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Van Roosbroeck’s equations constitute a versatile tool to determine the dynamics of electrons under time-
and space-dependent perturbations. Extensively utilized in ordinary semiconductors, their potential to model
devices made from topological materials remains untapped. Here, we adapt van Roosbroeck’s equations to
theoretically study the bulk response of a Weyl semimetal to an ultrafast and spatially localized light pulse
in the presence of a quantizing magnetic field. We predict a transient oscillatory photovoltage that originates
from the chiral anomaly. The oscillations take place at the plasma frequency (THz range) and are damped by
intervalley scattering and dielectric relaxation. Our results illustrate the ability of van Roosbroeck’s equations to
unveil the interplay between electronic band topology and fast carrier dynamics in microelectronic devices.
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I. INTRODUCTION

Van Roosbroeck’s (VR) system of equations [1] comprises
the drift-diffusion and continuity equations for electric charge
carriers with the Poisson equation for the electric field. These
equations have been key for the understanding and devel-
opment of landmark devices, such as transistors, solar cells,
and photodiodes. As such, numerous studies and monographs
have been published about the VR equations and their solu-
tions (see, e.g., Refs. [2–7]). Modern commercial software
packages [8] are also equipped to solve the VR equations in a
variety of realistic device geometries. Yet, the aforementioned
works and software have been tailored to topologically trivial
materials.

It is now known that a large fraction of solids host topo-
logically nontrivial electrons [9–11]. Thus, there is a marked
interest toward creating devices that will exploit the topo-
logical properties of matter [12,13]. Remarkably, although
drift-diffusion equations have been used to predict novel
electrical transport properties in certain topological materi-
als under restricted (e.g., static) conditions [14], full-fledged
VR equations remain vastly underexploited therein. Little is
known about fundamental changes that could emerge in the
solutions of those equations when electrons have a nontrivial
band topology. If topological microelectronic devices are to
become technological reality, then such a gap of knowledge
must be filled. The objective of our paper is to make progress
in this direction and to show that VR equations, appropriately
adapted to account for nontrivial electronic topology, can un-
veil new physical effects in topological devices of potential
technological interest.

The family of topological materials being large and di-
verse, we are inclined to make a choice for the purposes of
the present study. The material that we focus on is a Weyl
semimetal (WSM), where pairs of nondegenerate electronic
bands cross at isolated points in the Brillouin zone [15]. These
points, called Weyl nodes, are sources or sinks of Berry curva-
ture and have a chirality index χ = ±1, which is a topological
invariant of the electronic band structure.

Recently, the investigation and control of WSM using ul-
trafast light has emerged as a frontier of fundamental and
applied research [16,17]. On the one hand, the influence of
the Berry curvature in photodetection and nonlinear optics has
been highlighted [12,18–20]. On the other hand, experiments
[21–23] have measured the light-induced chiral anomaly, a
topological property whereby collinear electric and magnetic
fields induce a transfer of electrons between Weyl nodes of
opposite chirality [24].

In this paper, we investigate the interplay between elec-
tronic band topology and transient carrier dynamics in a WSM
irradiated by a spatially inhomogeneous light pulse (Fig. 1),
using a new approach. We begin by writing VR equations for
a WSM placed under a strong magnetic field and subject to
a light pulse (Sec. II), with adjustments to accommodate for
the nontrivial electronic band topology. We follow in Secs. III
and IV by linearizing and solving the preceding VR equations.
Our strategy of solution is to posit simple but physically justi-
fied boundary conditions, and then to take advantage of them
by integrating the VR equations over the system’s length. This
approach enables us to gain analytical insight for a physical
quantity of interest, namely the photovoltage. We thus find a
transient photovoltage that oscillates at the plasma frequency.
The oscillations originate from the chiral anomaly and are
driven by an internal electric field that results from the spatial
separation between photoexcited electrons and holes. Unlike
in Refs. [21–23], the effect of the chiral anomaly is present
even when the electric field of light is perpendicular to the
static magnetic field. The main text of the paper ends with
some discussion (Sec. V) and conclusions (Sec. VI). The six
Appendices contain technical aspects that allow us to repro-
duce the main results of the paper.

II. BASIC EQUATIONS

In this section, we adapt the VR equations to a bulk WSM
with two nodes. The nodes of opposite chirality are related by
symmetry and the energy dispersion is untilted. A strong static
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FIG. 1. A Weyl semimetal film (blue) is placed between two
contacts (gray). Initially, the WSM is subjected to an electric field
E0ẑ and a magnetic field B0ẑ, both uniform and static. Then, a finite
region of length dz (red) is illuminated with a light pulse of duration
dt . Photoexcited electrons (−) and holes (+) drift and diffuse away
unequally from the illuminated region, giving rise to a local charge
accumulation and a concomitant electric field Eint . The line integral
of Eint between the contacts yields a transient photovoltage Vint that
oscillates at the plasma frequency due to the chiral anomaly.

and uniform magnetic field B0 = B0ẑ is applied, so that the
equilibrium Fermi energy εF intersects solely with the chiral
(n = 0) Landau levels (Fig. 2). It is in this regime that the
effect of chiral anomaly in VR equations is most pronounced.
In Appendix F, we present the corresponding theory for a
weak B0.

We restrict our analysis to the electronic dynamics in the
n = 0 and n = 1 Landau levels. We assume that (i) all the
other bands are far enough from εF , and their electronic
populations unchanged by the light pulse; (ii) the occupa-
tion of the n = 1 bands in thermal equilibrium is small (low

FIG. 2. Low-energy Landau bands (n, χ ), with n = 0, 1 and
χ = ±1. The n = 0 bands are unidirectional, due to the nontrivial
electronic band topology. The magnetic length is lB and kz stands
for the electronic wave vector component parallel to the static mag-
netic field. The equilibrium Fermi energy is εF (dashed lines). Other
important parameters are (i) the intraband relaxation time τ in the
n = 1 bands, (ii) the intervalley relaxation time τv , (iii) the intravalley
electron-hole recombination time τr , (iv) the characteristic time τa

for intervalley charge transfer along chiral Landau levels due to the
chiral anomaly, and (v) the optical generation rates g±. In the main
text, we adopt the hierarchy τ < τa � τr � τv .

temperature); (iii) the light pulse is uniform across the film
thickness and width, but nonuniform along the film length z
(Fig. 1). Assumption (iii) justifies the use of one-dimensional
VR equations, which we enumerate and discuss next.

In the drift-diffusion approximation, the charge current
density along z for the band (1, χ ) is

jχ1 = qμ1ρ
χ

1 E + qD1∂zρ
χ

1 , (1)

where ρ
χ

1 is the electron number density in band (1, χ ), q is
the absolute value of the electron’s charge (q > 0), E is the
z component of the total electric field (including a static and
uniform electric field E0, the electric field of light Elight, and
an internal electric field Eint discussed below), μ1 = qτ/m∗ =
q|v|τ lB/(

√
2h̄) is the mobility of electrons in the n = 1 band

in the effective mass (m∗) approximation, |v| is the Fermi
velocity, τ is the intraband scattering time in band (1, χ ),
lB = √

h̄/(q|B0|) is the magnetic length and D1 = v2τ is the
diffusion coefficient. Hereafter, τ is assumed to be the shortest
of all characteristic times in the problem, thereby justifying
time-locality in Eq. (1).

The charge current density along z in band (0, χ ) is

jχ0 = χqvρ
χ

0 , (2)

where v = |v|sgn(B0) is the (constant) slope of band (0,−)
and ρ

χ

0 is the electron number density therein. The reason
why Eq. (2) looks different from Eq. (1) is that the motion
of electrons in a chiral Landau level is one-way. Accordingly,
one cannot write the current in a single chiral Landau level
as a sum of drift and diffusion currents. This is an example
of how electronic band topology requires adjusting the VR
equations away from their traditional form. It turns out that
the total current in the chiral Landau levels, j+0 + j−0 , can
be written in terms of drift and diffusion currents if time
variations of the current are slow on the scale of the intervalley
relaxation time τv (see Appendix A). Since we are interested
in the dynamics that is faster than τv , j+0 + j−0 is not simply a
sum of drift and diffusion currents.

The charge continuity equation for band (n, χ ) reads

∂z jχn − q∂tρ
χ
n = qRχ

n + qGχ
n − χ

q3EB0

4π2 h̄2 δn,0, (3)

where δ is a Kronecker delta,

Gχ

0 = −Gχ

1 ≡ gχ (z, t )/2 (4)

is the (0, χ ) → (1, χ ) optical generation rate (gχ > 0) in units
of 1/(time × volume),

Rχ

1 = χ
ρ+

1 − ρ−
1

τv

+ ρ
χ

1 − ρ
χ

1,eq

τr
, (5)

Rχ

0 = χ
ρ+

0 − ρ−
0

τv

− ρ
χ

1 − ρ
χ

1,eq

τr
(6)

are the relaxation rates for the excess charge in the relaxation
time approximation, τr is the intravalley electron-hole recom-
bination time, and ρ

χ

1,eq is the equilibrium electron density in
band (1, χ ). We have for simplicity assumed that τv is the
same for n = 0 and n = 1. By considering all relaxation times
to be constants, we focus on electron dynamics not far from
equilibrium.

024301-2



VAN ROOSBROECK’S EQUATIONS WITH TOPOLOGICAL … PHYSICAL REVIEW B 108, 024301 (2023)

The second term in the right-hand side (r.h.s.) of Eq. (6)
ensures the conservation of the total charge via

∑
n,χ (∂z jχn −

q∂tρ
χ
n ) = 0. The third term in the r.h.s. of Eq. (3) is the chiral

anomaly term, which in the low-temperature regime enters di-
rectly only in the continuity equation for the band intersecting
the Fermi level (n = 0).1 This term, absent in traditional VR
equations, is another example of the adaptation required by
nontrivial band topology.

In Eq. (4), gχ is calculable from Fermi’s golden rule (see
Appendix B). Two properties of gχ worth noting are that
(i) gχ ∝ |B0| due to the Landau level degeneracy, and (ii)
g+(z, t ) = g−(z, t ) if the light pulse preserves the symmetry
relating the two Weyl nodes. The latter property fails when
E0 �= 0, which breaks the z → −z symmetry. Before light
illumination, Eqs. (3), (5), and (6) yield

ρ
χ

0 = ρ
χ

0,eq + χ
q2τv

8π2h̄2 E0B0 and ρ
χ

1 = ρ
χ

1,eq, (7)

which implies ρ+
0 − ρ−

0 ∝ E0 �= 0, as though the two Weyl
nodes have different chemical potentials. If so, then g+ �= g−
even when the light pulse preserves the crystal symmetry.

For later reference, the electric current in the absence of a
light pulse is obtained from Eq. (7) and reads

j = σ0E0 + qvd (ρ+
1,eq + ρ−

1,eq ), (8)

where vd = μ1E0 is the drift velocity in n = 1 bands and

σ0 = q3vB0τv/(4π2h̄2) (9)

is the dc conductivity from n = 0 bands.
Last, the longitudinal part of the electric field obeys the

Poisson equation

∂zE = −(q/ε)
∑

n=0,1

∑
χ=±1

(
ρχ

n − ρχ
n,eq

)
, (10)

where ε is the dielectric constant of the material and the equi-
librium charge densities are assumed to be spatially uniform
(homogeneous doping).

Because Elight is transverse and E0 is independent of z, E
in Eq. (10) equals an internal, photoinduced electric field Eint.
Initially, photoexcited electrons and holes propagate at differ-
ent speeds due to the markedly different energy dispersions of
the n = 0 and n = 1 bands. Consequently, a local net charge
is generated in the region where the light pulse acts, which
in turn produces Eint. This field tends to neutralize the local
charge at times exceeding the dielectric relaxation time.

Neglecting thermoelectric effects [26] for simplicity,
Eqs. (1)–(6) and (10) form the complete VR system of
equations for the unknowns ρχ

n and E . These nonlinear and
coupled equations must in general be solved numerically.
Nevertheless, as we show next, analytical insights about the
transient optoelectronic response of WSM can be gained by
linearizing the VR equations and solving them with simple
boundary conditions.

1We neglect the magnetic field of the light pulse and we likewise
neglect light-induced lattice strains and their possible contributions
[25] to the chiral anomaly term.

III. LINEARIZED EQUATIONS

Let us define 
n ≡ ∑
χ (ρχ

n − ρ
χ
n,eq ) and �n ≡∑

χ χ (ρχ
n − ρ

χ
n,eq ) as the deviations of the scalar and chiral

electron densities from equilibrium (respectively). For an
optical pulse of modest intensity, VR equations can be
linearized in 
n and �n (see Appendix C):(

D1∂
2
z + vd∂z − ∂t − 1/τr

)

1 = −gs,(

D1∂
2
z + vd∂z − ∂t − 1/τr − 2/τv

)
�1 = −gd ,

v∂z�0 − ∂t
0 + 
1/τr = gs,

v∂z
0 − (∂t + 2/τv )�0 + �1/τr = gd − εE/
(
qvτ 2

a

)
,


0 + 
1 = −ε∂zEint/q, (11)

where gs = ∑
χ gχ/2 and gd = ∑

χ χgχ/2 are the scalar and
chiral optical generation rates (respectively), and

τa =
√

τv

2

ε

σ0
(12)

is a characteristic time that emerges from the chiral anomaly
term in Eq. (3). Physically, ε/σ0 is the dielectric relaxation
time and τ−1

a is the bulk plasma frequency of chiral electrons
(the zero of the zz component of the dielectric tensor) in the
absence of scattering [27].

In Eq. (11), the electron dynamics in the n = 0 bands is
affected by the dynamics in the n = 1 bands, but not vice
versa. Also, the fourth line of Eq. (11) captures the dynamical
internodal charge pumping induced by Elight by virtue of the
chiral anomaly [21–23]. Hereafter, we assume that Elight = 0
(i.e., Elight ⊥ B0). Even then, Eint drives a dynamical chiral
anomaly because it is collinear to B0. Next, we investigate its
physical consequence.

IV. TRANSIENT PHOTOVOLTAGE

Equation (11) can be solved analytically for a WSM film of
length L placed between two contacts, and subject to a light
pulse that has a finite extent in space and time (Fig. 1). The
light pulse is centered at time t = 0 and the spatial region
where it acts is sufficiently far from the contacts. Accordingly,
the deviations of the carrier densities with respect to equilib-
rium vanish when z → ±L/2 (contact location) or t → ±∞.
These boundary conditions allow us to solve Eq. (11) by
Fourier transform (see Appendix D). Next, we summarize the
approach and the results.

We begin by recognizing that the total electric current
density along z can be written as

Jtot =
∑
n,χ

jχn + ε∂t Eint, (13)

where the first term in the r.h.s. stands for the particle current
and the second term is the displacement current. Out of these
parts, the drift current produced by E0 is static [Eq. (8)];
the remaining parts are induced by the light pulse and are
therefore transients.

According to Ampère-Maxwell’s law, the total electric
current density must be divergenceless, which in our model
amounts to ∂zJtot = 0 [28]. Since by construction all transient
effects vanish at the contacts, it follows that Jtot must be
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everywhere static and its value given by Eq. (8). In sum, for
our boundary conditions, the light pulse has no effect on Jtot ,
as though the system were connected to a constant current
source.

Contrary to the total current, the voltage drop across the
system is influenced by the light pulse. To see this, we com-
bine Eqs. (1), (2), (8), and (13) to get

ε∂t Eint = −δ j, (14)

where

δ j = qvd
1 + qD∂z
1 + qv[�0 − σ0E0/(qv)] (15)

is the particle photocurrent. In the limit τa → 0, Eq. (11)
yields 
0 = −
1 (charge neutrality for all z and t) and hence
Eint = 0. By Eq. (14), δ j also vanishes when τa → 0. This is
the ambipolar transport regime [29], in which photoexcited
electrons of n = 1 bands and photoexcited holes of n = 0
bands track each other locally due to electrical attraction,
thereby canceling their currents. For τa �= 0, ambipolar trans-
port sets in at t � τa.

Integrating Eq. (14) over the length of the film with the
given boundary conditions, we get

ε∂tVint = δ j = qvd
1 + qv�0 − σ0E0L, (16)

where f (t ) ≡ ∫ L/2
−L/2 dz f (z, t ) and Vint = −Eint is the transient

photovoltage. In Eq. (16), 
1 and �0 obey(
∂2

t + 2∂t

τv

+ 1

τ 2
a

)
�0 = σ0E0L

qvτ 2
a

− vd
1

vτ 2
a

+ ∂t�1

τr
− ∂t gd ,

(∂t + 1/τr + 2/τv )�1 = gd ,

(∂t + 1/τr )
1 = gs, (17)

which are obtained by a spatial integration of Eq. (11). In the
first line of Eq. (17), we have used Eq. (16) to replace ∂t Eint.

To make further progress, we need additional information
about the applied light pulse. As such, we consider gχ (t ) to be
Gaussian with a time width dt and an amplitude gχ

0 /(
√

2πdt ),

where gχ

0 is a constant. Then, a simple analytical solution of
Eq. (17) is realized in the regime τa � (τr, τv )2 and t � dt
(see Appendix E). Substituting that solution in Eq. (16), inte-
grating over time and imposing Vint (t → ∞) = 0, we get

Vint (t ) � q

ε
(vd g0,s − vg0,d )τae

− dt2

2τ2
a

− t
τv sin (t/τa), (18)

where g0,s = ∑
χ gχ

0 /2 and g0,d = ∑
χ χgχ

0 /2. Figure 3(b)
displays Eq. (18), together with the numerical solution ob-
tained from Eqs. (16) and (17). Figure 3(a) shows the
photoinduced internal electric field, calculated numerically
from Eq. (11).

2The typical value of τa in the quantum limit is ∼0.1ps, which is
orders of magnitude smaller than τv [14,21]. For τr , we anticipate
(see Appendix B) a value � 1ps. Thus, while τa � τr is reasonable,
τa � τr could also occur. In the latter case, the analytical expression
in Eq. (18) is less accurate, but remains in semi-quantitative agree-
ment with the numerical solution of Eq. (17).

FIG. 3. (a) Longitudinal electric field induced by a Gaussian
light pulse, centered at position z = 0 and time t = 0. The parameter
values (see main text) are: τa = 0.25 ps, dt = 0, dz = 0.1 µm, τr =
20τa, τv = 50τa, v = 105 m/s, ε = 30ε0, vd = 0, gs = 1014 m−2,
gd = 0. In this case, Eint (z) = −Eint (−z). (b) Photovoltage (line-
integral of the longitudinal electric field), calculated from Eq. (17).
Oscillations at the plasma frequency τ−1

a stem from the chiral
anomaly. The parameter values are the same as in panel (a), ex-
cept that dt = 1.5τa, vd = 100 m/s and gd = 0.2gs. The analytical
[Eq. (18)] and numerical solutions coincide when τa � τr, τv and
t � dt .

V. DISCUSSION

Equation (18), the key result of this work, can be inter-
preted as follows. A light pulse induces a charge separation
in the illuminated region and nearby. The resulting electric
field, Eint, creates a neutrality-restoring current through the
chiral anomaly, but it overshoots and starts plasma oscilla-
tions in the n = 0 bands. These oscillations are damped by
intervalley scattering, which relaxes the current produced by
Eint. If crystal symmetry is preserved, then Eint (z) is odd in z
and thus Vint (t ) = 0 [see Fig. 3(a) and Appendix D]. Breaking
the z → −z symmetry, by either E0 �= 0 or by the shape of
the light pulse (g0,d �= 0), allows for Vint (t ) �= 0. If the pulse
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is slow (dt � τa), then the ambipolar regime sets in while the
sample is being illuminated and Vint is suppressed.

Although the oscillations in Vint originate from the chiral
anomaly, the latter is not required to have Vint �= 0. We can
“turn off” the chiral anomaly in VR equations by taking τa →
∞. Experimentally, τa can be increased by either reducing
B0 or by rotating B0 away from z. As soon as τa > τv , the
dynamics of �0 in Eq. (17) becomes overdamped and hence
Vint decays monotonically in time (see also Appendix F).

The appearance of plasma oscillations under light ir-
radiation may seem surprising: bulk plasmons cannot be
directly excited by light because they are longitudinal waves,
while light waves are transverse (see, e.g., Ref. [30]). Yet,
our result is enabled by an indirect mechanism: the asym-
metric propagation of electrons and holes excited by light
generates a longitudinal internal electric field, which can
drive plasma oscillations. Furthermore, this mechanism is not
unique to topological semimetals: photoinduced plasma oscil-
lations have been observed in semiconductors of trivial band
topology [31–33], where they have attracted much interest as
a source of THz radiation. What sets WSM apart is (i) the
role of band topology (tunable via B0), (ii) the ability to attain
the quantum limit with modest B0, and (iii) the relatively long
relaxation time τv (due to the relatively large separation in
momentum space between counter-moving electrons in the
n = 0 bands).

Let us estimate the magnitude of Vint. For B0 � 5T, |v| �
105 m/s and ε = 30ε0 (where ε0 is the vacuum permittiv-
ity), we have τa � 0.2 ps. Taking τ � 0.1 ps, we get μ1 �
0.1 m2/(Vs). Then, E0 � 1000 V/m gives vd � 100 m/s.
Using Eq. (9) and τv � 10 ps, the dc current density is � 3 ×
107 A/m2. For a WSM film of cross section 100 µm × 1 µm,
the dc current is modest (∼3 mA). An optical generation rate
of 1025 pairs/(s cm3) (in Appendix B we estimate that this
rate may be attainable with an optical power of ∼1 W), acting
during a time dt � τa within a length dz � 100 µm, gives
g0,s � 1014 m−2. If g0,d = 0, then we arrive at Vint (t ) � 1µV.

There are a few strategies to increase Vint. First, increas-
ing the power of the optical pulse may be possible, though
nonlinear effects neglected in our theory might then need
consideration. Second, the use of a p-n junction with a built-in
electric field will render E0 unnecessary, thereby removing the
steady state electric current. Third, in a WSM with multiple
pairs of nodes related by time-reversal, each of such pairs will
give additive contributions to Vint. Fourth, in chiral topological
semimetals, gd � gs due to the low crystal symmetry and thus
Vint could be a factor |v/vd | � 1 larger than in the estimate of
the preceding paragraph [see also Fig. 3(b), where gd �= 0].

VI. CONCLUSIONS

Solving Van Roosbroeck’s equations for topologically non-
trivial electronic bands, we have predicted photoinduced
plasma oscillations in Weyl semimetals and have elucidated
their relation to chiral anomaly. Our findings suggest that it
may be interesting to adapt and apply VR equations to model
a wide variety of topological microelectronic devices.

There are various possible open questions for further work.
First, we assumed that the temperature of the system remains
constant and uniform under laser irradiation. Yet, this may not

be accurate for high laser intensities. What is the influence of
electronic band topology in the dynamics and spatial profile
of the temperature?

Second, we assumed that the VR equations can be lin-
earized. This requires small departures from equilibrium and
therefore limits the scope of our theory. What is the effect
of the topological terms in the nonlinear regime of VR equa-
tions?

Third, we considered the effect of the chiral anomaly in
the VR equations for bulk electrons in a Weyl semimetal. One
could study other materials, in which topological quantities
should impact the solutions of VR equations.

Fourth, we considered a simple device geometry with
simple boundary conditions. If topological microelectronic
devices become a technological reality, then VR equa-
tions augmented with topological terms will need to be solved
in more realistic settings using appropriately adapted simula-
tion software.
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APPENDIX A: DRIFT AND DIFFUSION CURRENTS
FOR THE n = 0 LANDAU LEVEL

Combining Eqs. (2), (3), (4), and (6) of the main text, the
total current in the chiral Landau level, j0 = j+0 + j−0 , can be
rewritten as

j0 + τv

2

∂ j0
∂t

= σ0E + 1

2
qv2τv

∂ (ρ+
0 + ρ−

0 )

∂z

− 1

4
qvτv (g+ − g−) − qv

τv

2τr
(ρ+

1 − ρ−
1 ).

(A1)

The first two terms in the right-hand side of this equation are
the drift and diffusion currents, respectively, with a diffusion
constant D0 = v2τv/2. Note that D0 = σ0/[e2ν(εF )] in con-
sistency with the Einstein relation, where the conductivity
σ0 is defined in the main text and ν(εF ) is the density of
states at the Fermi level. The last two terms in the right-
hand side of Eq. (A1) are currents that emerge due to an
unequal light absorption on the two nodes. The left-hand side
of the equation contains j0 and the time-derivative of j0. This
means that, in general, the relation between the current and
the carrier density (or the electric field) is nonlocal in time.
However, if the current varies slowly on the timescale of τv ,
then j0 � τv∂ j0/∂t and one arrives at the usual drift-diffusion
approximation with a local-in-time relation between the cur-
rent and the carrier densities (or the electric field). Since we
are interested in the dynamics at timescales that are shorter
than τv , we do no neglect the ∂ j0/∂t term in our analysis.
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APPENDIX B: FERMI GOLDEN RULE ESTIMATES
FOR THE OPTICAL GENERATION RATE AND

RADIATIVE RECOMBINATION TIME

In this section, we provide a numerical estimate for the
optical generation rate from the n = 0 to the n = 1 Landau
level, at fixed chirality χ . Then, we estimate an upper bound
for the radiative recombination time (denoted τr is the main
text) from the n = 1 Landau level to the n = 0 Landau level.

1. Fermi golden rule estimate for the optical generation rate

For the purposes of the estimate, let us first consider a
monochromatic light of frequency ω, wave vector q and
polarization vector ê, whose vector potential is given by

A = A0

2
ê[ei(q·r−ωt ) + e−i(q·r−ωt )]. (B1)

From Fermi’s golden rule [34], the generation rate [in units of
1/(volume × time)] can be written as

Gχ

0 = 2π

h̄

1

2π l2
B

1

L

∑
k

|〈ψkχ1|HR|ψkχ0〉|2( fkχ0 − fkχ1)

× δ(Ekχ1 − Ekχ0 − h̄ω), (B2)

where lB is the magnetic length, L is the system length along z,
|ψkχn〉 is the electronic eigenstate for the nth Landau level of
chirality χ at wave vector k along z, Ekn is the corresponding
energy, fkχn is the Fermi-Dirac occupation factor,

HR = −eA0

2
eiq·rê · v (B3)

is the light-matter coupling Hamiltonian, and v is the elec-
tronic velocity operator. In Eq. (B2), we have neglected the
photon wave vector in the electronic interband transitions.
This is appropriate for the THz frequency light we are inter-
ested in (the energy separation between the n = 0 and n = 1
for a field of a few Tesla is in the THz regime).

For Weyl fermions, 〈ψkχ1|v|ψkχ0〉 and Ekχn can be ob-
tained analytically (see, e.g., Ref. [27]). Thereafter, the
integration over k in Eq. (B2) can also be carried out ana-
lytically, using the Dirac δ function. Thus, for a polarization
vector along x, we get

Gχ

0 � e2vA2
0

16π h̄2l2
B

, (B4)

where we have used L−1 ∑
k � ∫

dk/(2π ) and we have as-
sumed zero temperature. This expression can be rewritten in
terms of the optical power of the laser. The connection follows
from [35]

Pop

S
= cε0n

2
E2

0 , (B5)

where S is the area of the illuminated region, c is the speed
of light in vacuum, ε0 is the vacuum dielectric constant, E0 =
ωA0 is the strength of the electric field, and n is the refractive
index of the WSM. Then,

Gχ

0 � e2vPop

8πε0nch̄2l2
Bω2S

. (B6)

For a given laser power, we can maximize Gχ

0 by making
S as small as possible. Considering the diffraction limit, the
minimum value of S is given by (λ f )2, where λ = 2πc/ω is
the wavelength of the light and f is a dimensionless number
(the so-called f -number of the lens used to focus the light on
the sample) [36]. It follows that

Gχ

0 � e2vPop

32π3ε0nc3h̄2l2
B f 2

� 1027 Pop[W]

f 2
cm−3 s−1, (B7)

where we have used v � 105 m/s, n � √
30, and B = 5T.

Thus, for f ∼ 1–10, an optical power of 10–1000 mW leads
to an optical generation rate of 1025 cm−3 s−1.

The preceding numerical estimate applies for a monochro-
matic light beam. In reality, since we are interested in a light
pulse of duration dt in time, there will be a spread of frequen-
cies of the order of 1/dt . For each of the frequencies involved
in the light beam, we can use the estimate above, with the
proviso that Pop is the power contained in a specific frequency.
The total generation rate is then obtained by integrating the
rate over all relevant frequencies. We define a density of
optical generation at frequency �,

Gχ

0 (�) � e2vPop(�)

8πε0nch̄2l2
B�2S

, (B8)

such that

Gχ

0 =
∫ ∞

gap
d�Gχ

0 (�). (B9)

In Eq. (B8), Pop is the power density, such that Pop(�)d�

describes the power in the frequency interval (�,� + d�). In
Eq. (B9), the lower bound of the integral is equal to the optical
gap (the minimum photon frequency that can induce a vertical
interband transition between the n = 0 and n = 1 Landau
levels). We recover the result (B6) for a monochromatic light
when Pop(�) = Popδ(� − ω). We can generalize this density
to the case of a light pulse of duration dt via

Pop(�) = 2dt√
π [1 + erf (ωdt )]

Pope−(�−ω)2dt2
, (B10)

normalized such that
∫ ∞

0 Pop(�)d� = Pop. For an infinitely
long pulse, we recover the monochromatic light beam. Then,
if we still assume that S � (2πc f /�)2 and if we neglect
the frequency-dependence of the refractive index within a
frequency range of order 1/dt , then we obtain the following
generalization of Eq. (B6):

Gχ

0 � e2vPop

32π3ε0nc3h̄2l2
B f 2

2dt√
π (1 + erf (ωdt ))

×
∫ ∞

gap
e−(�−ω)2dt2

d�

= e2vPop

32π3ε0nc3h̄2l2
B f 2

1 + erf[(ω − gap)dt]

1 + erf (ωdt )
. (B11)

Thus, the result of the monochromatic case is corrected by a
factor

F = 1 + erf[(ω − gap)dt]

1 + erf (ωdt )
. (B12)
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FIG. 4. Graphic representation of the function F defined in
Eq. (B12).

This factor is smaller than unity (see Fig. 4), with F � 0 when
ω � 1/dt � gap and F → 1 when ω � gap. In our case
of interest, where 1/dt � gap � ω, we have F � 0.5. Thus,
the estimate from the monochromatic case is not qualitatively
changed.

2. Fermi golden rule estimate for the
radiative recombination time

The Fermi golden rule expression for the rate of sponta-
neous radiative electron-hole recombination between n = 0
and n = 1 Landau levels is similar to Eq. (B2), except that we
need to divide it by the number of photons impinging on the
sample. Using the relation between A2

0 and the photon number
[34], we have

1

τr
>

e2vh̄

8π2h̄2l2
Bεω

� 1012 s−1, (B13)

where we have assumed ω � v/lB (typical frequency for in-
terband transition between n = 0 and n = 1), B = 5T, v =
105m/s, and ε = 30ε0. This estimate is a lower bound for
1/τr , as it assumes a fixed polarization of the emitted photon
(the average over all polarizations will result in a mul-
tiplication by a factor of order one) and it neglects the
phonon-mediated recombination. Thus, τr � 10−12 s.

APPENDIX C: LINEARIZED VAN ROOSBROECK
EQUATIONS

In this Appendix, we show the details leading to Eq. (11)
in the main text. First, for the n = 1 bands, we take a sum of
the χ = 1 and χ = −1 equations to arrive at

μ1(
1 + ρ+
1,eq + ρ−

1,eq )∂zE + μ1E∂z
1 + D1∂
2
z 
1 − ∂t
1

= 
1

τr
− 1

2
(g+ + g−), (C1)

where E is the z component of the total electric field and

1 ≡ ρ+

1 + ρ−
1 − ρ+

1,eq − ρ−
1,eq. Equation (C1) is a nonlinear

differential equation. To make analytical progress, we will
linearize by assuming that the departure of the carrier distri-
bution from equilibrium is not strong. For instance, assuming
that both ρ

χ

1,eq and 
1 are small (this is justified in the quantum

limit at low temperature, provided that the effect of the light
in the carrier distribution is not strong), we will neglect the
first term in Eq. (C1). Similarly, we approximate μ1E∂z
1 �
μ1E0∂z
1. Consequently, the linearized Eq. (C1) reads

μ1E0∂z
1 + D1∂
2
z 
1 − ∂t
1 � 
1

τr
− 1

2
(g+ + g−). (C2)

Second, still for the n = 1 bands, we take the difference of
the χ = 1 and χ = −1 equations to arrive at

μ1E0∂z�1 + D1∂
2
z �1 − ∂t�1 � �1

τr
+ 2�1

τv

− 1

2
(g+ − g−),

(C3)
where �1 ≡ ρ+

1 − ρ−
1 − ρ+

1,eq + ρ−
1,eq and we have already

performed the linearization. Note that Eq. (C3) is the same as
Eq. (C2), except for the source term and the relaxation term:
only g+ �= g− can lead to a nonzero �1 and, unlike in the case
of 
1 (as the two nodes are mirror-partners in equilibrium),
elastic intervalley scattering relaxes �1. While 
1 is driven
by g+ + g−, �1 is driven by g+ − g−. Thus, in the absence
of E0, we have no source term for �1 and thus we will have
�1 = 0 for all times and positions.

Third, we discuss the equations for n = 0. Equation (3) of
the main text leads to

v∂zρ
+
0 − ∂tρ

+
0 = ρ+

0 − ρ−
0

τv

− ρ+
1 − ρ+

1,eq

τr
− q2

4π2h̄2 EB0 + g+

2
(C4)

−v∂zρ
−
0 − ∂tρ

−
0 = ρ−

0 − ρ+
0

τv

− ρ−
1 − ρ−

1,eq

τr

+ q2

4π2h̄2 EB0 + g−

2
. (C5)

Summing Eqs. (C4) and (C5) yields

v∂z�0 − ∂t
0 = −
1

τr
+ gs, (C6)

while taking the difference between Eqs. (C4) and (C5) gives

v∂z
0 − ∂t�0 = 2
�0

τv

− 2
q2

4π2h̄2 EB0 − �1

τr
+ gd . (C7)

APPENDIX D: SOLUTION OF THE VAN ROOSBROECK
EQUATIONS IN FOURIER SPACE

The simplest situation in which Eq. (11) in the main text
can be solved consists of an infinitely long system such that,
at z → ±∞ or t → ±∞, the influence of the light pulse on
the carrier densities is negligible. Then, we may define the
Fourier transform of a function f (z, t ) as

f̃ (k, ω) =
∫ ∞

−∞
dzeikz

∫ ∞

−∞
dte−iωt f (z, t ), (D1)

and use relations such as∫
dtdzeikz−iωt∂z f (z, t )

=
∫

dtdz∂z(eikz−iωt f (z, t ))

− ik
∫

dtdzeikz−iωt f (z, t ) = −ik f̃ (k, ω), (D2)
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∫
dtdzeikz−iωt∂t f (z, t )

=
∫

dtdz∂t (e
ikz−iωt f (z, t ))

+ iω
∫

dtdzeikz−iωt f (z, t ) = iω f̃ (k, ω). (D3)

Proceeding in this way, Eq. (11) of the main text can be
rewritten as

− ikẼint = −q

ε
(
̃0 + 
̃1),

(
−ikvd − D1k2 − iω − 1

τr

)

̃1 = −g̃s,

(
−ikvd − D1k2 − iω − 1

τr
− 2

τv

)
�̃1 = −g̃d ,

− ivk�̃0 − iω
̃0 = − 
̃1

τr
+ g̃s,

− ivk
̃0 −
(

iω + 2

τv

)
�̃0 = εẼ

qvτ 2
a

− �̃1

τr
+ g̃d , (D4)

where Ẽ = Ẽlight + Ẽint. These are now algebraic equa-
tions whose solution is straightforward (though cumbersome).

For simplicity, let us first neglect the difference between g+
and g− (i.e., assume g+ � g− ≡ g). This immediately implies
�1 = 0, and


̃1 = g̃τr

1 + D1k2τr + ikvdτr + iωτr
,


̃0 = g̃τr
(−τv/τ

2
a − 2iω + ω2τv + D1k2(−2 − iωτv ) + vd k(−2i + ωτv )

)
(1 + D1k2τr + ikvdτr + iωτr )

(
τv/τ 2

a + k2v2τv + 2iω − ω2τv

) ,

�̃0 = g̃τrτv

[
i
(
1/τ 2

a + v2k2
)
(D1k + ivd ) − v2kω

]
v(1 + D1k2τr + ikvdτr + iωτr )

(
τv/τ 2

a + k2v2τv + 2iω − ω2τv

) + i
εẼlightω

qvτ 2
a (k2v2 − ω2 + 2iω/τv )

,

Ẽint = −q

ε

g̃τr[2vd + iτv (kv2 + ωvd ) + D1k(−2i + ωτv )]

[1 + D1k2τr + iτr (vd k + ω)]
[
τv/τ 2

a + v2k2τv + ω(2i − ωτv )
] . (D5)

The last term in the third line of Eq. (D5) comes from the
chiral anomaly induced by the electric field of light within the
chiral Landau levels. This term would be present even in the
absence of light-induced interband transitions. In particular, it
does not involve τr , because it is independent of the interband
absorption rate. Note that Ẽlight is the Fourier transform of
the z component of Elight. If the electric field of the incident
light is oriented perpendicular to the magnetic field, then the
last term of the third line of Eq. (D5) will be absent. This is
the situation we will adopt from now on, to distinguish the
previously known physics from our new predictions.

An inverse Fourier transform of Eq. (D5),

f (z, t ) =
∫ ∞

−∞

dk

2π
e−ikz

∫ ∞

−∞

dω

2π
eiωt f̃ (k, ω), (D6)

allows us to calculate the time- and space-dependence of 
n,
�n, and Eint.

For general light pulses, Eq. (D6) must be computed nu-
merically. Yet, even without calculation it is obvious that
�0 is generally nonzero (i.e., there is a valley polarization)
despite the fact that light is absorbed with equal intensity
in the two valleys. The explanation for this peculiarity re-
sides in the fact that chiral Landau levels are unidirectional,
with opposite group velocities for opposite chiralities. Thus,
upon light irradiation, holes in the two chiral Landau levels
counterpropagate, which locally (at each z) gives rise to a
nonzero �0.

Another useful result can be extracted from Eq. (D5) with-
out any calculation, simply by observing the k-dependence
of different terms and combining this with Eq. (D6). Let
us neglect the term proportional to Elight. Then, if E0 = 0
and g(z) = g(−z), then we have 
0(z) = 
0(−z), �0(z) =

−�0(−z), and Eint (z) = −Eint (−z). This result can be under-
stood from the facts that (i) when E0 = 0 and g(z) = g(−z),
the system has inversion symmetry along z, and (ii) the pho-
toexcited holes in chiral Landau levels counterpropagate, with
holes of opposite chirality going opposite ways. As a result,
there is an excess of holes of positive chirality on z < 0
and an equal excess of holes of negative chirality on z > 0,
thereby giving rise to �0(z) = −�0(−z). When E0 �= 0 or
g(z) �= g(−z), inversion symmetry along z is broken, so that

0(z) �= 
0(−z), �0(z) �= �0(−z), and Eint (z) �= −Eint (−z).
The latter asymmetry in the internal electric field is crucial
for the development of the transient photovoltage discussed
below and also in the main text.

To gain further analytical understanding of Eq. (D5), it is
useful to consider some simple limits. First, we find

lim
τa→0

(
̃0 + 
̃1) = 0. (D7)

This means that, at timescales that are very long compared to
the dielectric relaxation time, the charge neutrality (which was
initially perturbed by the fact that the photoexcited holes in
the chiral Landau levels and the photoexcited electrons in the
nonchiral Landau level propagate at different velocities) will
be locally restored. In other words, the photoinduced holes
in the chiral Landau levels and the photoinduced electrons
in the nonchiral Landau level will propagate in lockstep. In
the semiconductor literature, this is known as the “ambipolar
transport regime” [29]. We note that the chiral anomaly term
in the continuity equations is crucial to reach the ambipolar
transport regime. Likewise, if we disregard the term propor-
tional to Elight, then we find

lim
τa→0

�̃0 = g̃
(iD1k − vd )τr

v[1 + D1k2τr + iτr (vdk + ω)]
. (D8)
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This result is consistent with the ambipolar transport regime:
it leads to the fact that the current due to excess holes in
the chiral Landau levels (qv�0) exactly cancels with the
current from excess electrons in the nonchiral Landau level
(qvd
0 + qD1∂z
1); the cancellation can be verified directly
in Fourier space (k, ω). Concerning the term proportional to
Elight in the last line of Eq. (D5), it describes an oscillatory
current of intraband origin; there is no spatial charge separa-
tion (or internal electric field) associated to it, and thus is not
relevant for the emergence of the ambipolar regime.

Second, a concrete situation of interest is that of a δ-
function pulse in space and time, i.e., g = g0δ(z)δ(t ) for a
constant g0, which results in g̃ = g0 independent k and ω.
Then, using the residue theorem,


1(z, t ) =
∫ ∞

−∞

dk

2π
e−ikz

∫ ∞

−∞

dω

2π
eiωt 
̃1(k, ω)

= g0

2
√

πD1t
e−(z+vd t )2/(4D1t )e−t/τr , (D9)

which agrees with the results in standard semiconductor text-
books [4]. The inverse Fourier transforms for 
̃0 and �̃0 are
analytically more cumbersome. To do some reality checks, we
consider the limit (τa, τr, τv ) → ∞. Then, we get


̃0 � ig̃ω

ω2 − v2k2 − i0+sign(ω)
,

�̃0 � − ig̃vk

ω2 − v2k2 − i0+sign(ω)
, (D10)

where 0+ = 1/τv is an infinitesimal positive number (kept to
ensure the causality of the solution). Recalling that g̃ ∝ B, the
expressions for 
̃0 and �̃0 are proportional, respectively, to
the scalar and axial density response functions in the quantum
limit [37]. Because the only spatial variations in our problem
take place along the direction of the magnetic field (z), the
relevant response functions are those with zero transverse
wave vector. The axial response function appearing in the

expression for �̃0 is associated to the chiral anomaly [37], and
its form remains unchanged at weaker magnetic fields when
the system is no longer in the quantum limit.

Now let us compute the inverse Fourier transform of
Eq. (D10). For δ function pulses, we obtain

lim
(τa,τr ,τv )→∞


0(z, t ) � −g0

2
[δ(z + vt ) + δ(z − vt )],

lim
(τa,τr ,τv )→∞

�0(z, t ) � −g0

2
[δ(z + vt ) − δ(z − vt )]. (D11)

For finite (τa, τr, τv ), this result remains relevant at timescales
that are short compared to τa, τr and τv . In that regime, the
excess holes induced optically in the chiral Landau levels
counterpropagate without attenuation, with opposite group ve-
locities for carriers of opposite chirality. The overall negative
sign in the first line of Eq. (D11) is due to the fact that the
optical pulse removes electrons from the chiral Landau level
to put them in the nonchiral Landau levels. This explains the
two lines of Eq. (D11). It is remarkable that, in this regime, the
dynamics of carriers in the chiral Landau levels is decoupled
from the dynamics of charge carriers in the nonchiral Landau
levels. For timescales long compared to τa, one no longer has
two decoupled and counterpropagating δ functions. Instead, as
shown by Eqs. (D7) and (D8), the excess charges in the chiral
Landau levels trail the excess charges in the nonchiral Landau
level, to realize the ambipolar regime (local charge neutrality
and zero net current due to photoinduced excess charges).

APPENDIX E: DETAILS ON THE DERIVATION
OF EQ. (18) IN THE MAIN TEXT

For simplicity, we begin by assuming a Dirac δ-function
light pulse in time, i.e., g±(t ) = g±

0 δ(t ), with a constant g±
0

(the “bar” notation has been introduced in the main text).
Then, the solution of Eq. (17) in the main text with the ap-
propriate boundary conditions is obtained by using the residue
theorem,


1 = �(t )
g+

0 + g−
0

2
e−t/τr ,

δ�0 = �(t )
(g+

0 + g−
0 )vd

2v

τ 2
d

τ 2
a

1(
1 + �2τ 2

d

)[
−e−t/τr + e−t/τv

(
cos(�t ) + sin(�t )

�τd

)]
,

+ �(t )
(g+

0 − g−
0 )

2

τ 2
s

τ 2
a

1(
1 + �2τ 2

s

){
−τ 2

a

τr

(
1

τr
+ 2

τv

)
e−t (1/τr+2/τv ) + e−t/τv

[
− cos(�t ) + sin(�t )

�τs

]}
, (E1)

where �(t ) is the Heaviside function, δ�0 ≡ �0 − σ0E0L/(qv), and

� ≡
√

1

τ 2
a

− 1

τ 2
v

,
1

τd (s)
≡ 1

τv

− (+)
1

τr
. (E2)

It is worth noting that � is the plasmon frequency in the quantum limit of a Weyl semimetal, renormalized by the damping 1/τv

[27]. Thus, we learn that �0 oscillates at the plasma frequency.
In the regime in which τa � (τr, τv ), we obtain the following approximate expression for Eq. (16) of the main text:

ε∂tVint � �(t )qvd
(g+

0 + g−
0 )

2
e−t/τv

[
cos(�t ) + sin(�t )

�τd

]
+ �(t )qv

(g+
0 − g−

0 )

2
e−t/τv

[
− cos(�t ) + sin(�t )

�τs

]

+ �(t )qvd
(g+

0 + g−
0 )

2

(
− 2

τv

+ 1

τr

)
τ 2

a

τr
e−t/τr − �(t )qv

(g+
0 − g−

0 )

2

(
2

τv

+ 1

τr

)
τ 2

a

τr
e−t (1/τr+2/τv ). (E3)
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Integrating this over time, we have

Vint (t ) �
{

Vint (∞) + Ae−t/τv sin(t/τa) + Be−t/τv cos(t/τa) + Ce−t/τr + De−t/τr−2t/τv , for t > 0,

Vint (0−), for t < 0,
(E4)

where Vint (∞) and Vint (0−) are integration constants (cor-
responding to the values of Vint at t → ∞ and t → 0−,
respectively), and

A = qvd

ε

g+
0 + g−

0

2
τa − qv

ε

g+
0 − g−

0

2
τa,

B = qvd

ε

g+
0 + g−

0

2

(
− 2

τv

+ 1

τr

)
τ 2

a − qv

ε

g+
0 − g−

0

2

τ 2
a

τr
,

C = qvd

ε

g+
0 + g−

0

2

(
2

τv

− 1

τr

)
τ 2

a ,

D = qv

ε

g+
0 − g−

0

2

τ 2
a

τr
. (E5)

Since we are considering a δ-function pulse at t = 0, the
influence of the pulse in Vint (t ) should vanish when t < 0 and
t → ∞. This imposes

Vint (0
−) = Vint (∞) = 0. (E6)

We notice also that Vint is continuous at t = 0 (B + C + D =
0), as expected by integrating the left and right sides of
Eq. (E3) across t = 0. The last two lines in Eq. (E3), which
appear to be higher order in τa, are in fact important to obtain a
solution that satisfies Vint (0+) = Vint (∞) = 0. We also notice
that A is parametrically larger than B, C and D in the τa �
(τr, τv ) regime. Further assuming that τr is not long compared
to τv , we can approximate

Vint (t ) � q

ε

(
g+

0 + g−
0

2
vd − g+

0 − g−
0

2
v

)
τae−t/τv sin(t/τa).

(E7)
Equation (E7) was derived assuming a very short pulse

in time. In practice, this would require pulses faster than τa,
which may imply subpicosecond times for typical magnetic
fields required to attain the quantum limit. For such short
pulses, one might be concerned that carriers of additional
nonchiral Landau levels not included in our theory could be
excited significantly. Thus, if we are interested in restraining
the carrier dynamics to only n = 0 and n = 1, then it is neces-
sary to consider light pulses that are slower than τa. Hence, for
completeness, we will consider a Gaussian light pulse with a
nonzero width t , i.e.,

gχ (t ) = gχ

0

1√
2πdt

e−t2/(2dt2 ) (E8)

for a constant gχ

0 , which implies

g̃χ (ω) = gχ

0 e−ω2dt2/2. (E9)

In the limit dt → 0, we recover the results from the previous
paragraphs. Let us now see how those results change when
dt �= 0, and possibly dt > τa.

It turns out that the solutions for 
1 and �0 can still be
obtained using the residue theorem to a good approximation,
provided that we consider t � dt . In comparison with the so-
lution for the δ-function pulse, the solutions for the Gaussian
pulse result in the following substitutions:

e−t/τr → e−t/τr edt2/(2τ 2
r ),

e−t/τv → e−t/τv edt2(−1/(2τ 2
a )+1/τ 2

v ),

cos(�t ) → cos[�(t − dt2/τv )],

sin(�t ) → sin[�(t − dt2/τv )]. (E10)

Consequently, we find that the counterpart of Eq. (E7) be-
comes

Vint (t ) � q

ε

(
g+

0 + g−
0

2
vd − g+

0 − g−
0

2
v

)
τae−t/τv e−dt2/(2τ 2

a )

× sin

[
t − dt2/τv

τa

]
, (E11)

which matches with Eq. (18) of the main text for t > dt (in the
main text, we wrote t − dt2/τv � t for t > dt , as our regime
of interest is dt � τv).

APPENDIX F: WEAK MAGNETIC FIELD REGIME

In this section, we adapt our theory to the case of weak
magnetic fields, where Landau quantization can be ignored.
The energy spectrum is then made of two linearly dispersing
Weyl cones with a constant group velocity v. The two nodes
are separated from one another in momentum space. Like in
the main text, we assume that the two Weyl cones are related
to one another by an improper symmetry.

We denote the bands as (n, χ ), where n = c, v indicates
the conduction or valence band and χ labels the chirality.
We assume that the Fermi level intersects the valence bands
deep enough so that the thermal population of electrons in
the conduction band is negligible. Moreover, we adopt the
standard semiconductor convention of describing the carriers
as electrons in the conduction band and holes in the valence
bands (this differs from the main text, where we used the
electron picture to describe the carrier dynamics in both n = 0
and n = 1 Landau levels). Thus, hereafter ρχ

c (ρχ
v ) denotes the

electron (hole) concentration in the conduction (valence) band
of chirality χ .

The electric current carried by electrons in the conduction
band of chirality χ can be written as

jχc = qμχ
c ρχ

c E + qDχ
c ∂zρ

χ
c , (F1)

where E is the z component of the electric field, μχ
c > 0 is

the electron mobility, and Dχ
c > 0 is the diffusion coefficient.

Similarly, the electric current carried by holes in the valence
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band of chirality χ can be written as

jχv = qμχ
v ρχ

v E − qDχ
v ∂zρ

χ
v , (F2)

where μχ
v > 0 is the hole mobility and Dχ

v > 0 is the diffusion
coefficient.

The use Eqs. (F1) and (F2) for Weyl fermions requires
some comments. In a simple parabolic electronic band n, the
drift current can be written as qμnρnE , where the mobility μn

is approximately independent from the carrier concentration
ρn. The situation changes for a linearly dispersing Weyl band.
In this case, while we may insist to write the drift current
as qμχ

n ρχ
n E , the mobility can no longer be considered to

be approximately independent from the carrier concentration.
For example, in the absence of a magnetic field and at low
temperature, the equilibrium hole concentration in the valence
band can be written as

ρχ
v = 1

6π2h̄3

ε3
F

v3
, (F3)

where εF > 0 is the Fermi energy measured from the Weyl
node. Under the same conditions, the mobility reads

μχ
v = qv2τ/εF , (F4)

where τ is the electronic lifetime. Thus, if ρv varies out of
equilibrium due to (say) a change in εF , then so does μv .
Concerning the diffusion coefficients Dχ

n , they are related to
the conductivities σχ

n = qμχ
n ρχ

n via the Einstein relation. At
zero magnetic field and low temperature, we obtain Dχ

n �
v2τ/3, which can approximated as independent from the car-
rier concentration. It is with these qualifications that we write
Eqs. (F1) and (F2).

Charge continuity equations now read

∂ jχc
∂z

− q
∂ρχ

c

∂t
= qRχ

c + qGχ
c ,

∂ jχv
∂z

+ q
∂ρχ

v

∂t
= −qRχ

v − qGχ
v − χ

q3

4π2h̄2 EB0, (F5)

where in the low temperature limit that we consider the chiral
anomaly affects only the band that crosses the Fermi level (the
valence band in our case), and

Gχ
c = Gχ

v = −gχ

2
. (F6)

Note that the light pulse increases the number of electrons in
the conduction band and the number of holes in the valence
band. Concerning the relaxation rate for the excess in the
charge, we have

Rχ
c = ρχ

c − ρ
χ
c,eq

τr
+ χ

ρ+
c − ρ−

c

τv

,

Rχ
v = ρχ

c − ρ
χ
c,eq

τr
+ χ

ρ+
v − ρ−

v

τv

, (F7)

where ρ
χ
n,eq are the equilibrium densities. Like in the main

text, the total charge is conserved.
Concerning Poisson’s equation, it reads

∂E

∂z
= −q

ε

∑
χ=±1

[(
ρχ

c − ρχ
c,eq

) − (
ρχ

v − ρχ
v,eq

)]
, (F8)

where we assume that, in equilibrium, the doping concentra-
tion is uniform.

Equations (F1), (F2), (F5), (F7), and (F8) form the van
Roosbroeck system of equations at weak magnetic field.
These equations can be linearized in the same way as in
Appendix C, except for two changes. The first change comes
from the fact that we must take into consideration the de-
pendence of the mobility on the carrier concentration. For
example, we write

∂z
(

jχn
) = q

(
∂zμ

χ
n

)
ρχ

n E + qμχ
n

(
∂zρ

χ
n

)
E + qμχ

n ρχ
n (∂zE )

± qDχ
n ∂2

z ρχ
n , (F9)

where the + (−) sign is for n = c (n = v). In parabolic band
systems, the first term in the right-hand side of Eq. (F9) would
be omitted. In the present case, we express

∂μχ
n

∂z
= ∂μχ

n

∂ρ
χ
n

∂ρχ
n

∂z
. (F10)

Thus,

∂z
(

jχn
) = qμ̃n(∂zρn)E + qμnρn(∂zE ), (F11)

where

μ̃χ
n = μχ

n + ρχ
n

∂μχ
n

∂ρ
χ
n

(F12)

is a modified mobility. Upon linearization, we write

qμ̃χ
n (∂zρn)E � qμ̃n,eq (∂zρ

χ
n )E0, (F13)

where the equilibrium mobility μ̃n,eq is the same for both
chiralities due to the crystal symmetry relating the two Weyl
cones.

The second change comes from the fact that the equilib-
rium hole concentration in the valence band (ρχ

v,eq) is not small
in our theory, and hence

qμvρ
χ
v,eq∂zE � qμv,eq ρχ

v,eq∂zEint (F14)

will not be neglected.
Therefore, the linearization of van Roosbroeck’s equa-

tions yields

∂zEint = −q

ε
(
c − 
v ),(

μ̃c,eqE0∂z + Dc∂
2
z − ∂t − 1

τr

)

c = −gs,(

μ̃c,eqE0∂z + Dc∂
2
z − ∂t − 1

τr
− 2

τv

)
�c = −gd ,(−μ̃v,eq E0∂z + Dv∂

2
z − ∂t

)

v

= −gs + 1

τr

c + μv,eq (ρ+

v,eq + ρ−
v,eq )∂zEint,(

−μ̃v,eq E0∂z + Dv∂
2
z − ∂t − 2

τv

)
�v

= −gd + 1

τr
�c + q2

2π2h̄2 EB0, (F15)

where 
n ≡ ∑
χ (ρχ

n − ρ
χ
n,eq ) and �n ≡ ∑

χ χ (ρχ
n − ρ

χ
n,eq ).

Now, let us study the transient photovoltage using the same
approach as in the strong field regime. We reconsider the
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situation where a Weyl semimetal film of length L along the
z direction is placed between two contacts and subjected to
a light pulse centered at time t = 0. The light pulse acts far
enough from the contacts, such that carrier densities at z =
±L/2 remain at their equilibrium values. In this condition,
Eqs. (F15) can be solved in Fourier space, like in Appendix C.
As a result, the following relation is verified for the particle
photocurrent:

δ j = −qvc
c + qvv
v + qμv,eq (ρ+
v,eq + ρ−

v,eq )Eint

+ qDc∂z
c − qDv∂z
v = −ε∂t Eint, (F16)

where vc = −μ̃c,eq E0 is the drift velocity of electrons in the
conduction band and vv = μ̃v,eq E0 is the drift velocity of
holes in the valence band. Integrating Eq. (F16) over the sam-
ple length and applying the boundary conditions, we obtain

ε∂tVint = δ j = −qvc
c + qvv
v − qμv,eq (ρ+
v,eq + ρ−

v,eq )Vint,

(F17)

where 
c and 
v obey, according to the spatial integration of
Eq. (F15), (

∂t + 1

τr

)

c = gs, (F18a)

∂t
v = gs − 1

τr

c. (F18b)

Considering a δ-function light centered at t = 0, i.e., gs =
g0sδ(t ), Eq. (F18) gives


c = 
v = g0se
−t/τr �(t ), (F19)

where �(t ) is the step function. The fact that 
c = 
v can
also be obtained from in integration of Poisson’s equation with
the boundary condition that Eint is negligible at the contacts.

Consequently, Eq. (F17) becomes

∂tVint = q

ε
g0s(vv − vc)e−t/τr �(t ) − σv

ε
Vint, (F20)

where σv = qμv,eq (ρ+
v,eq + ρ−

v,eq ) is the equilibrium conduc-
tivity at low temperature and ε/σv ≡ τD is the dielectric
relaxation time for excess charge in the valence band. In-
tegrating over time, using Vint (t < 0) = 0 and imposing the
continuity of Vint at t = 0, we arrive at

Vint (t ) = q

ε
g0s(vv − vc)

τDτr

τD − τr
(e−t/τD − e−t/τr ). (F21)

The fact that photoexcited electrons and holes drift in opposite
directions under the action of E0 (i.e., vcvv < 0) is crucial for
the development of the transient photovoltage. Some limiting
regimes of Eq. (F21) are

Vint (t ) � q

ε
g0s(vv − vc)τDe−t/τr , for τD � τr,

Vint (t ) � q

ε
g0s(vv − vc)τre−t/τD , for τD � τr . (F22)

In sum, the transient photovoltage at weak magnetic fields
decays in a nonoscillatory fashion. This behavior differs qual-
itatively from the strong magnetic field regime (see main text),
where Vint oscillates at the plasma frequency due to the chiral
anomaly term in the van Roosbroeck equations. At weak
fields, the chiral anomaly term in Eq. (F7) does not enter in
the transient photovoltage. Nevertheless, the chiral anomaly
influences Vint indirectly, through its participation in the drift
velocities. It is well-known that, at weak field, chiral anomaly
causes an anisotropy of order B2

0 in the conductivity tensor
[38]. Since the drift velocity scales with the conductivity,
it is different (by an amount of order B2

0) when the mag-
netic field is parallel or perpendicular to the applied electric
field. Thus, the much-studied anisotropic magnetoresistance
of Weyl semimetals finds a counterpart in the transient photo-
voltage under a pulsed light.
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