ikya1 cos (α/2)

+ 2t3 cos [kxa1 sin (α/2)]eiky[a1 cos (α/2)+2a2 cos γ ],

(3)

tAC (k) = t2eikya2 cos β + t5e−iky[2a1 cos (α/2)+a2 cos γ ], (4)

tAD(k) = 4t4 cos{ky[a1 cos(α/2) + a2 cos γ ]}
× cos[kxa1 sin (α/2)], (5)

where the bond length a1 = 2.22 Å represents the distance
between nearest-neighbor sites in sublattices A and B or C and
D and a2 = 2.24 Å is the distance between nearest-neighbor
sites in sublattices A and C or B and D; the bond an-
gles are α = 96◦, 5◦, β = 101◦, 9◦, cos γ = − cos β/ cos α as
shown in Fig. 1(b), whereas t1 = −1.220 eV, t2 = 3.665 eV,
t3 = −0.205 eV, t4 = −0.105 eV, and t5 = −0.055 eV, see
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Fig. 1(a), are the corresponding hopping parameters for
nearest-neighbor couplings [54]. Using Eq. (1), the solution
of the secular equation leads to the energy dispersion in the
form

Eλ(kx, ky) = U + tAD + λ
√

(tAB + tAC )(tAB + tAC )∗ + �2,

(6)

where λ = ±1 is the band index, with the positive sign show-
ing the conduction band and negative sign characterizes the
valence band. Hence, expanding the structure factors in the
vicinity of the � point and retaining the terms up to second or-
der in k, the two-band Hamiltonian of monolayer phosphorene
with broken inversion symmetry within the long-wavelength
approximation can be obtained as [19]

H0(k) = (
u0 + ηxk2

x + ηyk2
y

)
1 + (

δ + γxk2
x + γyk2

y

)
σx

− χkyσy + σz�, (7)

where u0 = −0.42 eV, δ = 0.76 eV, ηx = 0.58 eVÅ2, ηy =
1.01 eV Å2, γx = 3.93 eV Å2, γy = 3.83 eV Å2, and χ =
5.25 eV Å are the band parameters which remain the same
as used in Ref. [53] and they include the contribution from
the five-hopping energies of the tight-binding model for a BP
sheet and its lattice geometry as shown in Fig. 1. In Eq. (7), kx

and ky are the in-plane crystal momenta, whereas σx, σy, and
σz represent the 2 × 2 Pauli matrices and 1 stands for the unit
matrix. Moreover, � denotes the broken inversion symmetry
induced band gap in the energy spectrum of the system. The
energy dispersion of monolayer phosphorene is

Eλ(kx, ky) =∈1 +λ

√
∈2

2 +�2, (8)

where we have defined ∈1≡ u0 + ηxk2
x + ηyk2

y , ∈3≡ δ +
γxk2

x + γyk2
y , ∈4≡ χky, ∈2≡ (∈2

3 + ∈2
4)1/2. The first term

in the right-hand side of Eq. (8) makes the band struc-
ture of phosphorene highly anisotropic. The Hamiltonian in
Eq. (7) can be diagonalized using the standard diagonalization
method. Consequently, using the polar notation, normalized
eigenstates of the aforementioned Hamiltonian are described
as

ψλ(kx, ky) = eik·r
√

2S

( √
1 + λ cos θk

e−iϕk λ
√

1 − λ cos θk

)
, (9)

with S being the dimensions of the system, tan ϕk = ∈4
∈3

, and
tan θk = ∈2

�
.

The inversion symmetry breaking in monolayer phospho-
rene leads to a finite Berry curvature. Such curvature in
momentum space can be evaluated using Eqs. (8) and (9) in
the vicinity of the � point as [19]

�λ(k) = λχγxkx�

×
[(

∈3 − γy∈2
4

χ2

)(
∈3 − 3γy∈2

4
χ2

)
− ∈2

4

(
1 + 3γ 2

y ∈2
4

χ4

)]
(∈2

3 + ∈2
4 +�2

)3/2(∈2
3 + ∈2

4

) .

(10)

It is illustrated that the Berry curvatures of the conduction
(λ = +) and valence (λ = −) bands have opposite signs and
vanish in the absence of the band gap induced in the energy

spectrum. The Berry curvature exhibits very interesting sym-
metry properties [19].

B. Semiclassical dynamics of wave packet

We develop formalism for semiclassical dynamics of a
particle in monolayer phosphorene with broken inversion
symmetry. We consider a single particle that is prepared in
a wave-packet state having a center of mass at position r with
momentum k [26,30]. The Bloch velocity of a wave packet
can be described as

ṙλ = 1

h̄
∇kEλ(k) − (k̇ × ez )�λ(k), (11)

with

h̄k̇ = F, (12)

where ez is the unit vector in the z direction, the first term
on the right-hand side of Eq. (11) denotes the group velocity
evaluated by taking the gradient of the energy spectrum in
momentum space, and the second term describes the Berry
velocity. Equation (11) shows that the electron band velocity
is periodic in crystal momentum k. It has been found that
the effects of Berry curvature can also be determined in the
semiclassical dynamics of a wave packet in a time-dependent
one-dimensional (1D) optical lattice [56–58] which is defined
over a two-dimensional (2D) parameter space, composed of
the one-dimensional quasimomentum and time. The Bloch
oscillations of a wave packet in such a potential have been
investigated in Ref. [58].

We evaluate the Bloch velocity of the wave packet in the
conduction band using Eqs. (8), (10), and (11). As a conse-
quence, the x component of the velocity acquires the form

vx(k) = − 4d1t4
h̄

g1(k) − 2d1

h̄
{4g2(k) + g3(k) + 4g4(k)

+ 4g5(k) + �2}−1/2{g6(k) + g7(k) + g8(k)}

+ Fy

h̄
�λ(k), (13)

and the y component is

vy(k) = − 4d1t4
h̄

g9(k) − 2d1

h̄
{4g2(k) + g3(k) + 4g4(k).

+ 4g5(k) + �2}−1/2{4g10(k) + g11(k) + g12(k)

+g13(k)} − Fx

h̄
�λ(k), (14)

where we have defined

g1(k) = sin (kxd1) cos(kyd2),

g2(k) = [
t2
1 + t2

3 + 2t1t3 cos(2kyd2)
]

cos2(kxd1),

g3(k) = t2
2 + t2

5 + 2t2t5 cos(2kyd2),

g4(k) = t3[t2 cos(kyd2) + t5 cos(3kyd2)] cos(kxd1),

g5(k) = t1(t2 + t5) cos(kxd1) cos(kyd2),

g6(k) = [
t2
1 + t2

3 + 2t1t3 cos(2kyd2)
]

sin(2kxd1),

g7(k) = t3[t2 cos(kyd2) + t5 cos(3kyd2)] sin(kxd1),

g8(k) = t1(t2 + t5) sin (kxd1) cos(kyd2),
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g9(k) = cos(kxd1) sin(kyd2),

g10(k) = t1t3 sin(2kyd2) cos2(kxd1),

g11(k) = t2t5 sin(2kyd2),

g12(k) = t3[t2 sin(kyd2) + t3t5 sin(3kyd2)] cos(kxd1),

g13(k) = t1(t2 + t5) cos(kxd1) sin(kyd2). (15)

Equations (13) and (14) reveal that the Bloch velocities vx(k)
and vy(k) exhibit oscillatory behavior over the entire range of
kx and ky. It is illustrated that both vx(k) and vy(k) consist of
group and Berry velocities which can be separated as

vk(+F) + vk(−F) = 2

h̄

∂E (k)

∂k
. (16)

vk(+F) − vk(−F) = −2

h̄
(F × ez )�(k). (17)

This transformation is equivalent to a time-reversal operation,
and it obviously removes the effects of the complex Lissajous-
like figures in 2D. Interesting behaviors are exhibited by the
Bloch velocity v(kx, ky) in the Brillouin zone. In particular,
the x component of the group velocity, vx(kx, ky), vanishes at
kx = 0, ky �= 0 as is clear from Eq. (16), whereas the y compo-
nent, vy(kx, ky), remains finite. Likewise, vy(kx, ky) vanishes
at ky = 0, kx �= 0, and vx(kx, ky) remains finite. Furthermore,
vx(kx, ky) changes its sign by changing the sign of kx, whereas
vy(kx, ky) changes its sign with ky. Moreover, the group veloc-
ity is affected by the band gap opened in the energy spectrum
due to the broken inversion symmetry, however, it remains
finite even if the aforementioned symmetry is retained. In
contrast, Berry velocity depends on the inversion symmetry
breaking which becomes zero if the system preserves the
inversion symmetry. The Berry velocity in Eq. (17), v j (kx, ky)
with j = x, y, exhibits the following symmetry properties: (i)
The Berry velocity shows mirror reflection symmetry ky ↔
−ky, i.e., v j (kx,−ky) = v j (kx, ky ). (ii) It remains finite in a
crystal system with broken inversion symmetry, i.e., a crystal
lattice with inversion symmetry requires v j (k) = v j (−k) =
0. (iii) It shows the character of an odd function in momentum
space, i.e., v j (−kx, ky) = −v j (kx, ky), reflecting time-reversal
symmetry of the system. (iv) It changes sign when the direc-
tion of the applied force is reversed.

III. RESULTS AND DISCUSSION ON BLOCH DYNAMICS

In this section, we present the results on Bloch oscillations
in monolayer phosphorene with broken inversion symmetry.
For analyzing the remarkable feature of dimensionality, we
plot the real-space trajectories of the Bloch oscillations in
Fig. 2 which reveals Lissajous-like oscillations. It has been
shown that 1D Bloch oscillations in the presence of separable
potentials are simply superposed along the x and y axes. The
wave-packet dynamics exhibits periodic behavior along ki

with period Tj = h/|Fj |a for an arbitrary force F = (Fx, Fy).
The resulting dynamics depends on the ratio Fx : Fy. For
nonseparable potentials, similar dynamical behavior can be
expected when the applied force is weak and the Landau-
Zener tunneling is negligibly small [47,48]. The real-space
Lissajous-like figures describe complicated two-dimensional
oscillations, which are bounded by x j ∝ v jTj , see Fig. 2. Note
that we have adopted a scheme in which the ratio Fx : Fy has

FIG. 2. Lissajous-like figure for a wave packet in inversion sym-
metry broken monolayer phosphorene using the ratio: (a) Fx : Fy =
2F0 : 12F0 and (b) Fx : Fy = 12F0 : 2F0 with F0 = δ/ax . Parameters
used in the numerical simulations are ax ≡ a1 = 3.32 Å, ay ≡ a2 =
4.38 Å, � = δ and other parameters are the same as given in the text.

been made large, where the Bloch electron covers a large
area of the Brillouin zone during a single Bloch oscillation.
It is obvious that the Lissajous-like figure is approximately
bounded by the Bloch oscillation lengths, and so it makes
the effects of Berry curvature ambiguous within the bounded
region.

This trajectory can be changed significantly by the Berry
curvature, if we wait until the wave packet drifts outside
the bounded region. As a consequence, only the net Berry
curvature encountered along a path will be measured in ex-
periments. Information regarding the distribution of Berry
curvature in momentum space will be lost, in particular,
whether its sign changes. Moreover, an additional drift in
the position of wave packet may occur in 2D, independent
of the Berry curvature, if the wave packet does not start at
high-symmetry points such as the zone center k0 = (0, 0)
[59,60]. Hence, merely the observation of a transverse drift
in the position of wave packet is not a conclusive evidence of
a finite Berry curvature.

To better understand the Bloch dynamics in monolayer
phosphorene, the group velocity of the Bloch electron as a
function of crystal momentum kx is plotted in Fig. 3. This
figure shows that the group velocity of the Bloch electron is
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FIG. 3. Group velocity of charge carrier in inversion symme-
try broken monolayer phosphorene in units of vc, with vc = χ/h̄
being the characteristic velocity, versus the crystal momentum kx .
Panel (a) shows the group velocity in the x direction, whereas panel
(b) shows the same in the y direction. In each panel, the blue solid
curve is used for kyd2 = π

2 , the black dashed curve is used for
kyd2 = π

4 , and the green dash-dotted curve is used for kyd2 = π . The
parameters used in the numerical simulations are the same as used
for Fig. 2.

well pronounced in the Brillouin zone that strongly depends
on the initial momentum ky, as is obvious from comparison of
the blue solid, black dashed, and green dash-dotted curves. In
particular, the change in initial crystal momentum ky leads to
the change of phase and amplitude of oscillations. Compari-
son of Figs. 3(a) and 3(b) shows that the group velocities vx

and vy exhibit different dynamical behavior, where the latter
vanishes at ky = π/d2. Furthermore, the oscillation frequency
and amplitude of oscillations of the two components are also
very different. For more insight, we show the group velocity
of the Bloch electron as a function of the crystal momentum
ky in Fig. 4 for different values of the initial momentum kx.
It mimics the behavior of the group velocity, as shown in
Fig. 3. However in this case, the group velocity vx vanishes
at kx = π/d1, see Fig. 3(a), where vy remains finite, see
Fig. 3(b). Likewise, comparison of Figs. 3 and 4 reveals that
the oscillation frequency and amplitude of oscillations of the
group velocities are different as a function of kx and ky, in
particular, the oscillation frequency of vy is large when it
is analyzed as a function of the crystal momentum ky, see
Figs. 3(b) and 4(b). Moreover, we show the Berry velocity
as a function of crystal momentum kx in Fig. 5 for different
values of the initial crystal momentum ky. Analysis of this fig-
ure shows that the Berry velocity reflects the aforementioned

FIG. 4. Group velocity of charge carrier in inversion symmetry
broken monolayer phosphorene versus the crystal momentum ky.
Panel (a) shows the group velocity in the x direction, whereas panel
(b) shows the same in the y direction. In each panel, the blue solid
curve is used for kxd1 = π

2 , the black dashed curve is used for
kxd1 = π

4 , and the green dash-dotted curve is used for kxd1 = π and
other parameters remain the same as used for Fig. 2.

symmetry properties. In particular, comparison of the blue
solid, black dashed, and green dash-dotted curves in both
Figs. 5(a) and 5(b) shows that the x and y components of the
Berry velocity changes significantly by changing the initial
crystal momentum ky, where the change in amplitude and
phase of oscillations can be seen. Furthermore, comparison of
Figs. 5(a) and 5(b) shows that the x and y components of the
Berry velocity oscillate with phase difference of π . Interest-
ingly, both components of the Berry velocity vanish at kx = 0,
which are also negligibly small in the regions,axkx < −5 and
axkx > 5 and well pronounced in the region −5 < axkx > 5.
For further understanding, the Berry velocity as a function of
crystal momentum ky is shown in Fig. 6 for different values
of the initial crystal momentum kx. In this case, the Berry
velocity exhibits interesting dynamical behavior. In particular,
a single peak around ky ≈ 0 appears in contrast to the former
case when the Berry velocity is plotted as a function of kx

where two peaks are obtained on the left and right of kx = 0
with opposite phases. Moreover, the Berry velocity vanishes
in the regions, ayky � 0 and ayky  0.

A. Bloch dynamics in an in-plane electric field along x axis

In this case, the electric field is applied in the x direc-
tion, i.e., E = Ex and Ey = 0. As a consequence, ky(t ) =
ky = constant and kx(t ) = kx(0) + eEx

h̄ t that sweeps the entire
Brillouin zone. After reaching the right endpoint kx = π/ax,
the electron is Bragg-reflected and continues from the left
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FIG. 5. Berry velocity of charge carrier in inversion symmetry
broken monolayer phosphorene versus the crystal momentum kx .
Panel (a) shows the Berry velocity in the x direction, whereas panel
(b) shows the same in the y direction. In each panel, the blue solid
curve is used for kyd2 = π

2 , the black dashed curve is used for
kyd2 = π

4 , and the green dash-dotted curve is used for kyd2 = π .
Other parameters used in the numerical simulations are the same as
used for Fig. 2.

endpoint kx = −π/ax. Hence, the Bloch velocity changes sig-
nificantly under the influence of an applied in-plane electric
field. This velocity oscillates with frequency ωx = eExd1/h̄,
showing its periodic character, i.e., v j (t + T ) = v j (t ) with
j = x, y and T = 2π/ωx is time period of the motion. Anal-
ysis reveals that vy(t ) is modified strongly even if the electric
field is applied in the x direction because the energy dispersion
couples the x and y components of the crystal momentum.
In addition, it is obvious that for increasing values of ky, the
wave packet begins to wind the Brillouin zone in two different
directions with angular frequency ωx. In Fig. 7, we show the
Bloch velocity vx as a function of time with oscillation ωx

under the influence of an in-plane electric field applied in
the x direction. Figure 7(a) reveals that the amplitude and
phase of oscillations are modified considerably by changing
the initial crystal momentum ky, see the blue solid, black
dashed, and green dash-dotted curves in Fig. 7(a). Similar
features of vy can be seen in Fig. 7(b). In addition, comparison
of Figs. 7(a) and 7(b) reveals different dynamical behavior
of the Bloch electron in the x and y directions. In particular,
the x component of the Bloch velocity oscillates with large
frequency compared with the y component. Moreover, the
y component of the Bloch velocity vanishes for ky = π/d2.
For further analysis, the real-space trajectories of the Bloch
dynamics as a function of time are shown in Fig. 8. This

FIG. 6. Berry velocity of charge carrier in inversion symmetry
broken monolayer phosphorene versus the crystal momentum ky.
Panel (a) shows the Berry velocity in the x direction, whereas panel
(b) shows the same in the y direction. In each panel, the blue solid
curve is used for kxd1 = π

2 , the black dashed curve is used for
kxd1 = π

4 , and the green dash-dotted curve is used for kxd1 = π .
Other parameters used in the numerical simulations are the same as
used for Fig. 2.

figure also reveals oscillatory behavior of the Bloch dynamics
in real space, depending on the initial crystal momentum
ky, as is obvious from comparison of the blue solid, black
dashed, and green dash-dotted curves in Figs. 8(a) and 8(b),
where the change in oscillation frequency and amplitude is
obvious. Interestingly, the amplitude of oscillation increases
with the increase in time. Moreover, we plot the real-space
trajectories of the Bloch oscillations in Fig. 9 for two different
values of the initial ky momentum which exhibits Lissajous-
like oscillations. It is obvious that, with increasing value of
ky, the wave packet starts to wind the Brillouin zone in two
different directions with angular frequency ωx. Comparison of
Figs. 9(a) and 9(b) reveals strong dependence of the dynamics
on the initial crystal momentum ky.

B. Bloch dynamics in an in-plane electric field along y axis

Here we consider the case when the electric field is ap-
plied in the y direction, i.e., E = Ey and Ex = 0. In this case,
the semiclassical dynamical equation shows that kx(t ) = kx =
constant and ky(t ) = ky(0) + eEy

h̄ t . In Fig. 10, we show the
Bloch velocity as a function of time in monolayer phospho-
rene with broken inversion symmetry in an in-plane electric
field E applied in the y direction, using kxd1 = π

2 , see blue
solid curves, kxd1 = π

4 , see black dashed curves, and kxd1 =
π , green dash-dotted curves in both Figs. 10(a) and 10(b).
Comparison of Figs. 10(a) and 10(b) reveals that the wave
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FIG. 7. Bloch velocity as a function of time for monolayer phos-
phorene with ωx = eExd1/h̄. Panel (a) shows the Berry velocity in
the x direction, whereas panel (b) shows the same in the y direction.
In each panel, the blue solid curve is used for kyd2 = π

2 , the black
dashed curve is used for kyd2 = π

4 , and the green dash-dotted curve
is used for kyd2 = π . Other parameters used in the numerical simu-
lations are the same as used for Fig. 2.

packet undergoes pronounced oscillatory motion in mono-
layer phosphorene under the influence of an in-plane electric
field. In addition, Fig. 10(a) shows that the wave packet
exhibits finite Bloch velocity in the x direction even when
the electric field is applied in the y direction. Interestingly,
comparison of Figs. 10(a) and 10(b) reveals that vx(t ) and
vy(t ) perform out of phase oscillations with different ampli-
tudes. Moreover, comparison of Figs. 7 and 10 shows that the
Bloch velocity exhibits different dynamical behavior under
the influence of applied in-plane electric field in the x and
y directions. To realize the real-space dynamics, we show
the real-space trajectories in Fig. 11 using the same set of
parameters as used for Fig. 10. This figure reveals pronounced
oscillatory behavior of the system dynamics. Comparison of
the blue solid, black dashed, and green dash-dotted curves in
both Figs. 11(a) and 11(b) reveals that the Bloch dynamics
is significantly affected by the initial momentum kx. Like-
wise, comparison of Figs. 11(a) and 11(b) shows that the x
and y components of the Bloch dynamics exhibits different
dynamical behavior. For further understanding, we plot the
real-space trajectories of the Bloch oscillations in Fig. 12
for two different values of the initial kx momentum which
exhibits Lissajous-like oscillations. Comparison of Figs. 12(a)
and 12(b) reveals the strong dependence of Bloch dynamics
on the initial momentum kx. Moreover, comparison of Figs. 9
and 12 shows the difference in dynamical behavior of Bloch
dynamics under the influence of applied in-plane electric field
in the x and y directions.

FIG. 8. Real space trajectories of Bloch particle as a function
of time for monolayer phosphorene for (a) x component, (b) y
component, where in each panel, the blue solid curve is used for
kyd2 = π

2 , the black dashed curve is used for kyd2 = π

4 , and the green
dash-dotted curve is used for kyd2 = π . Other parameters used in the
numerical simulations are the same as used for Fig. 2.

C. Effect of spin-orbit interaction on Bloch dynamics

In this section, the effect of spin-orbit interaction (SOI) on
the Bloch dynamics in monolayer phosphorene with broken
inversion symmetry is investigated. This study is expected
to be useful in understanding the spin-dependent electronic
properties that may pave the way for potential applications of
phosphorene in spintronic devices. Interesting effects are in-
duced by the spin-orbit interaction in phosphorene [9,12,13].
The details of spin-orbit interaction in phosphorene can be
found in Refs. [18,19]. Here we focus merely on its impact
on Bloch oscillations. In this paper, the effects of spin-orbit
interaction are incorporated considering the intrinsic spin-
orbit coupling within the framework of Kane–Mele model
which takes into account appropriately the effects of spin
up and spin-down states as used in phosphorene [18,19,61],
borophene [62], lattice system [63], graphene [64], and sil-
icene [65]. The Hamiltonian of monolayer phosphorene with
broken inversion symmetry under the influence of intrinsic
spin-orbit interaction can be described as

H(k) = H0(k) + HSOI(k), (18)

where H0(k) is given in Eq. (2), whereas HSOI(k) = �zσz −
sz�SOIσz characterizes the Kane-Mele Hamiltonian, denoting
the intrinsic spin-orbit interaction (SOI) and induces the SOI
gap, �SOI, in the energy spectrum of the system. The factor,
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FIG. 9. Lissajous-like figure of Bloch particle for monolayer
phosphorene (a) for kyd2 = π

2 , (b) for kyd2 = π

4 . Other parameters
used in the numerical simulations are the same as used for Fig. 2.

�z = lEz with the length scale l = 2.26 Å, takes into account
the effects of electric field Ez applied perpendicular to the
sample. Likewise, sz = ± stands for the spin direction such
that sz = + represents spin up and sz = − characterizes the
spin-down state. The Hamiltonian in Eq. (18) can be diago-
nalized using the standard diagonalization method. Using the
obtained eigenenergies, one can readily evaluate the velocities
of the Bloch electron. In Fig. 13, we show the Bloch velocity
as a function of time using � = δ, �SOI = 0.6δ, �z = 2δ,
where Fig. 13(a) represents the x component and Fig. 13(b)
the y component under the influence of an in-plane electric
field in the x direction. In each panel, the green dash-dotted
curve shows the Bloch dynamics without spin-orbit coupling,
the blue solid curve for spin up, whereas the black dashed
curve for spin-down states. Comparison of the blue solid,
black dashed, and green dash-dotted curves in both Figs. 13(a)
and 13(b) shows that the spin-orbit interaction remarkably
changes the Bloch oscillations, depending on the strength of
interaction. Moreover, comparison of Figs. 13(a) and 13(b)
reveals that the effect of SOI is more pronounced on the x
component of the Bloch velocity compared with the y com-
ponent. In addition, comparison of the blue solid and black
dashed curves shows that the response of the spin up and
spin-down states are different. In Fig. 14, we show the ef-
fect of spin-orbit coupling on the velocity of Bloch electron

FIG. 10. Bloch velocity as a function of time for monolayer
phosphorene with ωy = eEyd2/h̄. Panel (a) shows the Berry velocity
in the x direction, whereas panel (b) shows the same in the y direc-
tion. In each panel, the blue solid curve is used for kxd1 = π

2 , the the
black dashed curve is used for kxd1 = π

4 , and the green dash-dotted
curve is used for kxd1 = π . Other parameters used in the numerical
simulations are the same as used for Fig. 2.

in monolayer phosphorene with broken inversion symmetry
when the in-plane electric field is applied in the y direction.
Comparison of the blue solid, black dashed, and green dash-
dotted curves in both Figs. 14(a) and 14(b) shows that the
spin-orbit interaction changes the Bloch oscillations consid-
erably, depending on the strength of interaction. Moreover,
comparison of Figs. 14(a) and 14(b) reveals that the effect of
SOI is more pronounced on the x component of the Bloch ve-
locity compared with the y component. Further comparison of
the blue solid and black dashed curves shows that the response
of the spin-up and spin-down states are different. Furthermore,
comparison of Figs. 13 and 14 shows that the SOI affects
differently when the in-plane electric field is applied in the
x and y directions.

D. Confined-deconfined state transition

In this section, we study the effect of in-plane electric and
transverse magnetic fields on the Bloch dynamics in mono-
layer phosphorene which essentially leads to a transition from
confined to deconfined states and vice versa that strongly
depend on the relative strength of the fields. In this case,
the wave-packet dynamics in conduction band is determined
using the semiclassical dynamical equation

h̄k̇ = eE + ev × B, (19)
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FIG. 11. Real-space trajectories of Bloch particle as a function
of time for monolayer phosphorene for (a) x component, (b) y
component, where in each panel, the blue solid curve is used for
kxd1 = π

2 , the black dashed curve is used for kxd1 = π

4 , and the green
dash-dotted curve is used for kxd1 = π . Other parameters used in the
numerical simulations are the same as used for Fig. 2.

where E is the applied electric field and B is the magnetic
field. Solving Eqs. (11), (13), (14), and (19), we can study
the Bloch dynamics in a monolayer phosphorene with broken
inversion symmetry. The position r(t ) = ∫ t

0 v(t ′)dt ′ can be
determined by integrating the equation of motion:

h̄[k(t ) − k(0)] = eEt + er(t ) × B. (20)

In the confined (B dominated) regime, the drift velocity vd =
r(t )/t |nT is given by

vd = E × B/B2. (21)

In the transition to deconfined (E dominated) regime, the
drift velocity abruptly drops to zero. Interesting dynamics
appears in an applied transverse magnetic field, where dy-
namical phase transition to one-frequency oscillation occurs.
As a consequence, the system exhibits complex dynamics at
the transition. It is shown that under the influence of in-plane
electric and transverse magnetic fields, two distinct types of
cyclotron orbits are formed depending on the relative strength
of E and B: (i) when magnetic field dominates the in-plane
electric field, confined orbits are formed which reside within
the Brillouin zone and characterized by one Bloch frequency,
(ii) however, deconfined orbits are generated when E field
dominates B field which extend over infinitely many Brillouin
zones and are described by two or more frequencies. It is
illustrated that confinement in k space means deconfinement
in r space, and vice versa. Here the equations of motion can

FIG. 12. Lissajous-like figure of Bloch particle for monolayer
phosphorene (a) for kxd1 = π

2 , (b) for kxd1 = π

4 . Other parameters
used in the numerical simulations are the same as used for Fig. 2.

be determined in terms of a Hamiltonian function as [66]

k̇x = ∂H (kx, ky)

∂ky
, k̇y = −∂H (kx, ky)

∂kx
, (22)

where the Hamiltonian function is defined as

H (kx, ky) = eB

h̄2 E (k) + e

h̄
|E × k|, (23)

where E (k) denotes the energy dispersion and E characterizes
the applied electric field. The trajectories of the wave packet
appear as contours of H (kx, ky) in momentum space. The ef-
fects of electric and magnetic fields on the Bloch dynamics are
incorporated appropriately using Eq. (23). Note that the tra-
jectories are confined orbits in the Brillouin zone with single
frequency in the regime, E < vB, whereas deconfined orbits
are formed which are extended over infinitely many Brillouin
zones with two or more frequencies when E > vB. To high-
light this effect, the contours of the Hamiltonian function in
Eq. (23) are plotted as a function of crystal momenta kx and ky

in Fig. 15, illustrating the confinement and deconfinement of
orbits which depend on the relative strength of the electric and
magnetic fields. This figure shows that the orbits are confined
in the regime E < vB, see Fig. 15(a), however the orbits
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FIG. 13. Bloch velocity as a function of time for monolayer
phosphorene, illustrating the effect of spin-orbit interaction. Panel
(a) shows the Berry velocity in the x direction, whereas (b) in the y
direction. In each panel, the blue solid curve is used for kyd2 = π

2 ,
black dashed curve for kyd2 = π

4 , and green dash-dotted curve for
kyd2 = π . The parameters used are � = δ, �SO = 0.6δ, �z = 2δ and
other parameters used in the numerical simulations are the same as
used for Fig. 2.

exhibit deconfined behavior when the strength of electric field
is greater than the magnetic field, i.e., E > vB, see Fig. 15(b).

Finally, it is illustrated that interactions destroy the coher-
ent dynamics of a wave packet over time and can have a strong
dephasing effect on Bloch oscillations [31,44,67]. In particu-
lar, in real condensed-matter systems the scattering rates are
much higher than the expected oscillation period and conse-
quently such oscillations cannot be experimentally observed.
However, the Bloch oscillation period can be tailored to be
smaller than the scattering rate, leading to the observation of
Bloch oscillations. Estimating the scattering time as τ = l/vc

with the mean-free path l ≈ 1µm and velocity vc = χ/h̄ for
monolayer phosphorene gives τ ≈ 1 × 10−11 s, a value an
order of magnitude larger than the time period of the Bloch
oscillations, on the order of T = 2π/ω ≈ 1 × 10−15 s. Hence,
the wave packet undergoes pronounced Bloch oscillations in
monolayer phosphorene before encountering the scattering.
Moreover, nonlinearity can also destroy the wave packet lead-
ing to the formation of discrete solitons [67,68]. However, the
effects of interactions can be ignored under an approximation
suitable over the timescales for fermionic atoms [44], for
species with low scattering lengths [45], or where the inter-
action strength can be tuned to zero by means of a Feshbach
resonance [69,70].

FIG. 14. Bloch velocity as a function of time for monolayer
phosphorene, illustrating the effect of spin-orbit interaction. Panel
(a) shows the Berry velocity in the x direction, whereas (b) in the y
direction. In each panel, the blue solid curve is used for kxd1 = π

2 ,
black dashed curve for kxd1 = π

4 , and green dash-dotted curve for
kxd1 = π . The parameters used in the numerical simulations are the
same as used for Fig. 12.

IV. CONCLUSIONS

In summary, we have studied Bloch dynamics in mono-
layer phosphorene with broken inversion symmetry within
the framework of semiclassical theory. We have shown that
the Bloch velocity of a wave packet exhibits pronounced
oscillations in both real and momentum spaces, called Bloch
oscillations. It has been found that an applied in-plane elec-
tric field modifies significantly the Bloch oscillations in the
system, depending on its magnitude and direction. Dynamical
transition is driven by an applied magnetic field, leading to a
complex dynamics at the transition point. In the presence of
both external in-plane electric and transverse magnetic fields,
the system undergoes a dynamical transition from confined to
deconfined state and vice versa, tuned by the relative strength
of the applied fields which was also observed in a moiré
flat-band system [66]. In this case, two distinct types of cy-
clotron orbits are formed, depending on the relative strength
of E and B: (i) when the magnetic field dominates the in-
plane electric field, confined orbits are formed which reside
within the Brillouin zone and are characterized by a single
Bloch frequency; (ii) however, deconfined orbits are generated
when the E field dominates the B field, which extend over
infinitely many Brillouin zones, and are described by two or
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FIG. 15. Confined-to-deconfined transition by analyzing the tra-
jectories of H (kx, ky ). (a) eE = 0.1F0, B = 6T ; (b) eE = 6F0, B =
0.1T , which are contours in momentum space, depending on the
strength of electric and magnetic. Other parameters remain the same
as used for Fig. 2.

more frequencies. The equations of motion can be derived by
defining a Hamiltonian function H (kx, ky) with trajectories in
the form of contours in momentum space. It has been shown
that the confinement of orbits depends on the relative strength
of electric and magnetic fields such that the orbits are confined
when the strength of magnetic field is greater than the electric
field, i.e., vB > E , which however become deconfined for
vB < E . It is illustrated that the Bloch dynamics in mono-
layer phosphorene with broken inversion symmetry presents
a dynamical scenario that differs from the Bloch oscillations
in moiré flat-band system [66]. For instance, in the present
study, we have focused on the investigation of Bloch veloc-
ity composed of Berry and group velocities, whereas in the
latter system we have studied the group velocity only with
focus on the effect of twist angle with preserved inversion
symmetry of the system. Due to the difference in models,
the results of the two systems are very different. However,
in both systems we have studied the Bloch oscillations under
the influence of external fields such as in-plane electric and
transverse magnetic fields, where in both systems the wave
packets exhibit pronounced Bloch oscillations and the system
undergoes a dynamical transition. The experimental measure-
ment of Bloch oscillations in monolayer phosphorene with
broken inversion symmetry is expected to be possible using
the techniques developed for observing oscillations on the
surface of black phosphorus using a gate electric field [71],
transport measurements of phosphorene-hexagonal BN (hBN)
heterostructures with one-dimensional edge contacts [72], and
time-resolved band-gap emission spectroscopy [73].
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