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From topological phase to transverse Anderson localization in
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In this paper, we provide theoretical approaches to identify the influence of the quasidisorder on a two-
dimensional system. We discover that in the system there is a topological phase transition accompanied by a
transverse Anderson localization. The topological features are characterized by the band gap, the edge-state
spectra, the transport conductance, and the Chern number. The localization transition is clearly demonstrated
by the investigations of the partial inverse participation ratio, the average of level spacing ratio, and the
fraction dimension. The results reveal the topological nature of the bulk delocalized states. Our work facilitates
the understanding of the synchronicity between the topological phase transition and the transverse Anderson
localization in two-dimensional disordered systems.
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I. INTRODUCTION

Band insulators have received a lot of attention due to
their peculiar topological characteristics. Two representative
insulators are the Chern class [1–3] and the quantum spin-Hall
class [4–6]. The topological properties are reflected in that
although these band insulators present the characteristics of an
insulator in the bulk, there are still robust conducting states,
distributed at the edges of the band insulators. The valence
and conduction bands are connected by the Fermi levels of
these edge modes, giving the insulators metallic properties
[7]. Furthermore, the Chern number (C) can be used to predict
whether the edge modes would exist or not. A nonzero C
shows the presence of the edge modes, whereas C = 0 denotes
their absence, according to the work of Thouless–Kohmoto–
Nightingale–den Nijs (TKNN) [8].

The metallic characteristics indicated above are found to be
robust against the disorder, implying that the topological prop-
erties of the system are still preserved as long as the bulk gap
keeps open within a certain disorder strength [9]. The bulk gap
will eventually close as the disorder strength increases, putting
the system into a topologically trivial phase [10,11]. There has
recently been an increase in interest in research on localization
in 2D systems with Anderson disorder [12–24]. In a quantum
spin-Hall system with broken time-reversal symmetry [25],
specifically, the coexistence of nontrivial topology and An-
derson localization was discovered, and the extended states
were protected by the nontrivial topology [20]. Recently, there
is interest in studying the influence of the quasidisorder on
the 2D topological insulators. A quasidisorder is an additional
type of disorder that belongs to the category of correlated
disorders [26]. It was found that quasidisorder will make the
system be fully localized [27–33] and be a critical metal [27],
and even be a topological Anderson insulator [27–29], thus
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triggering the topological phase transition accordingly. In this
paper, we are interested in the transverse Anderson localiza-
tion triggered by the quasidisorder, which has recently been
studied in a 2D quasidisordered topological superconductor
with magnetic fields [28]. We note that in this 2D topological
superconductor, the quasidisorder triggered transverse Ander-
son localization is not synchronous with the topological phase
transition [28]. Based on these findings, we are motivated to
study, in a quasidisordered 2D topological system without su-
perconducting mechanisms and magnetic fields, whether there
is a quasidisorder-triggered transverse Anderson localization
which is followed by a topological phase transition. After
all, Ref. [15] noted that 2D disordered systems may contain
multifractal wave functions.

The rest of the paper is organized as follows. We present
the model and its Hamiltonian in Sec. II. To analyze the
topological properties of the model, we study the zigzag-
edge spectra, transport conductance, and the Chern number
in Sec. III. To analyze the transverse Anderson localization
transition, we study the partial inverse participation ratio, the
average of level spacing ratio, and the fraction dimension in
Sec. IV. A summary is presented in Sec. V.

II. MODEL

The schematic diagram of the two-dimensional (2D) qua-
sidisordered Chern insulator system is shown in Fig. 1.
The primitive lattice vectors, e1 and e2, constitute the unit
cell where there are three types of independent sublattices
[34–37], marked by R, B, and G, respectively. a is the spacing
between two nearest-neighbor sites (a = 1 in general). The
total Hamiltonian Ĥ = Ĥ1 + Ĥ2 of the system at zero temper-
ature consists of two parts: One is the hopping terms given
by

Ĥ1 =
∑

j, j′

(
Jĉ†

Rj
ĉBj′ + J1ĉ†

Gj
ĉRj′ + J1ĉ†

Gj
ĉBj′

+ J2eiϕ ĉ†
Rj

ĉRj′ + J2eiϕ ĉ†
Bj

ĉBj′ + H.c.
)
, (1)
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FIG. 1. Sketch of the model lattice system. The primitive lattice
vectors e1 and e2 form a unit cell, which contains three types of
independent sublattices, marked by R, B, and G, respectively. The
hopping strength between nearest-neighbor R and B sites is J , and the
one between nearest-neighbor G and R (or B) sites is J1. The hopping
strength between two nearest-neighbor R (or B) sites is J2eiϕ .

and the other is the quasidisordered (quasiperiodic) potentials
defined by

Ĥ2 =
∑

Sm,n

V cos(2παn)ĉ†
Sm,n

ĉSm,n , (2)

where J is the unit of energy, Sm,n = me1 + ne2 (m and n are
integers) is the position of the S site (S ∈ {R, B, G}), V is the
strength of the quasiperiodic potential, and α = (

√
5 − 1)/2.

This system has multiple parameters and we want to look at
the quantum criticality cased by the quasiperiodic potential,
the topological qualities, and the localization phase transition.
Without losing generality, we take J1 = 0.3, J2 = 0.275, and
ϕ = π/2 in the following.

III. TOPOLOGICAL PROPERTIES

We plot the energy gap of the lower two minibands as a
function of V in Fig. 2(a) by considering a system with the size
Ne1 × Ne2 = 40 × 144, where Ne1 is the number of unit cells
along e1 (the longitudinal direction) and Ne2 is the one along
e2 (the transverse direction) and selecting periodic boundary
conditions (PBCs) in two directions. Intuitively, we can see
that the system divides into two distinct phases at a critical
point Vc (Vc ≈ 0.82J in the numerical calculations). The gap is
always open when the potential strength V is smaller than the
critical point, but it closes when V crosses the critical point.
We do the finite-size analysis on the energy gap to determine
whether it is affected by the system’s size. Figures 2(b) and
2(c) show our results of the energy gap for various V . In
particular, to calculate the gaps in Fig. 2(b), we keep Ne2

unchanged. In order to determine the gaps in Fig. 2(c), we
maintain the invariant of Ne1 and set Ne2 to the sth Fibonacci
number Fs. Of course, the gaps almost remain constants as the
size of the system increases. It implies that the energy gap
is unaffected by the size of the system. We conclude from
the energy gap that the topological properties of the initial
uniform case (V = 0) are preserved in the gapped phase at
V > 0. Its topological characteristics in the uniform situation
are intermediately reflected from the Bloch Chern number. In
other words, the topological characteristics of the system are
described using the TKNN formula [8].

FIG. 2. (a) The energy gap of the lower two minibands as a
function of V under PBC. The considered system has a size of
40 × 144 (40 unit cells along e1 and 144 unit cells along e2). Finite-
size analysis about the energy gap with V = 0.1J (magenta circles),
V = 0.5J (green circles), and V = J (blue circles) in (b) and (c). To
obtain (b), we keep Ne2 invariant and change Ne1 . While calculating
(c), we only change Ne2 , and make Ne2 be equal to the sth Fibonacci
number. The energy gaps almost remain constants as the size of the
system increases.

Based on the energy gap, we infer that the gapped phase at
V > 0 preserves the topological characteristics of the original
uniform case (V = 0). We know that for the uniform case,
its topological properties are intermediately reflected from the
Bloch Chern number [8]. In this case, the Chern number of
the lowest bands will be C1 = 1.

We initially attempt to use the singly periodic spectrum
to confirm the aforementioned inference. The lattice size is
64 × 89 and we leave it with PBCs in the longitudinal direc-
tion and with a zigzag edge in the transverse direction. As a
result, the momentum ke1 in the e1 direction is a good quantum
number. The zigzag-edge spectrum in the V = 0 case is shown
in Fig. 3(a). The red line depicts the 1/3-filling Fermi energy
level in the bulk gap, which contains two edge modes with
opposite momentum ke1 , and oppositely directional group ve-
locities. One can observe two edges within the bulk gap at
1/3 filling for the quasiperiodic situations [see the cases with
V = 0.3J and V = 0.5J in Figs. 3(b) and 3(c), respectively].
It means that there are preserved topological characteristics in
the quasiperiodic case. However, in the quasiperiodic circum-
stances, as opposed to the uniform case, the corresponding
momenta of the two edge modes are no longer symmetric
about ke1 = 0. The zigzag-edge spectrum in the V = J case
has metallic characteristics but lacks a full bulk gap [see
Fig. 3(d)], which is self-consistent with the energy gap under
PBCs [see Fig. 2(a)].

The transport conductance [38–44] is an observable to
characterize the topological features as expect for the edge
modes. The Hamiltonian Ĥ is also used to define the (left
and right) leads for convenience without losing generality. The
conductance GE of the system (central scattering region) can
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FIG. 3. Zigzag-edge spectra E (ke1 )/J of the lowest two bands as
a function of ke1 . (a) V = 0J; (b) V = 0.3J; (c) V = 0.5J; (d) V =
1J . The red solid lines are the representative Fermi levels. The size
of the system is 64 × 89.

be obtained from the Landauer formula [45,46],

GE = 2e2

h
TE , (3)

where 2e2/h is the unit of GE and TE is the transmission
coefficient, which is expressed as

TE = Tr[�LGr�RGa], (4)

where Gr (Ga) is the retarded (advanced) Green’s function
of the system with Gr = [EI − HC − �L − �R] and Ga =
(Gr )†, and �L/R = i[�L/R − (�L/R)†]. We use HC to denote
the Hamiltonian of the system. The self-energies �L and �R

are given by

�L = H†
LCgLHLC, �R = HCRgRH†

CR, (5)

where HLC (HCR) denotes the coupling matrices between the
system and the L (R) leads, and gL (gR) are surface Green’s
functions of the L (R) leads.

We consider a system size 40 × 144 with open boundary
conditions in e2 and take V = 0.3J , V = 0.6J , and V = J .
The transmission coefficients as a function of the Fermi en-
ergy are presented in Figs. 4(a), 4(b), and 4(c), respectively.
As seen, there is a step with TE = 1 at 1/3 filling in the
gapped cases (V = 0.3J and V = 0.6J), while in the gapless
case (V = J), no feature with TE = 1 exists at 1/3 filling.
Furthermore, the results of the TE coincide with the topolog-
ical phase diagram in Fig. 4(d). In this diagram, C1 = 1 for
V < Vc, corresponding to TE = 1, while C1 is unquantized
when the potential strength V crosses the critical point Vc,
corresponding to the unquantized TE . The bulk gap is ac-
tually closed in this parameter area, which accounts for the
appearance of the unquantized Chern number. Hence, there
is no topology-protected edge mode, reflecting the trivial na-
ture of the system. On the contrary, the quantized C1 = 1
exactly corresponds to the two edge modes within the bulk
gap, presenting the bulk-edge correspondence, and being self-
consistent with the two-channel conductance. In addition, the

FIG. 4. The transmission coefficient TE as a function of the Fermi
energy with V = 0.3J in (a); V = 0.6J in (b); and V = J in (c).
The insets enlarge the stage with TE = 1. (d) The Chern number C1

versus the potential strength V at 1/3 filling. The size of the system is
40 × 144.

system can be viewed as a one-dimensional tight-binding
model in which each unit cell has been replaced with a su-
percell that contains Ne2 cells in the longitudinal direction.
The one-dimensional tight-binding model depicts a gapless
metal when V > Vc. Therefore, in the gapless case, there is
no quantized conductance below or above the Fermi energy
at 1/3 filling [see Fig. 4(c)], presenting intrinsically metallic
transport characteristics of the system.

IV. TRANSVERSE ANDERSON
LOCALIZATION TRANSITION

The two-channel transport observation shows that there is
no any edge mode and no localization phenomenon along
the longitudinal direction when V > Vc. We conclude that
the Anderson localization in the transverse direction (named
as the transverse Anderson localization) is associated with
the lack of the edge mode. After all, the localization will
prevent the particles from moving toward the boundaries of
the system, preventing the system from forming edge states.
Meanwhile, it is still to be solved in this 2D quasidisordered
Chern insulator without extra magnetic fields whether the
topological phase transition is synchronous with the trans-
verse Anderson localization transition. Recent work on the
2D topological superconductors with external magnetic fields
shows that the two transitions are asynchronous [28]. We shall
describe the localization characteristics of the system using
the partial inverse participation ratio (PIPR) in order to verify
this hypothesis. The system satisfies PBCs in two directions
and has a finite size with Ne2 = Fs in the e2 direction but no
boundary in the Ne1 direction. Ne2 is chosen as the Fibonacci
number to minimize the size effect. Then, the PIPR of a
normalized wave function ψ reads as

PIPR =
Ne2 −1∑

n=0

|ψ (Sn)|4N2
e1
, (6)

where the index m has been suppressed (the same below).
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FIG. 5. (a) The MPIPR as a function of the quasiperiodic poten-
tial strength V with the system size 24 × 233 (red dots) and 24 × 377
(blue dots). The averaged level spacing ratio 〈r〉 as a function of V is
presented in (b) with Ne2 = 144, where the horizontal black dashed
line corresponds to the Poisson distribution value 〈r〉 ≈ 0.3863. The
black dashed reference line denotes the critical point.

The wave packets are periodically distributed in the lon-
gitudinal direction because there is preserved translational
invariance in this direction. In light of the fact that the PIPR
in Eq. (6) is a quantity specified in the transverse direction, it
is more practical and useful to characterize the localization
property in this direction using the PIPR. When the PIPR
tends to a finite value, the wave function is localized in the
e2 direction. The PIPR scales as F−1

s for the extended states,
while it behaves like F−γ

s (0 < γ < 1) for the critical states.
We refer to the extended and the critical states as the delocal-
ized states in the following because they differ significantly
from the localized states and the extended (or critical) states.
In Fig. 5(a), the corresponding mean PIPR (MPIPR) of the
wave functions within the 1/3 filling are presented using two
system sizes as examples: 24 × 233 and 24 × 377. The black
dashed line indicates the key point where the MPIPR intu-
itively jumps, indicating a transverse Anderson localization
transition.

Next, we aim to study the transverse Anderson local-
ization transition by analyzing the energy gap statistic. To
perform the analysis, we calculate the average of the en-
ergy level spacing ratio 〈r〉 over the energies within the
1/3 filling, which is defined by 〈r〉 = 1

Ne1 ×Ne2 −2

∑
j r j , where

r j = min{δ j, δ j+1}/max{δ j, δ j+1} and δ j = Ej+1 − Ej with
the energies Ej arranged in an ascending order. In the
numerically calculations, we take PBCs and Ne2 = 144. Fig-
ure 5(b) presents 〈r〉 as a function of V for various Ne1 at
1/3 filling. More importantly, 〈r〉 approaches the Poisson dis-
tribution value [47,48] 〈r〉Poisson = 2ln(2) − 1 ≈ 0.3863 [the
horizontal black dashed line in Fig. 5(b)] when the quasidis-
order strength V is larger than the critical point. Besides,

FIG. 6. Plots of γ̄min versus 1/s for the wave functions within 1/3
filling.

it is readily seen that 〈r〉 for various Ne1 are less than
0.3863 when V is smaller than the critical value, presenting
the level statistics feature of the single-particle delocalized
states [49].

We examine the scaling behavior of the wave functions to
further clarify the transverse Anderson localization transition.
As previously stated, the wave packets are periodically dis-
tributed at each site Sn. The probability P(Sn) for the sites
in the transverse direction is defined as P(Sn) = |ψ (Sn)|2Ne1 .
Then a scaling index γ j is given by P(Sn) = F

−γ j
s . For

a concrete wave function, γ j will distribute within an in-
terval [γmin, γmax]. In the thermodynamic limit 1/s → 0,
γmin → 0 corresponds to the localized states, while 0 <

γmin � 1 for the delocalized states (particularly, γmin = 1 de-
notes the extended states; otherwise, it corresponds to the
critical states). Therefore, we will employ γmin to charac-
terize the scaling behaviors of the wave functions. In the
numerical calculations, we choose Ne1 = 40 and take PBCs
and then average the γmin over the wave functions whose
corresponding energies are within the 1/3 filling. We la-
bel the averaged γmin by γ̄min = 1

Ne1 ×Ne2

∑Ne1 ×Ne2
j=1 γ

j
min. The

extracted γ̄min from the wave functions for different V are
plotted in Fig. 6. It is seen that the γ̄min in the extrapolat-
ing limit decreases as the quasiperiodic potential strength
V increases, and it finally tends to zero when V crosses
the critical point Vc, presenting the transverse delocalization-
localization phase transition. The results reflected from the
γ̄min confirm the prediction of the MPIPR and the energy gap
statistics. Therefore, we believe that in this quasidisordered
2D Chern insulator, the topological phase transition is actu-
ally synchronous with the transverse Anderson localization
transition.

In the previous work, Roati et al. prepared a noninteracting
Bose-Einstein condensate in a one-dimensional quasiperiodic
optical lattice, and observed the exponential Anderson local-
ization [50]; i.e., the wave packet presents the form |ψ (x)| ∝
exp(−|x − x0|/ξ ) with ξ the localization length. Taking a
system size with Ne1 × Ne2 = 64 × 610 and V = 0.9J in the
localized phase, we choose the corresponding ground state as
an example to check whether the wave functions in the local-
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FIG. 7. Exponential localization in the transverse direction. The
system size is Ne1 × Ne2 = 64 × 610 and V = 0.9J . The red lines
denote the reference lines.

ized phase are exponentially localized. The negative logarithm
of the probability amplitude |ψ (x)| is plotted in the transverse
direction as a function of the site x in Fig. 7. Intuitively, the
curve presents the linear change on both sides of the mini-
mum, signaling the exponential localization. As a result, we
believe that the transverse (exponential) Anderson localiza-
tion in this 2D quasidisordered system has the potential to be
observed in the ultracold atomic experiment.

V. SUMMARY

We have investigated the influence of the quasidisorder
on the topological properties and the localization behaviors
of a 2D system. The topological phase transition is char-
acterized by the band gap, edge-state spectra, and transport
conductance. When a topological transition occurs, the bands
gap closes and there are no longer any edge modes. In
the gapless phase, the system behaves more like a metal,
according to the transport conductance. The results are agree-
ment with the topological diagram which contains the Chern
number of the lowest band. In addition, a transverse lo-
calization transition is characterized by the MPIPR, level
statistics, and the fraction dimension. The findings extend
the insight into the synchronicity between the topological
phase transition and the transverse Anderson localization,
and the reveal the topological nature of the bulk delocalized
states.

Note added. Recently, we became aware of the trans-
verse Anderson localization studied in the quasidisordered 2D
topological superconductors with magnetic fields (Ref. [28],
which is now published in Ref. [28]). The transverse Ander-
son localization may have potential applications in future cold
atom experiments. It implies that in addition to the conven-
tional 1D standing wave method, we can use the transverse
Anderson localization to prepare a 1D localized system, and
as a result, the 1D cold atom experiments are feasible to be
simulated in a 2D system.
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