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How space-time modulations modify spoof surface plasmons and scattering properties
in acoustic metagratings

Kim Pham
IMSIA, CNRS, EDF, CEA, ENSTA Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91732 Palaiseau, France

Agnès Maurel
Institut Langevin, ESPCI Paris, Université PSL, CNRS, 1 rue Jussieu, 75005 Paris, France

(Received 31 January 2023; revised 15 May 2023; accepted 27 June 2023; published 7 July 2023)

We analyze the propagation of acoustic waves in a space-time (ST) modulated grating moving at constant
velocity and surrounded by air. By means of asymptotic techniques, we derive in the subwavelength regime a
homogenized nonreciprocal model in which the grating is replaced by an equivalent bianisotropic slab at the
boundaries of which effective jump conditions apply, that encapsulate the effect of the evanescent fields. This
effective framework allows to characterize analytically the properties of ST modulated metagratings in terms of
scattering properties and guided wave dispersion. First we derive the closed-form dispersion relation of spoof
surface plasmon polaritons (SPPs) and show the appearance of multiple redshifted or blueshifted branches due to
the ST modulation. Next, we provide in the radiative region closed-form expressions for the Brewster angle and
Fabry-Pérot resonances and show how the ST modulation heavily modifies the complex spectra. Finally, we
illustrate the potential of such a system to achieve negative refraction or perfect transparency by playing on the
modulation. Throughout the study, our analysis is validated by comparison with direct numerical simulations.
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I. INTRODUCTION

After seminal works [1,2], wave propagation in materials
with space and time dependencies has been studied in the
2000s in an almost exhaustive way by Lurie [3–8] who intro-
duced the terms of dynamic materials being either kinematic
with time-independent material properties in a moving ma-
terial or activated with time-dependent material properties in
a material at rest. In recent years there has been a growing
interest in these latter materials, renamed space-time mod-
ulated materials as they produce nonreciprocal propagation
[9–14], frequency conversions through the appearance of
space-time diffraction orders [15–18], and many systems
have been proposed and experimentally realized for practi-
cal applications [10,13,16,17,19,20]. Among the exceptional
properties of these media, the nonreciprocal propagation that
occurs even in the low-frequency regime is the rule due to
the properties shared with the media supporting a flow [21].
It is manifested by enriched relations between the fields, with
the appearance of a coupling parameter, called magnetoelec-
tric coupling in electromagnetism [22] or Willis coupling
in elastodynamics and acoustics [9,23]. It is interesting to
note that such nonreciprocal materials, without recourse to
any modulations, are the perfect electromagnetic conductors
(PEMC) introduced in [24,25] as a generalization of perfect
electrical conductors and perfect magnetic conductors (these
limiting cases with parameters tending to 0 and others tending
to infinity are reciprocal). The case of perfect conductors has
an acoustic analog which are rigid materials; in this context,
infinitely anisotropic dispersion in plate arrays has been used
to control the dispersion of surface waves [26], to obtain

broadband transmission at the Brewster angle [27–29] and to
produce negative refraction [29].

From a theoretical point of view, the description of mod-
ulated media at the microscopic scale using the notion of
effective medium is now classical. It has been extended to
space-time modulated media in [3,4,30,31] and more recently
in [9,32–34] with a particular emphasis on bianisotropy and
its implications. We study here an acoustic metagrating whose
rigid parts are modulated in time and space (Fig. 1) and to set
the scene, our goal is to understand and capture precisely the
influence of temporal modulations on the dispersion of guided
waves of the spoof surface plasmon (SPPs) type and on scat-
tering spectra in the radiative region as shown in Fig. 2. To do
this, we propose a homogenization approach which includes
the effects of the finite size of the grating, that is to say, the
effect of the evanescent field triggered at the interfaces of the
grating with the surrounding air. To validate our model, we
rely on numerical simulations based on multimodal analysis
recently proposed in [35].

The paper is organized as follows. In Sec. II, we give the
form of the homogenized model whose derivation is detailed
in the Appendix B; the homogenization in the bulk is clas-
sical and it is based on the previously mentioned work, the
homogenization at the grating interfaces is more involved and
we extend a previous study performed for a grating without
time modulation [36]. In Sec. III, the effective dispersion
is obtained and discussed and we give the general effective
solution of the scattering problem for finite-size gratings. This
solution allows us to analyze the characteristics of guided
waves supported by the grating; this is done in Sec. IV.
We show that these modulated SPPs have a propagation
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FIG. 1. Space-time modulated acoustic grating of extended 2�

made of a h-periodic lamination alternating air and rigid parts mod-
ulated in time at constant speed v in direction ey.

which can be blueshifted or redshifted, as observed for time-
modulated device [37], and that the number of their branches
with increasing modulation velocity is only limited by the
appearance of a new diffraction order. In Sec. V, we discuss
the scattering properties in the radiative region; we focus in
particular on the conditions for perfect transmission which
result from an interaction between the dispersive propagation
in the grating and the boundary layer effects. This is further
used to analyze positive and negative refractions in modulated
gratings that share common features with refraction in unmod-
ulated gratings of tilted plates [28,29].

II. HOMOGENIZED MODEL FOR A METAGRATING
OF FINITE SIZE

In this section, we first formulate the direct problem whose
semianalytical solution based on multimodal analysis was
recently proposed in [35] and which will serve as a reference
solution throughout our study. We then give the form of the

FIG. 2. Reflection spectra in the (k, ky ) space for an unmodulated
metagrating at normalized modulation velocity M = v/c = 0 and
a space-time modulated metagrating at M = v/c = 0.5 (2� = 10h,
ξ = 0.8).

homogenized problem whose derivation based on asymptotic
analysis is detailed in Appendix B.

A. Actual problem

In the air, the acoustic waves are governed by the linearized
Euler equations

ρ
∂u
∂t

= −∇p, divu + 1

ρc2

∂ p

∂t
= 0, (1)

with u the velocity, p the acoustic pressure, ρ the mass density,
and c the speed of sound. Following [4], we introduce the
velocity potential ϕ so that the first equation (1) is written as(

u
p
Z

)
=

(
I 0

0 1

)( ∇ϕ

− 1
c

∂ϕ

∂t

)
, (2)

with I the identity matrix 2 × 2 (Z = ρc is the impedance)
while the conservation of mass remains the same, namely,

divu + 1

Zc

∂ p

∂t
= 0. (3)

We obtain for ϕ the equation of propagation

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
− 1

c2

∂2ϕ

∂t2
= 0. (4)

Eventually, (2) and (3) are complemented by Robin-type con-
dition on the space-time modulated rigid boundaries,

Zu · n = M(ey · n) p, (5)

where M = v/c, with v = vey the constant velocity of the
modulation (see Fig. 1). This boundary condition results from
the conservation of mass in the presence of an external pro-
cess [8] that modulates the material properties of the medium
along the moving boundaries (see Appendix A for a detailed
analysis).

B. Homogenized problem

After homogenization, the calculation of which is detailed
in Appendix B, we obtain an effective model containing
two ingredients. In the space-time modulated grating, the
effective, homogeneous, medium is governed by the mass
conservation (3) and a homogeneous anisotropic constitutive
relation given by

(
u
p
Z

)
= ξ

⎛
⎜⎜⎝

1 0 0

0 − M2

1−M2
M

1−M2

0 − M
1−M2

1
1−M2

⎞
⎟⎟⎠

( ∇ϕ

− 1
c

∂ϕ

∂t

)
, (6)

which gives us the following effective equation of
propagation:

∂2ϕ

∂x2
− 1

1 − M2

(
M

∂

∂y
+ 1

c

∂

∂t

)2

ϕ = 0. (7)

These equations are completed by jump conditions at the
extremities of the grating xe = ±� of the form

�ϕ� = hB√
1 − M2

ux,

�ux� = −hC
(1 − M2)3/2

(
∂

∂y
+ M

c

∂

∂t

)2

ϕ, (8)
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where we have defined the jump and the mean value of
the fields A = {ϕ, ux} as follows: �A� = A+ − A− and A =
1/2(A+ + A−), with A± = A(x±

e , y, t ) the values of A on both
sides of the interface at x = xe. The coefficients (B, C) are
real, dimensionless, parameters that depend only on ξ , with

B = − 1

π
log

(
sin

πξ

2

)
, C � πξ 2

16
. (9)

The jump conditions (8) which involve the grating periodicity
h tell us that the grating does not behave as a homoge-
neous slab; these conditions encode the effect of the boundary
layers, that is to say, the effect of the evanescent fields trig-
gered at the grating boundaries. We notice that for M = 0,
(6)–(8) correspond to the homogenized model of a rigid, fixed,
grating studied in [36,38]. For M �= 0, it is visible that the
time-reversal invariance t → −t , as well as the reciprocity in
the scattering process (x, y) → −(x, y), are broken [14] and
they are restored if one imposes in addition a modulation
switch M → −M as it has been reported for acoustic prop-
agation in the presence of a flow [39]. Next, the grating that
supports propagation along the x axis has mirror symmetry,
i.e., it leaves the problem invariant under the transformation
(x, y) → (−x, y). This is different from the case of tilted rigid
plates at M = 0 as in [29], where the system is nonsymmetric
and of course reciprocal.

III. PROPERTIES OF THE EFFECTIVE MODEL

From now on, we consider the harmonic regime with a time
dependence e−iωt (ω is the frequency). Denoting k = ω/c the
wave number in the air, the effective model holds for a single
mode that we call mode 0, that is to say, below the thresholds
for the appearance of higher propagating modes (or higher
diffraction orders). Denoting ky the component of the wave
vector along y, this mode 0 is propagating in the radiative
region that is to say above the radiative line when k > ky

and it is evanescent below when k < ky. In the numerics, the
thresholds for the appearance of higher propagating modes (or
higher diffraction orders), labeled by n, are given by

k2
n =

(
k + M

2nπ

h

)2

>

(
ky + 2nπ

h

)2

, n integer (10)

and the mode n is associated with frequency ωn = ckn [35]. It
results that higher modes (|n| > 0) can become propagating in
the radiative region of the mode 0 which is expected, but also
in the nonradiative region of the mode 0 which is specific to
modulated gratings.

A. Dispersion relation in the effective grating

By noting K = (Kx, Ky ) the effective wave vector, the dis-
persion relation is deduced from (7) and it is written

Kx cos α ± Ky sin α = ±k (
±), (11)

with

cos α =
√

1 − M2, sin α = M, (12)

and α ∈ (−π/2, π/2). It corresponds to two, mirror-
symmetric, lines 
± of slope ±α with respect to the axis
of Ky (Fig. 3). For M = 0, these two lines are vertical, with

FIG. 3. Dispersion relation (11) formed by two straight lines 
±

tangent to the circle of radius k and of angles ±α with respect to the
axis Ky (here, α < 0).

Kx = ±k whatever the value of Ky, which corresponds to
the one-dimensional propagation along the rigid plates as
expected [36].

We now calculate the phase and group velocities vp and
vg. We define Kx = K cos �, Ky = K sin � as well as the
geometrical parameter δ = O’S/k with S the extremity of the
wave vector K [and O’S = K sin(� − α), Fig. 3]. We obtain
K = k

√
1 + δ2 and

vp = c√
1 + δ2

(
cos �

sin �

)
, vg = c

(
cos α

sin α

)
. (13)

The direction � = α is particular since we have then δ = 0,
hence, K = k and vp = vg = c, that is to say, the grating
behaves as free air.

B. Solution of the homogenized problem
for a grating of finite extent

As is the rule, the homogenization process has made spatial
lamination disappear. The resulting problem for a finite-size
grating is hence translational invariant, and explicit solutions
are therefore available. For an incident wave with wave num-
ber ky, it reads as

ϕ = eikyy

⎧⎪⎨
⎪⎩

eikx (x+�) + re−ikx (x+�), x ∈ (−∞,−�)

As cos Kxx + Aa sin Kxx, x ∈ (−�, �)

teikx (x−�), x ∈ (�,+∞).

(14)

The component ky is conserved and, from the preceding sec-
tion, the condition ky = Ky is always possible (see Fig. 3). For
|x| > �, ϕ satisfies (4), and for |x| < �, ϕ satisfies (7), hence,

k2
x = k2 − k2

y , K2
x = (k − Mky)2

1 − M2 . (15)

By using (8) in (14), we obtain four relations for the four
unknowns (r, t, a-, a+), leading to

t = 1

2

(
Za

Z∗
a

− Zs

Z∗
s

)
, r = −1

2

(
Zs

Z∗
s

+ Za

Z∗
a

)
, (16)

with

Zs = ξKx tan Kx�(1 + ikxBM) − (ikx + CM),
Za = ξKx(1 + ikxBM) + (ikx + CM) tan Kx�,
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FIG. 4. Reflection spectra given by the homogenized model at
the order 1 from (16) and (17) and for comparison, at the domi-
nant order 0 [by setting B = C = 0 in (17)]. Same representation as
in Fig. 2.

where we have defined

BM = hB√
1 − M2

, CM = hC(ky − Mk)2

(1 − M2)3/2
. (17)

The predictive force of our model is illustrated in Figs. 4 and
5 where we use the grating geometry for which the spectra
in Fig. 2 were obtained numerically. For M = 0 and 0.5, we
plot the reflection spectra given by the full effective model (at
order 1), i.e., r in (16) and (17) and, for comparison, those
given by the model at leading order (order 0) obtained by set-
ting B = C = 0 in (17). It can be seen that the order-0 model
already gives a satisfactory picture of the acoustic response
of the modulated grating although noticeable discrepancies
are visible in the radiative region (k > |ky|). The model at
order 1, by taking into account the effects of the evanescent
field at the boundaries of the modulated grating, improves the
prediction which becomes almost indistinguishable from the

FIG. 5. Profiles from Fig. 4 for kh = 1; direct numerics (plain
blue line), model at the order 0 (dashed gray line) and at the order 1
(dashed black line).

numerical solution. This is valid except above the threshold
for the appearance of the propagating mode 1 (region denoted
PM1) when (k − ky)h > 2π (1 − M), from (10). We notice
that part of this PM1 region lies below the radiative line for
−ky > k > 0 which means that mode 1 can be propagating
while mode 0 is evanescent.

In the following sections, we analyze in detail the acoustic
response of the modulated gratings outside and inside the
radiative region. We can anticipate from our observations in
Figs. 4 and 5 that the analysis outside the radiative region
will be facilitated because the simplified model at order 0 is
already very satisfactory; this is not the case anymore in the
radiative region.

IV. SPACE-TIME MODULATED SPOOF
SURFACE PLASMONS

A. Redshifted and blueshifted SPPs

Guided waves are solutions to the effective problem (7)
and (8) in absence of source; due to mirror symmetry, we get
symmetric SPPs, termed s-SPPs [ϕ(−x, y) = ϕ(x, y)]

ϕ(x, y) = eikyy

{
As cos Kxx, x ∈ (0, �)

tse−σ (x−�), x ∈ (�,+∞)
(18)

and antisymmetric a-SPPs [ϕ(−x, y) = −ϕ(x, y)]

ϕ(x, y) = eikyy

{
Aa sin Kxx, x ∈ (0, �),

tae−σ (x−�), x ∈ (�,+∞).
(19)

with Kx in (15), σ � 0, and σ 2 = k2
y − k2. At order 0

(corresponding to BM = CM = 0) which gives already very
satisfactory results in the nonradiative region as shown in
Fig. 4, by applying (8) at x = �, the effective dispersion re-
lations of these guided waves read as

SPPs

{
s : σ = ξKx tan(Kx�),

a : σ = −ξKx tan−1(Kx�).
(20)

For M = 0, we recover the classical dispersion of SPPs,
σ = ξk tan(k�) and σ = −ξk tan−1(k�), for sound-rigid ar-
rays pierced with holes [40,41], of which the homogenized
version has been studied in [42] (see also [29] Â in the context
of water waves). As it should be, the guided waves coincide
with solutions of the scattering problem with diverging scat-
tering coefficients (r, t ) in (16) in the nonradiative region (for
kx = iσ ). Accordingly, in Figs. 2 and 4, the SPP branches
were already visible by means of the divergence of r (dark
red lines) for |ky| > k. From M = 0 to 0.5 the most striking
features in the spectra are related to the inclination of the lines
along which r = 0 (dark blue lines) by the equation of the
lines Dm:

Dm : k � Mky +
√

1 − M2 mπ

2�
, (21)

where m �= 0 integer and in Fig. 4, m = ±1, 2, 3, 4, 5 are
visible for M = 0.5 (m = 1, 2, 3 for M = 0). From (16), these
lines Dm coincide with the asymptotes of the s- and a-SPP
branches (labeled sm and am) far enough from the radiative
line ky = k, where the increase in σ must be accompanied by
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FIG. 6. SPP redshift. The SPP with kyh = −0.7 is generated at
the working frequency kh = 0.69 ∼ |kyh| in the unmodulated grating
while it is generated at almost vanishing frequency kh = 0.01 in
the modulated grating for M = 0.7 (2� = 10h). In each panel, the
fields for y < 0 correspond to direct numerics and for y > 0 they
correspond to the model (14).

large values of tan Kx� (m odd) or large values of tan−1 Kx�

(m even).
A direct consequence of (21) is the capacity of the modula-

tion M to produce the same wave number ky of unmodulated
SPP at fully controlled, lower or higher, working frequencies
k. Such a blueshift, visible for ky > 0, has been observed
in [37] in time-varying array of split-ring resonators. The
redshifts for ky < 0 are even more impressive as they can
drive to zero the working frequencies producing SPPs with
large wave number ky (in Fig. 4, s0 to a1). This is illustrated
in Fig. 6 where we report SPP fields with kyh = −0.7 for
M = 0 and 0.7. For M = 0 the s1 branch is close to the ra-
diative limit line resulting in a weakly confined SPP (k � |ky|
hence σ ∼ 0); for M = 0.7, on the contrary, the frequency is
shifted to kh = 0.01 resulting in a strongly confined SPP (in
both cases, 2� = 10h). On Fig. 6, we take the opportunity to
comment on the meaning of the homogenized solution (14),
or equivalently (18) and (19), which is reported in Fig. 6 for
y > 0 (and numerical solution is reported for y < 0). As it
should be, the homogenized solution in the grating provides a
continuous picture of the actual one.

B. Accumulation of space-time modulated SPPs

Classical, i.e., unmodulated, SPPs have a unique solution
ky(k) > 0 at frequency k. From Fig. 4, we already know that
this is no longer the case when the grating is modulated; we
observe multiple branches and the number of these branches
in a given interval of ky increases without limit when M tends
to 1, from (21). We will see that their number is in fact limited
by the appearance of higher diffraction orders with real kn

given by (10) in the region where the 0 mode is evanescent;
besides, the appearance of propagating modes transforms the
SPPs in time-modulated SPPs excitable through scattering.

To begin with, we report in Fig. 7 the branches of the SPPs
calculated numerically for kh = 0.05 and 0.2 increasing M
[the agreement with the model (16) is exemplified in Fig. 8].
The associated mode 0 at the frequency k is evanescent except
in a small region k < |ky|; however, from (10), the modes
n = ±1 appear for

PM±1 : M > 1 ± (ky − k)
h

2π
, (22)

for 0 > ky > −k (n = 1) and for 0 < k < ky (n = −1). In the
same way, the interference orders n = ±2 become propagat-
ing for M > 1 ± (ky − k) h

4π
.

FIG. 7. Dispersion of the modulated SPPs against M for kh =
0.05 and 0.2 (2� = 10h); the mode 0 is propagating within the small
region |kyh| < |kh|. In the region PM±1 the mode n = ±1 is propa-
gating while the mode 0 is evanescent; in the region PM±2 the modes
n = ±1 and ±2 are propagating while the mode 0 is evanescent.

Now in the limit of the low frequency kh ∼ 0, the number
N of SPP branches is, from (21), given by the condition
N � (2ky�/π ) M/

√
1 − M2 (for ky > 0) and it is limited in

practice by the appearance of the higher diffraction order (the
mode n = −1), hence, from (22) 0 < kyh < 2π (1 − M). As a
consequence, the number N of branches accumulated at given
M is given by

N ∼ 4�

h
M

√
1 − M

1 + M
, (23)

which tells us that N is maximum for M � 0.6, in good agree-
ment with the observation of Figs. 7 and 8 (N ∼ 1.2�/h = 6
for 2� = 10h).

We end this discussion by noticing branches with large, but
finite, scattering values in the regions PM±1 and PM±2. This
is the signature of time-modulated quasi-SPPs, that is to say,
guided waves excitable through scattering. In particular, while
true SPPs are associated with diverging scattering coefficient
(in the numerics, this means that the maximum of r, or of
t , is only limited by the discretization of ky), quasi-SPPs
have smooth variations of (r, t ) with well-defined maxima. To
demonstrate the leakage of the quasi-SPPs, we choose such
a maximum in PM2 region (kh = 0.2, kyh = −1.53, M = 0.9
in Fig. 7). This quasi-SPP can be excited by a propagating
wave at frequency ωinc if the pair (k, ky) at frequency ω = ck

FIG. 8. Profiles from Fig. 7 at M = 0.7 from direct numerics
(plain blue line) and from the homogenized solution (16) (dashed
black line).
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FIG. 9. ϕ field of the time-modulated quasi-SPP excited by
an incident wave at frequency ωinc; the inset shows the incident
wave (mode 0). The quasi-SPP is associated to the frequency
ω = ω−1 [mode n = −1 in (24)]. The wave at frequency ω1 is prop-
agating [mode n = 1 in (24)], resulting in two propagating modes, 0
and 1, in reflection and transmission.

coincides with one of the pairs (kn, ky,n) of the modes n at
ωn = ckn. Denoting kinc = ωinc/c, these modes are character-
ized by

knh = kinch + 2nπM, ky,nh = kinc
y h + 2nπ, (24)

at frequency ωn = kn/c (with n integer) [35]. We thus consider
the propagating wave at kinch = kh + 2πM = 0.58 [n = −1
in (24)] and incidence θ inc = 54.3◦ (with sin θ inc = kinc

y /kinc

and kinc
y h = kyh + 2π = 0.47). The result is shown in Fig. 9

revealing the pattern of the time-modulated quasi-SPP at fre-
quency ω with large amplitude in the grating, excited by an
incident wave at frequency ωinc. In the reported case, we
observe also an additional diffraction order (mode 1) at higher
frequency (k1h = 11.5, ky,1h = 11.0) interfering with the in-
cident wave in reflection and transmission.

V. SCATTERING PROPERTIES

In this section, we focus on the scattering properties
of an incident propagating wave by a modulated metagrat-
ing. So, in the following, we denote θ the incident angle
with kx = k cos θ and ky = k sin θ . In particular, we will
look at the effect of the M modulation on the perfect
transmission conditions at the Brewster incidence angle and
Fabry-Perot–type resonances, termed extraordinary acoustic
transmission (EAT) for spatially modulated gratings only, see,
e.g. [27,43].

A. Modulated EAT

The effective medium theory has become classical for pre-
dicting EATs through unmodulated rigid gratings [28,44]. At
order 0 [B = C = 0 in (16) and (17)], perfect transmission is
expected at the Brewster incidences θ±

B realizing impedance
matching condition whatever the frequency, with

sin θ±
B = Mξ 2 ± (1 − M2)

√
1 − ξ 2

1 − M2(1 − ξ 2)
, (25)

and at Fabry-Pérot resonances 2Kx� = nπ (n integer) what-
ever the incident angle, hence, k = kFP with

kFP =
√

1 − M2

1 − M sin θ

nπ

2�
. (26)

We report in Fig. 10 the reflection spectra |rnum| against θ and
M (kh = 1 and ξ = 0.2 or 0.8). We notice that the predictions

FIG. 10. Reflection spectra against θ and M (kh = 1, � =
10h). The gray lines show the EATs at Brewster angles (25)
(dashed-dotted) and FP resonances (26) (dashed) given by the model
at order 0.

(25) and (26) give a good qualitative picture of the occur-
rence of EATs. However, they are quantitatively imperfect,
especially in the regions where the Brewster and FP curves
intersect. This leads to a fairly high relative error of about
30% of the model at order 0. In comparison, the model at
order 1 remains very accurate with a relative error lower than
5%; this was already visible on Fig. 5 in the radiative region.
The models at orders 0 and 1 differ only in the effects of
the evanescent field at the extremities of the grating (8). We
already know that these boundary layer effects are responsible
for an added length that can slightly shift the frequencies of
the FPs [36]; we will see that they become an essential ingre-
dient in determining whether the impedance of the grating can
be tuned to that of the surrounding air.

B. Effect of boundary layers on EATs

From a physical point of view, the presence of boundary
layers limits the ability of a stratified medium to be matched
in impedance with the surrounding air. This difficulty can
become critical and requires the use of models at higher order
[38,45,46]. Here, a strong evanescent field is favored by the
occurrence of FP resonances and according to (17) it is also
favored by a strong modulation. Accounting for this evanes-
cent field provides a perfect transmission condition, from (16)
and (17), when the real part of (ZsZ∗

a ) vanishes, i.e.,

k2A(θ )B(Kx ) = εC(k, θ ), (27)
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where k2A(θ ) = (ξ 2K2
x − k2

x ), B(Kx ) = tan 2Kx�, and
C(k, θ ) = 2ξKx(CM + k2

xBM). The right-hand term in (27)
is the contribution at order 1 in ε = kh. The classical
homogenized model at order 0 neglects this contribution
and so it predicts (25) for A(θ ) = 0 and (26) for B(Kx ) = 0.
From the complete condition (27), this obviously becomes
problematic when let us say A(θ ) ∼ ε2 which makes
it impossible for the condition B(Kx ) ∼ 0 to occur
simultaneously. The realization of perfect transmissions
is therefore a more subtle interplay between the resonances of
the grating and the evanescent field they generate. They are
given by

tan 2Kx�

2Kx�
= h

�
g(θ ), (28)

where

g(θ ) = ξ√
1 − M2

C(sin θ − M)2 + B cos2 θ (1 − M2)

ξ 2(1 − M sin θ )2 − (1 − M2) cos2 θ
, (29)

[which is equivalent to (27)] and (28) indeed faithfully repro-
duces the EATs observed in Fig. 10.

Finally, we note that (28) provides conditions for which
perfect transmission is not possible. Indeed, the function g(θ )
in (29) takes all values in R except the values in the interval
(g−, g+), with

g− = − Bξ

(1 − ξ 2)
√

1 − M2
< 0, g+ = C

ξ
√

1 − M2
> 0,

(see Appendix C). Therefore, perfect transmissions are pre-
vented in regions where

tan 2Kx�

2Kx�
∈ h

�
(g−, g+), (30)

which includes in particular the FP resonances at 2Kx� = nπ ,
n �= 0, predicted by the model at order 0. To illustrate these
effects, we plot in Fig. 11 the reflection spectra as functions
of kh and θ for a relatively thin � = h grating. The model at
order 0 gives only an approximate prediction on the locations
of perfect transmission, resulting in poor overall agreement.
In contrast, the model at order 1 faithfully reproduces reality
and seems to be limited only by the appearance of a new
propagation mode.

VI. NEGATIVE REFRACTION AND PERFECT
TRANSMISSION OF BEAMS

We now move to the scattering of an incident beam by our
modulated gratings and we inspect its ability to control the
energy flow. Inside the grating, we have shown in Sec. III A
that the group velocity differs in general from the phase ve-
locity, and it tells us that the energy is forced to flow along the
direction α = sin−1 M [see (13) together with (12)], whatever
the beam incidence θ . This is similar with the findings of
[28,29] who focused on unmodulated gratings with plates
tilted of an angle α; expectedly, we shall see that the analogy
is partial only, essentially because these unmodulated gratings
are nonsymmetric and reciprocal while our modulated grat-
ings are symmetrical and nonreciprocal.

Outside the grating, the wave number is k and the incidence
θ ; the group and phase velocities are identical with vp = vg =

FIG. 11. Reflection spectra in the (k, θ ) plane for � = h, ξ = 0.8.
The bounds (30) in-between which perfect transmission is prevented
are shown in gray dashed lines (light and dark, respectively).

c(cos θ, sin θ ). Inside the grating, the wave number is K and
the refraction angle �. With Ky = ky = k sin θ , we have

K = k
√

1 + δ2, tan � = tan α − δ

1 + δ tan α
,

where

δ = sin α − sin θ

cos α
,

from Sec. III A, and the group and phase velocities are given
by (13). This tells us that for θ = α (δ = 0), the group and
phase velocities inside the grating are equal; besides, they are
equal to the group and phase velocities outside the grating.
With in addition K = k and � = θ , the wave transmitted in
the grating has exactly the same properties as the incident
wave. This is illustrated in Fig. 12 for a grating modulated at
M = 0.7: The beam is not deviated and the waves inside and
outside the grating have the same characteristics. Expectedly
however, a noticeable reflection occurs due to the impedance
mismatch between the two media. In [29], unmodulated grat-
ing with zero thickness plates was shown to produce perfect
beam transmission due to impedance matching and this is
expected since the wave direction is that of the tilted plates.
Interestingly, we shall see that the result holds for our modu-
lated grating which is less intuitive.
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FIG. 12. Scattering of a beam at incidence θ = α = 44.72◦ by a
modulated grating (ξ = 0.5, 2� = 10h, kh = 1).

As discussed in the previous section, impedance match-
ing is made difficult because of boundary layer effects but
is it possible to remove these effects? This implies that the
boundary layer parameters vanish, BM = CM = 0 in (17). It
appears then that one can produce BM = 0 for ξ = 1 which
was already true for an unmodulated grating and one can also
produce CM = 0 if M = sin θ . This incidence corresponds
precisely to the Brewster incidence (25) predicted at order 0
and which now holds also at order 1. The cancellation of the
tuned beam reflection by the grating modulation is confirmed
in Fig. 13. In the numerics, we set ξ = 1 − 10−a with increas-
ing a and we obtain |rnum| ∼ 10−a up to the numerical error
for a = 16. It is interesting to note that this is also valid for the
evanescent modes, suggesting that the result could be exact as
for the tilted plate case [29].

In [28,29], it is shown that the refraction in a grating of
tilted plates is negative as soon as θα < 0. Moreover, the
grating is equivalent to an anisotropic (and nonsymmetric)
effective medium for which the general result r(−θ ) = r(θ )
applies (see, e.g., [47]); this property leads to the unintuitive
result that at incidence θ = −α (and still ξ = 1), the negative
refraction is accompanied by perfect transmission. For our
modulated gratings, we find in the same way a negative refrac-
tion as soon as θα < 0 since θ and α correspond to the beam
directions in air and in the grating (which are given by the
directions of the group velocities). However, the modulated
grating cannot be assimilated to a classical anisotropic homo-
geneous slab (with continuity conditions at its extremities),
hence, the equal reflection at ±θ is lost in particular because
CM in (17) cannot be canceled for both ±ky. Another way to
understand this difference is to use the nonreciprocity of the
modulated grating. As the system is symmetric, nonreciproc-
ity implies that the scattering process is not invariant under
the transformation (kx, ky) → (kx,−ky ) which is visible from
Eqs. (15)–(17), hence under the transformation θ → −θ [and
this is why r(±θ ) differ]. Figure 14 illustrates the negative

FIG. 13. Perfect beam transmission for ξ = 1 and θ = θB = α.
Same representation as in Fig. 12.

refraction of the beam in the grating. On these figures, we
have plotted for comparison the result given by the model at
order 1. As we had observed on Fig. 6, the model offers us a

FIG. 14. Negative refraction of the beam for θ = −α and nonre-
ciprocal propagation (by comparison with Fig. 12). Here vp = 0.45c
and � = 18.66◦.
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continuous version of the field in the grating and it captures
the effects of the evanescent field in the jump conditions (8)
which produce discontinuities (locally, at the interfaces) of the
field and of its normal derivative (except for Fig. 13 which
does not have them).

VII. CONCLUSION

We have analyzed the effect of space-time modulations on
sound rigid gratings in the light of a model that captures prop-
agation effects through an equivalent effective medium and
boundary layer effects through nontrivial transmission condi-
tions. Beyond the raw predictive strength of this model, which
was illustrated by comparison with direct numerical solutions,
explicit solutions were obtained for modulated SPPs and EAT.
We have shown that the predictions of a model at order 0 are
very qualitative while the model at order 1 accurately captures
the complexity of the spectra, both models being nevertheless
limited to the regime involving a single diffraction order.

The present analysis applies to analogous space-time mod-
ulated systems in electromagnetism such as laminated arrays
alternating dielectrics, metals, or a mixture of both, a number
of which have been analyzed using models at order 0. It
also applies with some modifications to modulated metasur-
faces for which boundary layer effects become dominant (and
propagation negligible). Finally, we have referred to analyses
carried out for unmodulated arrays formed by inclined rigid
plates. It would be interesting to understand how these already
rich results are modified when time modulation is added.
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APPENDIX A: FROM CONSERVATION LAWS
TO SPACE-TIME MODULATION

We provide here a derivation of Eqs. (1)–(5) governing
the actual space-time modulated problem starting with the
classical conservation laws of mass and linear momentum.
We consider a volume control element � whose boundary
∂� = � ∪ �v is made of a fixed external boundary � and
internal moving lines of discontinuities �v associated to the
space-time modulations (Fig. 15). The balances of mass and
of momentum in � read as

d

dt

∫
�

ρ tdr =
∫

�v

j d� −
∫

�

ρ tu t · n d�,

d

dt

∫
�

ρ tu tdr = −
∫

�v

t d� −
∫

�

p tn d�, (A1)

where ρ t, p t, and u t are the total mass density, pressure,
and velocity of the air; next, j denotes the external flux of
mass through �v and t denotes the action force per unit length
exerted by the air on �v (these two terms are unknown at this
stage and their values will be deduced in order to ensure the
space-time modulation). Recalling that the lines of discontinu-
ity �v move at the velocity v, the application of the Reynolds

FIG. 15. Volume control element � in which the conservation
laws (A1) are written. The boundary is ∂� = � ∪ �v with � a fixed
external boundary and �v made of internal moving lines of disconti-
nuities associated to the space-time modulations.

transport theorem to the equations (A1) provides the relations∫
�

(
∂ρ t

∂t
+ div(ρ tu t )

)
dr +

∫
�v

ρ t(v − u t ) · n d�

=
∫

�v

j d�,

∫
�

(
ρ t

∂u t

∂t
+ ∇p t

)
dr +

∫
�v

ρ tu t(v − u t ) · n d�

=
∫

�v

(p tn − t )d�. (A2)

As the equations above are true for any domain �, we deduce
the local set of equations

∂ρ t

∂t
+ div(ρ tu t ) = 0, ρ t

∂u t

∂t
= −∇p t, (A3)

along with the values of the mass flux j and action force t at
the moving lines of discontinuities

j = ρ t(v − u t ) · n, t = p tn − ρ tu t(v − u t ) · n. (A4)

Now, we linearize the problem for small acoustic perturba-
tions (the equilibrium being the air at rest with mass density ρ

and pressure pe); introducing η � 1, we have ρ t = ρ + ηρ ′,
p t = pe + ηp with and u t = ηu. On the one hand, the lin-
earization of (A3) provides the usual (local) equations of
conservation of mass and linear momentum for the acoustic
perturbation after introduction of the acoustic pressure p =
c2ρ ′ which defines the acoustic velocity c. On the other hand,
the linearization of (A4) provides the boundary condition we
are looking for. Namely, from the first equation in (A4) we
obtain at the dominant order

j = ρv · n, (A5)

and at the next order

u · n = v · n
p

ρc2
. (A6)

The relation (A5) tells us that the space-time modulation in
our configuration is provided by a mass injection (n = ey,
j > 0) or a mass withdrawal (n = −ey, j < 0) at the moving
boundary by an external process [8]; the resulting bound-
ary condition (A6) links the acoustic pressure and velocity
through the relation announced in (5). Note that such bound-
ary condition is used in [3] from compatibility relations; it is
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FIG. 16. (a) Unit cell used in the homogenization of the bulk,
(b) Unit cell used for the homogenization of the transmission
conditions.

also a relation similar to Rankine-Hugoniot condition between
two fluids in the presence of a line of discontinuity. Finally,
from the second equation in (A4), assuming that t = t e + ηt ′,
we get at the dominant order the equilibrium force t e = pen
exerted on the moving boundary and at the next order the
acoustic force t ′ = pn − ρu(v · n) which involves the veloc-
ity of the modulation.

APPENDIX B: ASYMPTOTIC HOMOGENIZATION

We report in this Appendix the derivation of the effective
model given in (6)–(9). We first start by adimensionalizing
the system (2), (3) in the moving frame as (x, y) → k(x, y −
vt ), t → ωt and the fields u → u/c, p → p/(Zc), ϕ → kϕ/c,
which leads to the system

u = ∇ϕ, p = −
(

∂ϕ

∂t
− M

∂ϕ

∂y

)
, divu + ∂ p

∂t
− M

∂ p

∂y
= 0,

(B1)

along with the boundary condition

(u − Mpey) · n = 0 on the rigid parts. (B2)

Following the adimensionalization, the periodicity becomes
ε = kh which is a small parameter in the subwavelength
regime. The asymptotic analysis will be first conducted in
the grating to find effective bulk equations and then at the
interface between the grating and the air where effective jump
conditions will be derived.

1. Effective equations

In the air and far from the interfaces at x = {0, k�}, the
fields (u, p, ϕ) are simply expanded as

g =
∞∑

i=0

εigi(r, t ), g = {u, p, ϕ}, (B3)

with r = (x, y) describing the macroscopic variations of the
fields. Accordingly, at any order i (u, p, ϕ) satisfy (B1).

In the grating, and still far from the interfaces at x =
{0, k�}, the fields (u, p, ϕ) are expanded as

g =
∞∑

i=0

εiĝi(r, ŷ, t ), ĝ = {û, p̂, ϕ̂}, (B4)

where we introduce ŷ = y/ε with −ξ/2 < ŷ < ξ/2 describ-
ing the microscopic variations at the scale of the periodic
laminations [see Fig. 16(a)]. We define the fields of interest

(ui, pi, ϕi ) which are functions of (r, t ) as

ui =
∫ ξ/2

−ξ/2
ûidŷ, pi =

∫ ξ/2

−ξ/2
p̂idŷ, ϕi = 1

ξ

∫ ξ/2

−ξ/2
ϕ̂idŷ,

(B5)

and the average process contains the meaning of the homog-
enization. In the following, we use (B4) in (B1) and identify
the terms with same power in ε with the differential operator

∇ → ∇r + ey

ε

∂

∂ ŷ
.

a. The order 0

At the dominant order 1/ε in (B1), we have ∂ŷϕ̂
0 = 0,

hence, from (B5) ϕ0 = ϕ̂0. We also have ∂ŷ(û0
y − Mp̂0) = 0.

Given the condition (B2) we deduce that

û0
y − Mp̂0 = 0, ∀ ŷ. (B6)

At the order ε0 in (B1), we have û0
y = ∂yϕ

0 + ∂ŷϕ̂
1 and p̂0 =

−∂tϕ
0 + M(∂yϕ

0 + ∂ŷϕ̂
1). Combined with (B6) we obtain af-

ter integration over ŷ ∈ (0, ξ )

u0
x = ξ

∂ϕ0

∂x
, u0

y = − ξM

1 − M2

∂ϕ0

∂t
, p0 = − ξ

1 − M2

∂ϕ0

∂t

(B7)

[u0
y = ξ û0

y and p0 = ξ p̂0 since (û0
y, p̂0) do not depend

on ŷ], and

ϕ̂1 = −
(

M

1 − M2

∂ϕ0

∂t
+ ∂ϕ0

∂y

)
ŷ + ϕ1. (B8)

Eventually, we use the equation of mass conservation at the
order ε0 in (B1). Since (û0

y, p̂0) do not depend on ŷ, we deduce
that (û1

y − Mp̂1) does not depend on ŷ and using (B2)

divr(u0 − Mp0ey) + ∂ p0

∂t
= 0 (B9)

(which holds for û0
y and p̂0) and

û1
y − Mp̂1 = 0, ∀ ŷ. (B10)

b. The order 1

We use the forms of (û1
y, p̂1) in (B1) at the order ε1. As

previously, by eliminating ϕ̂2, we obtain Mû1
y − p̂1 = ∂t ϕ̂

1

which combined with (B10) provides the relations between
the macroscopic fields

u1
x = ξ

∂ϕ1

∂x
, u1

y = − ξM

1 − M2

∂ϕ1

∂t
, p1 = − ξ

1 − M2

∂ϕ1

∂t
.

(B11)

Eventually, we use the equation of mass conservation in (B1)
at the order ε2 that we average on ŷ ∈ (−ξ/2, ξ/2). Account-
ing for the condition (B2) (û2

y − Mp̂2) = 0 results in

divr(u1 − Mp1ey) + ∂ p1

∂t
= 0. (B12)
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2. Effective interface jump conditions

The study of the behavior near interface at x = 0 (same
procedure applies at x = k�) requires the introduction of
the rescaled space variable r̂ = r/ε, with r̂ = (x̂, ŷ) and the
associated elementary, or unit, cell Y of the interface [see
Fig. 16(b)]. This representative cell is of infinite extent in the
x̂ direction and of thickness 1 in the ŷ direction. In this do-
main, the fields (u, p, ϕ) are expanded as

g =
∞∑

i=0

εiĥi(y, r̂, t ), g = {u, p, ϕ}, ĥ = {v, q, ψ}, (B13)

where (vi, qi, ψ i ) are ŷ-periodic functions for ŷ < 0. In (B13),
we keep the macroscopic space variable y as it models the
propagating behavior in the y direction. We shall use (B13) in
(B1), with the differential operator

∇ → ey
∂

∂y
+ 1

ε
∇r̂,

and identify the terms with same powers in ε. In this micro-
scopic region, the inner expansions (B13) have to match the
outer expansions (B3) and (B4), in the air and in the grating,
respectively. This is done by means of matching conditions
based on Taylor expansions (see, e.g., [48] for their deriva-
tion). Written at the dominant and first order for the velocities,
they read as

lim
x̂→±∞

v0 = û0|0± , lim
x̂→±∞

(
v1 − x̂

∂û0

∂x

∣∣∣∣
0±

)
= û1|0± ,

(B14)

with ûi|0− = ui(0−, y, t ) and ûi|0+ = ûi(0+, y, ŷ, t ) for i =
0, 1. The same expressions hold for the matching on the
pressure (the potential) by replacing formally v by q (ψ) and
û by p̂ (ϕ̂).

a. The order 0

We start with the terms in 1/ε in (B1), which already tells
us that ∇r̂ψ

0 = 0, hence, ψ0 does not depend on r̂. From
(B14), we deduce that ϕ0 is continuous at x = 0 and

ψ0 = ϕ0(0, y, t ). (B15)

We also have the relation divr̂(v0 − Mq0ey) = 0, that we inte-
grate over Y and obtain

0 = lim
x̂→+∞

∫ ξ

ŷ=0
v0

x dŷ − lim
x̂→−∞

∫ 1

ŷ=0
v0

x dŷ

[accounting for the periodicity along ŷ and (B2)]. Applying
the matching condition (B14), we find

u0
x (0+, y, t ) = u0

x (0−, y, t ).

Therefore, we have continuity of the potential field and the
velocity at the dominant order

�ϕ0� = 0,
�

u0
x

� = 0. (B16)

b. The order 1

For simplicity, we introduce the fields w0 and K0

defined by

w0 = (v0 − Mq0ey),

K0 = M ∂ϕ0

∂t

∣∣
0 + (1 − M2) ∂ϕ0

∂y

∣∣
0 = Lϕ0

|0.
(B17)

From the relation pressure potential in (B1) at the order ε0,
and accounting for (B15), we have

q0 = −∂ϕ0

∂t

∣∣∣∣
0

+ M

(
∂ϕ0

∂y

∣∣∣∣
0

+ ∂ψ1

∂ ŷ

)
, (B18)

satisfying the matching conditions

limx̂→−∞ q0 = − ∂ϕ0

∂t

∣∣
0 + M ∂ϕ0

∂y

∣∣
0,

limx̂→+∞ q0 = − 1
1−M2

∂ϕ0

∂t

∣∣
0

(B19)

[we have used (B7)]. We now move to the problem set on
(w0, ψ1) in Y . To do so, we use (B1) the conservation of
the mass (at the order 1/ε) and v0 (at the order ε0) along
with (B18), the boundary condition (B2) (at the order ε0).
This allows us to set the elementary problem on (w0, ψ1)
solution to

divr̂w
0 = 0,

w0 = ∇r̂ψ
1 − M2 ∂ψ1

∂ ŷ ey + K0ey,

w0 · n = 0 on the rigid parts.

(B20)

The above system is complemented by the matching condi-
tions using (B14) on v0. Using further (B19) and remembering
that at x = 0−, û0 is given directly by (B1) and at x = 0+,
û0 = u0/ξ is given by (B7), we obtain

lim
x̂→−∞

w0 = u0
x

∣∣
0ex + K0ey, lim

x̂→+∞
w0 = u0

x

∣∣
0

ξ
ex. (B21)

The problem (B20), (B21) is linear with respect to K0 and
u0

x |0, hence, the solution can be expressed as

ψ1 =u0
x

∣∣
0 Q1(r̂) + K0 Q2(r̂) + ψ̃1(y, t ), (B22)

where Q1 and Q2 are elementary functions, periodic in
Y−, that satisfy

∂2Q1

∂ x̂2 + (1 − M2) ∂2Q1

∂ ŷ2 = 0,

limx̂→−∞ ∇r̂Q1 = ex, limx̂→+∞ ∇r̂Q1 = ex
ξ
,

∇r̂Q1 · n = 0 on the rigid parts

(B23)

and
∂2Q2

∂ x̂2 + (1 − M2) ∂2Q2

∂ ŷ2 = 0,

limx̂→−∞ ∇r̂Q2 = 0, limx̂→+∞ ∇r̂Q2 = − ey

1−M2 ,

∇r̂Q2 · n = − ey·n
1−M2 on the rigid parts.

(B24)

From (B23) and (B24), we deduce that Q1 and Q2 at infinity
should read as

Q1 ∼
x̂→−∞

x̂, Q1 ∼
x̂→+∞

x̂

ξ
+ B, (B25a)

Q2 ∼
x̂→−∞

0, Q2 ∼
x̂→+∞

− ŷ

1 − M2 , (B25b)
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where B is a boundary layer parameter. We shall see in
Appendix B 3 that B = B/

√
1 − M2 where B is an effective

parameter independent of M and which only depends on ξ .
Note that since the problems (B23) and (B24) are defined
up to a constant, we fix the constant to zero at x̂ = −∞. As
the geometry is symmetric with respect to ŷ = ξ/2, we have
Q2(x̂, ξ/2) = 0 and hence no effective coefficient appears for
Q2, hence (B25b). Now making use of the matching condi-
tions with ψ1 in (B22) along with (B25a) and (B25b) and
using further (B8), we obtain

�ϕ1� = Bu0
x

∣∣
0. (B26)

It remains to derive the jump condition on the normal ve-
locity at the interface by integrating the equation of mass
conservation in (B1) at the order ε0, namely, divr̂w

1 + (∂t q0 +
∂yw

0
y ) = 0. Since the integration of each term makes diverging

terms to appear, we will perform the integration on a finite do-
main Ym = Y+

m ∪ Y−
m with Y±

m = {r̂ ∈ Y | ± x̂ > 0, |x̂| < x̂m}
with x̂m > 0 and consider the limit x̂m → ∞. Using the Green
theorem along with (B2) and (B14), we obtain∫

Ym

divr̂w
1d r̂ ∼

x̂m→∞
�

u1
x

� + x̂m

(
∂u0

x

∂x

∣∣∣∣
0+

+ ∂u0
x

∂x

∣∣∣∣
0−

)
. (B27)

We have used that the terms ∂xu0
x |0± are obtained from the

equation of mass conservation and the forms of (p0, u0
y ) in

(B1) at the order ε0 in Ym, and using (B7) and (B9) in Y+
m . We

obtain

∂u0
x

∂x

∣∣∣∣
0+

= ξ

1 − M2

∂2ϕ0

∂t2

∣∣∣∣
0

,

∂u0
x

∂x

∣∣∣∣
0−

= 1

1 − M2

(
∂2ϕ0

∂t2

∣∣∣∣
0

− LK0

)
.

With the operator L = [M∂t + (1 − M2)∂y], as in (B17), the
second contribution reads as∫

Ym

(
∂q0

∂t
+ ∂w0

y

∂y

)
d r̂

∼
x̂m→∞

LK0

1 − M2 C − x̂m

1 − M2

(
∂2ϕ0

∂t2

∣∣∣∣
0

(1+ξ ) − LK0

)
,

(B28)

where we have used q0 from (B18) and w0
y from (B20) and

(B22). We also used that Q1 is an even function of ŷ and we
have introduced the finite integral

C =
∫
Y−

(1 − M2)
∂Q2

∂ ŷ
d r̂ +

∫
Y+

(
(1 − M2)

∂Q2

∂ ŷ
+ 1

)
d r̂.

(B29)

As for the constant B, we will show in Appendix B 3 that C =
C/

√
1 − M2 where C is an effective parameter independent of

M and which only depends on ξ . Gathering the contributions
(B27) and (B28), the diverging terms in x̂m cancel out and we
obtain

�
u1

1

� = − L2ϕ0
|0

1 − M2 C. (B30)

3. Classical form of the elementary problems

The elementary problems in (B23) and (B24) can be put
in a classical form independent of M by setting, with cα =√

1 − M2,

Q̃1(x̃, ỹ) = cα Q1(x̃/cα, ỹ), Q̃2(x̃, ỹ) = c2
α Q2(x̃/cα, ỹ).

Accordingly, (Q̃1, Q̃2) satisfy (B23) and (B24) with M = 0 (in
particular they satisfy a Laplace equation). These problems
are classical potential flow problems which depend only on
ξ and they have been analyzed in [36]. Introducing (B, C)
defined by

Q̃1 ∼
x̃→+∞

x̃

ξ
+ B, C =

∫
Y−

∂Q̃2

∂ ỹ
d r̃ +

∫
Y+

(
∂Q̃2

∂ ỹ
+ 1

)
d r̃,

and identifying with (B25a) and (B29), we deduce that

B = B√
1 − M2

, C = C√
1 − M2

, (B31)

where the dependence of (B,C) on M is now explicit, and B
and C depend on ξ only. Specifically, we have

B = − 1

π
log

(
sin

πξ

2

)
, C � πξ 2

16

[see [36] (note that in this reference, we used p → p/ξ )].

4. Construction of the model at order 1

The final problem is set on a unique homogenized field
(u, ϕ) = (u0, ϕ0) + ε(u1, ϕ1) which consists in collecting the
first two order contributions of the expansions. We first remark
that in the air for x < 0 and x > k�, the unique field satisfies
the exact same wave equation than that in the initial system
(B1). Next, in the region of the modulated grating, the unique
field satisfies an effective wave equation consisting in a bal-
ance of mass

divru + ∂ p

∂t
− M

∂ p

∂y
= 0,

from (B9) and (B12), along with

u = ξ
∂ϕ

∂x ex − ξM
1−M2

∂ϕ

∂t ey,

p = − ξ

1−M2
∂ϕ

∂t

from (B7)–(B11). At the interface between the air and the
grating, by gathering the contributions (B16) at order 0, (B26)
and (B30) at order 1, and accounting for (B31), we obtain

�ϕ� = εB√
1 − M2

ux, �ux� = − εC
(1 − M2)3/2

L2ϕ.

Finally, going back to the reference frame and dimensional
forms, we recover the effective model announced in (6) along
with (3) and the transmission conditions (8).

5. Nonreciprocity

In this section, we come back to the homogenization re-
cently proposed in [33] in the context of electromagnetic
waves for dielectric materials, as the case a perfect electric
conductor (PEC) we are considering in this study is a delicate
limit. In the following, we set Z = c = 1 for simplicity. In
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[33], the homogenization process ends up with a homogenized
model in which the structure of the Maxwell rotE = −∂t B,
rotH = ∂t D, is preserved, while the constitutive relations be-
tween the four fields are those of bianisotropic media, namely,

D = εE + ( tχ − i tκ)H,

B = μH + (χ + i tκ)E,
(B32)

where ε and μ are the permittivity and permeability dyadics,
χ and κ the nonreciprocity and chirality parameters [49]. In
the present case, κ = 0 and tχ = −χ, which corresponds to
nonreciprocal bianisotropy in moving media [49,50]. To relate
with our problem in acoustics, we consider p polarization
H = H (x, y)ez and a modulation along ey, for which

χ =
⎛
⎝ 0 0 χ

0 0 0
−χ 0 0

⎞
⎠. (B33)

This results in the following relations:

∂xEy − ∂yEx + ∂t B = 0, (B34)

along with ∂yH = ∂t Dx and ∂xH = −∂t Dy and⎛
⎝Dy

Dx

B

⎞
⎠ =

⎛
⎝ε‖ 0 0

0 ε⊥ −χ

0 −χ μ⊥

⎞
⎠

⎛
⎝Ey

Ex

H

⎞
⎠. (B35)

Noticing that (3) and (6) can be written

∂xux + ∂yuy + ∂t p = 0, (B36)

⎛
⎜⎝

∂xϕ

∂yϕ

p

⎞
⎟⎠ =

⎛
⎜⎜⎝

1
ξ

0 0

0 − 1−M2

ξ M2 − 1
M

0 1
M 0

⎞
⎟⎟⎠

⎛
⎜⎝

ux

uy

−∂tϕ

⎞
⎟⎠, (B37)

(B34) and (B35) can be identified to (B36) and (B37) using

Ey = ux, Ex = −uy, B = p,
Dy = ∂xϕ, Dx = −∂yϕ, H = −∂tϕ,

resulting in

ε‖ = 1

ξ
, ε⊥ = −1 − M2

ξM2 , μ⊥ = 0, χ = 1

M
. (B38)

We notice that ε⊥ and χ diverge as M → 0, which is expected.
Indeed, when M = 0, the inversion which results in (B37),
namely from (6),(

uy

−∂tϕ

)
=

(
0 M

M 1−M2

ξ

)(
∂yϕ

p

)
,

is not possible anymore due to the infinite anisotropy. Con-
ducting the homogenization directly for a perfect electric
conductor (PEC) provides Ex = 0 (uy = 0 in acoustics) and
the one-dimensional wave equation

∂xEy + ξ∂t H = 0, ∂t Ey = −ξ∂xH.

Alternatively, (B35) can be recovered from [33] by assimi-
lating formally a PEC (or a sound-rigid material) to a material
with ε → ∞ (or ρ → ∞) while keeping an arbitrary but finite
value of c [42]. By doing so in [33], with 1/ε2 = μ2 = 0
for a PEC (and for simplicity, one can use ε1 = μ1 = 1 and

FIG. 17. Variation of g as a function of θ .

c1 = c2 = 1), (42–46) and (25–29) in this reference provide
(B38) (and μ‖ = 0). From (B34) and (B35) along with the
relations ∂yH = ∂t Dx and ∂xH = −∂t Dy, we obtain the dis-
persion relation

ε⊥
ε‖

K2
x + (Ky − ζk)2 = ε⊥μ⊥k2,

where k = ω/c, which using (B38) provides (11). For M = 0,
the dispersion reduces to Kx = ±k as expected.

APPENDIX C: BREWSTER AND FABRY-PÉROT

Here, we provide additional (technical) information on the
analysis used in Sec. V B. We note

g(θ ) = ξ√
1 − M2

a(θ, M)

b(θ, ξ , M)
,

with from (29), a(θ, M) = C(sin θ − M)2 + B cos2 θ (1 −
M2) and b(θ, ξ , M) = ξ 2(1 − M sin θ )2 − (1 − M2) cos2 θ .
The derivative of g with respect to θ is

∂θg = 2ξ
√

1 − M2

b2(θ, ξ , M)
cθ (1 − Msθ )[Bξ 2 + C(1 − ξ 2)](M − sθ ),

whose sign is given by the sign of (M − sθ ) and we denote
θm = sin−1 M. The function g and ∂θg have poles which are
precisely the Brewster angles θ±

B predicted by the homoge-
nization at the order 0 [see (25)]. With the hierarchy θ−

B �
θm � θ+

B , for any ξ and M, we obtain the following table of
Fig. 17, where gm = g(θm, ξ , M) and gm = g(±90◦, ξ , M) are
given by

gm = − Bξ

(1 − ξ 2)
√

1 − M2
� 0, gM = C

ξ
√

1 − M2
� 0

FIG. 18. Variations of g(θ, ξ, M) against θ for ξ = 0.8 and
M = 0 and 0.7.
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[since B � 0 and C > 0 from (9)]. We obtain that
g does not take values within the interval (gm, gM )
(see Fig. 18). It follows that the condition for perfect
transmission

tan 2Kx�

2Kx�
= h

�
g(θ, ξ , M),

cannot be fulfilled when tan 2Kx�/(2Kx�) falls in this interval,
and in particular for 2Kx� = nπ which coincide with the per-
fect transmissions predicted by the homogenized model at the
order 0. Instead, in this vicinity, we obtain

2Kx� − nπ � nπ
h

�
g(θ, ξ , M).
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