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We study the effects of infinite-range (IR) interaction on the localization properties of one-dimensional
disordered harmonic chains. Two kinds of disordered models are considered: one is with disordered masses, but
constant spring coefficient (mass model), and the other is with disordered spring coefficient, but constant mass
(spring model). It is found that the IR interaction induces a gap between the ω = 0 and the excited frequency
band for both types of disordered models, and their gaps are both proportional to the IR interaction coefficient γ

for larger γ . In addition, the width of the excited frequency band of the mass model is also proportional to γ for
larger γ , while that of the spring model is independent of γ . By employing the normalized participation ratio,
we find that the low-frequency modes of the mass model except for the lowest frequency change from extended
to localized states, while the localized properties of the spring model modes remain unchanged. We also discuss
the effects of IR interaction on the dynamic behaviors of the two kinds of disordered models.
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I. INTRODUCTION

Disordered systems and their intrinsic physical laws are
important research topics in condensed matter and statistical
physics. In 1958, the famous Anderson localization phe-
nomenon was reported in disordered electronic systems [1].
Subsequently, Dean’s study of “vibrations of glasslike dis-
ordered chains” showed that the lattice modes are localized
when disorder exists in a system [2]. However, it is different
from the exponential localization of all states of the one-
dimensional disordered electronic system [1,3]. For example,
there are

√
N (N is the length of the chain) low-frequency

modes that are not localized [4,5]. Recently, there have been
a large number of studies on the localization of eigenmodes
of various types of inhomogeneous systems. These inhomo-
geneous systems include quasiperiodic [6–8], random-dimer
[9–11], correlated disordered systems [12–16], etc. However,
these systems only contain short-range (SR) interaction.

On the other hand, long-range (LR) interaction exists in
a large number of systems, for example, two-dimensional
hydrodynamics [17,18], charged [19], and dipolar systems
[20]. Interestingly, these systems exhibit properties that are
different from those of SR systems, such as ensemble in-
equality [21–23] and the possibility of negative specific
heat under the microcanonical ensemble [21]. Due to these
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particular properties, a great deal of research has been done
within LR interaction systems in recent years [24–27], for
example, the localization transition of phonon systems with
power-law decaying interaction [28], the thermalization of
Fermi-Pasta-Ulam-Tsingou models with power-law decaying
nonlinear interaction [29] and isolated harmonic networks
under conservative noise [30], and the heat conduction of
phonon systems with the inverse-square decay and expo-
nential decay [31]. It is commonly believed that the LR
interaction can induce the rapid spreading of information [32]
and the destruction of localization [33]. However, recently,
Celardo et al. studied the effect of a special class of LR in-
teraction (infinite-range interaction) on electronic localization
states [34,35]. It was found that infinite-range (IR) interac-
tion does not change the properties of the localization of the
excited states and they call this phenomenon the cooperative
shielding effect. In addition, systems with IR interactions
are often employed as theoretical models to study the par-
ticular properties of LR systems. Typical examples include
the Sherrington-Kirkpatrick model [36], the Lipkin-Meshkov-
Glick model [37], and the Hamiltonian mean-field model
[24,38]. Moreover, infinite-range interactions can be achieved
in ion traps [39–41] and cold atoms coupled to photonic
crystals [42] in the laboratory.

Since disorder affects the localization properties of phonon
modes differently from that of the electrons, it is an interesting
issue to study the effect of IR interaction on the localization
properties of disordered phonon modes. In this paper, we fo-
cus on how the IR interaction affects the frequency spectrum,
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localization of eigenmodes, and dynamic behavior of waves
of one-dimensional disordered harmonic chains. Two types of
disordered models, i.e., the mass model and the spring model,
are considered. Using matrix diagonalization, we obtain the
eigenfrequencies and eigenmodes of the systems. To analyze
the spatial extension of the eigenmodes, we use the time-
independent normalized participation ratio to characterize the
localized property of the systems. In dynamics, we study
the time evolution of a localized energy pulse and employ the
fraction of the total energy and the participation number ξ (t )
to evaluate the localized properties of the wave. The paper is
organized as follows: in Sec. II, we introduce the Hamiltonian
of the system, the eigenequations, and their eigenfrequen-
cies of two kinds of disordered models. In Secs. III and IV,
we illustrate the effect of IR interaction on the localization
properties of the two kinds of disordered models by the time-
independent normalized participation ratio and dynamics of
the localized energy pulse, respectively. In Sec. V, a short
conclusion is presented.

II. HAMILTONIAN AND EIGENFREQUENCY

Let us consider a general one-dimensional (1D) atomic
chain of N atoms with nearest-neighbor interaction and IR
interaction. The Hamiltonian is given by

H =
N∑

n=1

[
p2

n

2mn
+ 1

2
βn(μn − μn−1)2 + γ

2N

n−1∑
l=0

(μn − μl )
2

]
,

(1)

where μn is the displacement of the nth atom from the equi-
librium position. Here, mn is the mass of the nth atom, βn is
the spring coefficient between the nth to (n − 1)th atoms, and
γ is the IR interaction coefficient.

The equation of motion for the displacements μn is

mnμ̈n = − (βn + βn+1)μn + βnμn−1 + βn+1μn+1

− γμn + γ

N

N∑
l=1

μl . (2)

Substituting the formal solution μn(t ) = μneiωt into Eq. (2),
we obtain the stationary equation of motion,

ω2mnμn = (βn + βn+1)μn − βnμn−1 − βn+1μn+1

+ γμn − γ

N

N∑
l=1

μl . (3)

The matrix form can be expressed as

ω2Mμ = Hμ, (4)

where ω and μ = (μ1, . . . , μN )T are the eigenfrequen-
cies and the corresponding eigenmodes, respectively. M =
diag(m1, . . . , mN ) is a diagonal matrix, and H is a
N × N secular matrix defined as Hn,n = βn + βn+1 + γ −
γ /N , Hn,n+1 = Hn+1,n = H1,N = HN,1 = −βn+1 − γ /N , and
all other Hn,m = −γ /N . The periodic boundary conditions are
employed.

For simplicity, we choose two types of widely studied
and inequivalent disordered models. One is with disor-

dered masses but constant spring coefficient βn = β = 1
(mass model) [7,8], and the other is with disordered spring
coefficient but constant mass mn = m = 1 (spring model)
[11,12].

For the mass model, mn is the random number uniformly
distributed in [m1, m2], where m2 > m1 > 0. Without loss of
generality, we take the average value of the mn as 1. The
disorder strength δm = m2 − m1. The matrix M can be written
as two matrices M = LLT by Cholesky decomposition [43].
Therefore, Eq. (4) can be rewritten as

ω2μ̃ = H̃μ̃, (5)

where μ̃ = LT μ, H̃ = L−1H (LT )−1.
For the spring model, βn is the random number uni-

formly distributed in [β1, β2], where β2 > β1 > 0. Likewise,
we take the average value of the spring coefficient βn as 1,
and the disorder strength δβ = β2 − β1. Equation (4) can be
rewritten as

ω2μ = H

m
μ. (6)

Let us first consider the case of a homogenous system (βn = β

and mn = m). Due to the existence of translational invariance
of the homogeneous system, the μn has the form Ae−iqn. Here,
for finite N , q = 2π h

N and −[ N
2 ] � h < [ N

2 ]. Substituting the
form solution of μn(t ) into Eq. (3), we can get the frequency
of the homogeneous harmonic chain with IR interaction

ω2 = 4β

m
sin2

(
q

2

)
+ γ

m
(1 − δq0), (7)

where the δq0 = 1 for q = 0, else δq0 = 0.
It follows that there is a gap

√
γ /m between the lowest-

frequency ω0 = 0 and the excited frequency band in the limit
of N tending to infinity. And the width of the excited fre-
quency band is

√
4β/m. For convenience, we use �G(ω2) =

ω2
1 − ω2

0 (ω1 corresponding to the first excited frequency) and
�	(ω2) = ω2

N−1 − ω2
1 to describe the gap and the width of

the excited frequency band in the following. Therefore, for the
homogenous system, �G(ω2) = γ /m and �	(ω2) = 4β/m
in the limit of N tending to infinity.

Now let us analyze the results of the disordered systems.
In the following, we will discuss the effect of IR interaction
on the gap �G(ω2) and the width �	(ω2) of the excited
frequency band for the two kinds of disordered models. First,
we discuss the results of the mass model. In Figs. 1(a) and
1(c), the �G(ω2) and �	(ω2) as functions of γ for different
N are given, respectively. From Fig. 1(a), it can be seen that
�G(ω2) of the mass model is constant with γ when γ is
small and increases linearly after going through the crossover
region. For larger γ , the curves of different N overlap as one,
and �G(ω2) � k1γ . This is similar to that of the homoge-
neous system, where �G(ω2) = γ /m [44]. In the inset of
Fig. 1(a), we plot �G(ω2) of the homogeneous system and
the mass model as functions of γ and find that the coefficient
k1 < 1/m, where m is the averaged mass of the mass model.
This means the �G(ω2) of the mass model is smaller than
that of the homogeneous model for larger γ . From Fig. 1(c),
the �	(ω2) is constant when γ is small and increases linearly
after the crossover region. And, for any γ , the �	(ω2) curves
for different N overlap into one. In addition, at large γ , the
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FIG. 1. (a),(b) The gap �G(ω2) as functions of γ for mass and
spring models, respectively. For comparison, the �G(ω2) for the
mass model and the spring model with the homogeneous system are
given in the insets of (a) and (b), respectively. (c),(d) The width of
the excited frequency band �	(ω2) as functions of γ for mass and
spring models, respectively. Here, δm = 1 and δβ = 1.

�	(ω2) approximates as k2γ . This is quite different from
the results of the homogeneous system in which �	(ω2) is
a constant. These results can be understood by considering a
simplest inhomogeneous model, i.e., period-two mass model.
In that model, mn takes m1 and m2 periodically, i.e., m2n = m2,
m2n+1 = m1. In Appendix A 1, we analyze the frequency of
the period-two mass model and obtain that its �G(ω2) ap-
proximate as γ /m2 for large γ , where m2 > m [m = 1

2 (m1 +
m2)]. And the �	(ω2) approximates as 2β(m2 + m1)/m1m2

for γ � 2β, which is independent of γ , while for γ � 2β,
the �	(ω2) approximate as γ (m2 − m1)/m1m2. This means
that the difference between homogeneous and disordered sys-
tems comes from the inhomogeneity of the mass.

Then, we discuss the results of the spring model.
Figures 1(b) and 1(d) show the �G(ω2) and �	(ω2) as
functions of γ for different N , respectively. From Fig. 1(b),
the trend of the curve for the spring model is similar to that
of the mass model. The difference is that for larger γ , the
�G(ω2) for the spring model is approximately equal to that
of the homogeneous model [see the inset of Fig. 1(b)], i.e.,
�G(ω2) � γ /m. In Fig. 1(d), we find that the �	(ω2) is
independent of γ , which is similar to that of the homoge-
nous system. The results are different from the results of
the mass model at larger γ . Similarly, we can understand
this result by considering a period-two spring model (i.e.,
βn takes two values β1, β2 periodically). In Appendix A 2,
we get the �G(ω2) = γ /m and the �	(ω2) = 2(β1 + β2)/m.
This is consistent with the qualitative results of the spring
model, indicating that inhomogeneous spring coefficients do
not influence the �G(ω2). And the �	(ω2) is independent
of γ .

III. LOCALIZATION OF EIGENMODES

To analyze the spatial extension of the eigenmodes, we
employ the normalized participation ratio P(ω2), which is

defined as

P(ω2) =
( ∑N

n=1 |μn|2
)2

N
∑N

n=1 |μn|4
. (8)

It is clear from this definition that P(ω2) will be of the order
of 1 for the extended mode and 1/N for the localized mode.
For the disordered system, we need to average the results of
the samples since each sample has different eigenfrequen-
cies. In our calculations, the averaging process is similar to
the literature [8], i.e., averaging over a small window �ω2

on P(ω2),

〈P(ω2)〉 =
⎡⎣y=ω2+�ω2/2∑

y=ω2−�ω2/2

P(y)

⎤⎦/Nω2 , (9)

where Nω2 is the number of eigenmodes at each window.
In the following results, we average over 200 disordered
configurations and get similar results for more disordered
configurations.

In addition, to study the localized property of excited fre-
quency modes as a function of γ , we calculate the average
participation ratio over all excited frequencies, which can be
expressed as

Pex = 1

M

M∑
α=1

1

N − 1

∑
k�1

NPα

(
ω2

k

)
, (10)

where M is the number of disordered samples and ωk is the
kth eigenfrequency. To compare the results of the averaged
participation ratio over all excited modes with γ for different
N , we scale the Pex of the localized mode as 1 (independent
of N) by averaging NP(ω2) in Eq. (10).

A. Mass model

First, we calculate the average normalized participation
ratio 〈P(ω2)〉. Figures 2(a) and 2(b) depict the 〈P(ω2)〉 for
different N (γ = 100) and for different γ (N = 1000), respec-
tively. It can be seen that for larger γ , despite the different
parameters, the systems have 〈P(ω2)〉 ≈ 0 for the excited
frequencies. This means that for larger γ , the modes of the
excited frequencies are localized. This is different from that of
the SR (γ = 0) mass model, where

√
N low-frequency modes

are extended and the high-frequency modes are localized [see
the inset of Fig. 2(a)]. Further, to illustrate the numerical
results, we give, in Figs. 3(a) and 3(b), the eigenmodes of
excited frequencies for the IR (γ = 100) and SR mass models
for a typical disorder configuration, respectively. The results
are obtained by N = 100 and δm = 1. To visualize the lo-
calization of the eigenmodes, we shift the maximum mode
for each eigenfrequency to the middle site. From Fig. 3(a),
it can be seen that all eigenmodes of the excited frequencies
are localized at several different positions for the IR mass
model. This is different from the result of the SR mass model
[see Fig. 3(b)]. It can be seen that for larger γ , instead of
destroying the localization of the mode, the IR interaction
makes the mode more localized, which is counterintuitive.

For smaller γ , we show the 〈P(ω2)〉 for different N in
Fig. 2(c). It can be seen that when γ is small, the localization
property of the modes is similar to that of the SR mass model.
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FIG. 2. Mass model: (a),(c) The 〈P(ω2)〉 for different N at γ =
100 and γ = 0.001, respectively. The inset of (a) is the 〈P(ω2)〉 of
the SR system at different N . (b) The 〈P(ω2)〉 for different γ at
N = 1000. (d) The average participation ratio Pex over the excited
frequencies vs γ at different N . The above results are obtained by
δm = 1.

To see the localized properties of the excited frequency modes
as a function of γ , we show in Fig. 2(d) the average partic-
ipation ratio Pex over the excited frequencies as a function
of γ for different N . It can be seen that for larger γ , all the
points collapse almost to a single line, and Pex is the order
of magnitude of 1. This means that the excited modes are
localized, whereas, for smaller γ , Pex is proportional to N .
This means that the excited modes are delocalized, similar to
the results of the SR system.

In general, IR interaction results in low-frequency modes,
except for the lowest frequency from extended to localized.

B. Spring model

Likewise, we first present the results of 〈P(ω2)〉 for spring
models. Figures 4(a) and 4(b) depict the 〈P(ω2)〉 for different
N (γ = 100) and for different γ (N = 1000), respectively.
In Fig. 4(b), we subtract γ from the horizontal coordinate
of each curve. Because there is a large gap between the
lowest-frequency and the excited frequency band, and the

FIG. 3. (a),(b) The eigenmodes |μk
n|2 of excited frequency for

the IR (γ = 100) and SR mass models under a typical disordered
configuration, respectively. The common parameters for all panels
are N = 100 and δm = 1. The maximum |μk

n|2 corresponding to each
frequency is shifted to the middle position.

FIG. 4. Spring model: (a)(c) The 〈P(ω2)〉 for different N at γ =
100 and γ = 0.001, respectively. The inset of (a) is the 〈P(ω2)〉 of the
SR system for different N . (b) The 〈P(ω2)〉 for different γ at N =
1000. In (b), we have subtracted γ from the horizontal coordinate
of each curve for reasons stated in the main body. (d) The average
participation ratio Pex over the excited frequencies vs γ for different
N . The above results are obtained by δβ = 1.

relatively small �	(ω2) (similar to that in the SR system),
the 〈P(ω2)〉 for the excited frequency modes are difficult to
observe. From Figs. 4(a) and 4(b), it can be seen that for
larger γ , the low-frequency modes are extended, while the
high-frequency modes are localized. This is the same as the
localized property of the SR (γ = 0) spring model modes [see
the inset of Fig. 4(a)]. Similarly, we show the eigenmodes
of excited frequencies for the IR (γ = 100) and SR spring
models under a typical disorder configuration in Fig. 5. It
can be seen that the localization properties of the eigenmodes
of the IR and SR spring models are similar, in that both are
extended for the low-frequency modes and localized for the
high-frequency modes. This is analogous to the cooperative
shield effect in electronic systems, where the IR term seems
to be absent [35]. Moreover, it can be seen from Fig. 4(b) that
γ does not affect the number of extended modes.

To understand the effect of γ on the localization properties
of the system, we give, in Fig. 4(c), the 〈P(ω2)〉 for different
N when γ is small. It is observed that the localized nature of

FIG. 5. (a),(b) The eigenmodes |μk
n|2 of the excited frequency for

the IR (γ = 100) and SR spring models under a typical disordered
configuration, respectively. The parameters and data processing are
the same as the mass model.
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FIG. 6. The fn as a function of n for the IR mass model with γ = 1000 at (a) t = 0.001, (b) t = 10, and (c) t = 100, respectively. The results
of the SR mass model for corresponding times are shown in (d)–(f), respectively. (g)–(i) The results of the IR mass model with γ = 0.001 for
the corresponding times. The above three systems have the same disordered samples. The results are obtained at N = 1000, δm = 1.

the modes remains the same as that of the SR system. Further-
more, we show, in Fig. 4(d), the average participation ratio
Pex over the excited frequencies as a function of γ . We can
see that Pex is always constant for a particular N , indicating
that the IR interaction does not modify the localized property
of the spring model. In addition, the Pex ∝ N , indicating that
the eigenmodes are delocalized modes.

In general, the IR interaction does not change the localized
property of the spring model modes, which is quite different
from the results of the mass model.

IV. DYNAMICS OF THE LOCALIZED ENERGY PULSE

In this section, we discuss the effects of IR interaction on
the property of localization by considering the time evolu-
tion of the localized energy pulse [8,10,13,45]. We consider
the fraction of the total energy H at site n to be given by
fn(t ) = hn(t )/H . The hn(t ) is the “local” energy of the nth
atom, which is generally defined as

hn(t ) = p2
n

2mn
+ 1

4
[βn+1(μn+1 − μn)2 + βn(μn − μn−1)2]

+ γ

4N

∑
l

(μn − μl )
2. (11)

Here, pn = mnμ̇n and μn are the momentum and displace-
ment of the nth atom, respectively. In the following, we
employ the generalized time-dependent participation number
[45] to describe the localized property of waves, which can be

defined as

ξ (t ) = 1∑N
n=1 f 2

n (t )
. (12)

For the extended energy packet fn(t ) = 1/N , it follows that
ξ (t ) = N , while for a localized wave, ξ (t ) = 1.

We employ the fourth-order Runge-Kutta method to solve
Eq. (2). In general, energy transport under initial displacement
excitation and initial momentum excitation are considered.
Since the results of the two different initial excitations are
similar, we only consider the case of the initial displacement
excitation μN/2(0) = 1, μ̇N/2(0) = 0.

A. Mass model

To see the dynamic evolution of the local energy for the
IR mass model, we first show, in Figs. 6(a)–6(c), the fn(t ) of
the IR mass model with γ = 1000 for a typical disordered
sample at t = 0.001, t = 10, and t = 100, respectively. For
comparison, we give, in Figs. 6(d)–6(f), the fn of the corre-
sponding time for the SR mass model for the same disordered
sample. The results of the mass model are obtained by N =
1000 and δm = 1. We can see that the local energy of the
IR system (γ = 1000) is instantaneously transported to other
sites and reaches about 10−4 at all sites except the initial one.
This is a typical feature of the dynamics of the LR interaction
system [24]. As time evolves, the energy is gradually localized
at several sites. And the sites of localization and the magni-
tude of localized energy change with time. This is different
from the result of the SR system, which is a gradual outward
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FIG. 7. (a),(c) The three-dimensional diagrams of fn for the IR
mass model with γ = 1000 and γ = 0.001 under the same disorder
sample at time t in the site n, respectively. (b) For comparison, the
results of the SR mass model are given.

transport of energy. However, most of the energy of the SR
mass model is still trapped in the initial site. Moreover, we
consider the results of the IR mass model with smaller γ =
0.001 in Figs. 6(g)–6(i). It can be seen that the local energy of
the IR system with smaller γ = 0.001 is also instantaneously
transported to other sites and reaches about 10−7 at all sites
except the initial one. However, the dynamical behavior of
the local energy is similar to that of the SR mass model. To
see the process of energy transport globally, we give three-
dimensional images of the fn(t ) for the IR (γ = 1000) and
SR mass models in Figs. 7(a) and 7(b), respectively. It can
be seen that the energy of the IR system (γ = 1000) is local-
ized at several different sites, while the SR system gradually
transports energy outward except for the energy trapped at
the initial site. Figure 7(c) is the three-dimensional image of
the IR mass model with smaller γ = 0.001. It can also be
seen that the dynamics of the local energy of the IR mass
model with smaller γ = 0.001 behaves similarly to that of the
SR system.

To further understand the localized properties of waves for
the IR system, we present the average participation numbers
ξ (t ) as a function of t for the IR system with different γ , as
well as the results for the SR system in Fig. 8. To suppress
fluctuations, we employ the results averaged over 200 dif-
ferent disordered configurations. And the averaging of more
samples gives similar results. It is observed that both the IR
and SR systems saturate at a finite value of ξ (t ) due to being
dominated by the localized eigenmodes [45]. For the larger γ ,
it can be seen that ξ (t ) of the IR system is smaller than that
of the SR system, and the ξ (t ) of systems with different γ

saturate around the same value. That is, it has more localized
waves than that of the SR system (as shown in Figs. 6 and 7).
And for the smaller γ , the ξ (t ) of its system is similar to that of
the SR system. This indicates that smaller γ has no effect on
the energy wave transport, in agreement with the static results.

FIG. 8. The average participation number ξ (t ) as a function of
t at initial displacement excitation. Here the results for different IR
interaction coefficients γ are considered, as well as the results for
the SR mass model given as a comparison. The results are obtained
at N = 1000, δm = 1.

B. Spring model

Likewise, we give the fn as a function of n for the IR
(γ = 1000) and SR spring model at three different times for
a typical disordered sample in Fig. 9. Figures 9(g)–9(i) show
the results for the IR spring model with smaller γ = 0.001
corresponding to times. The results of the spring model are
obtained by N = 1000 and δβ = 1. Similar to the IR mass
model, the local energy of the IR spring model (γ = 1000)
is also instantaneously transported to all sites and reaches
about 10−4 at all sites except the initial site. And for the
IR spring model with smaller γ = 0.001, the local energy
is also instantaneously transported to all sites, but the local
energy reaches about 10−7. With time evolution, both IR and
SR spring models transport energy outward. However, due to
the presence of the quasisteady state of the IR system with
larger γ = 1000 [24], the transport process is slow. And the
dynamical behavior of the local energy of the spring model
with smaller γ = 0.001 is similar to that of the SR system.
Those results can also be obtained from the 3D images of the
fn for the IR and SR spring model (see Fig. 10). In addition,
most of the energy of both IR and SR systems is trapped in
the initial site, but less energy is trapped in the initial site for
the IR system (γ = 1000) than that of the SR system.

Finally, we show the ξ (t ) as a function of t for the spring
model with different γ in Fig. 11. As a comparison, we present
in the inset the ξ (t ) for the SR spring model. It can be seen that
similar to the mass model, all systems saturate with ξ (t ) at a
finite value. The saturation value of the IR system is larger
than that of the SR system. This is because, for larger γ ,
the dynamics behavior of the local energy of the IR and SR
systems is more similar, but the IR system has less energy
trapped in the initial position (as depicted in Fig. 10). And the
value of ξ (t ) saturation for the IR system with smaller γ is
close to that of the SR system. This is similar to the results of
the mass model, where smaller γ has no effect on the transport
of energy waves.
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FIG. 9. The fn as a function of n for the IR spring model with γ = 1000 at (a) t = 0.001, (b) t = 10, and (c) t = 100, respectively. The
results of the SR spring model for corresponding times are shown in (d)–(f), respectively. (g)–(i) The results of the IR spring model with
γ = 0.001 for the corresponding times. The above three systems have the same disordered samples. The results are obtained at N = 1000,
δβ = 1.

V. CONCLUSION

We study the effects of IR interaction on the static and dy-
namic of one-dimensional disordered harmonic chains. Two
kinds of disordered models are considered: the mass model
and the spring model. In terms of the frequency spectrum,

FIG. 10. (a),(c) The three-dimensional diagrams of fn(t ) for the
IR spring model with γ = 1000 and γ = 0.001 at time t in the site n,
respectively. (b) For comparison, the results of the SR spring model
are given.

there is a gap between the lowest-frequency (ω0 = 0) and the
excited frequency band due to IR interaction. For two kinds
of disorder models, the gap �G(ω2) is proportional to γ for
larger γ . Moreover, the width of the excited frequency band
�	(ω2) of the mass model is also proportional to γ for larger
γ . However, �	(ω2) of the spring model is independent of
γ , which is similar to the case of the homogeneous system.

FIG. 11. The average participation number ξ (t ) as a function of
t at initial displacement excitation. Here the results for different IR
interaction coefficients γ are considered. The result of the corre-
sponding SR system is given in the inset as a comparison. The results
are obtained at N = 1000, δβ = 1.
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Those results can be understood by analyzing the two kinds
of period-two models. For the localized properties of the
eigenmodes, the results show that the low-frequency modes
of the mass model become localized states for larger γ , except
for the lowest frequency, while the localized properties of the
eigenmodes of the spring model are not changed. In dynamics,
we consider the time evolution of the localized energy pulse.
Due to IR interaction, about 10% of the energy is quickly
and uniformly distributed over each lattice site, except for the
initial site. For the mass model, most of the energy is localized
to a number of lattice sites, and the lattice sites vary with time,
while for the spring model, most of the energy very slowly
spreads from the initial lattice sites to other lattice sites. In
short, IR interaction has different effects on the two kinds

of disordered models in terms of the frequency spectrum,
localization of phonon modes, and wave packet evolution.
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APPENDIX: FREQUENCY OF TWO TYPES OF
PERIOD-TWO SYSTEMS

Here we analytically obtain the eigenfrequency for the
period-two mass and spring models.

1. Period-two mass model

For the period-two mass model, mn takes two masses periodically, i.e., m2n = m2, m2n+1 = m1, where m2 > m1 > 0. By
analogy with Eq. (2), we can obtain the equation of motion for the system with N primitive cells,

m2μ̈2n = −β(2μ2n − μ2n+1 − μ2n−1) − γ

N

2N−1∑
l=0

(μ2n − μl ),

m1μ̈2n+1 = −β(2μ2n+1 − μ2n+2 − μ2n) − γ

N

2N−1∑
l=0

(μ2n+1 − μl ). (A1)

The equations have lattice wave solution of the following form:

μ2n = Aei[ωt−(2n)q], μ2n+1 = Bei[ωt−(2n+1)q]. (A2)

Substituting the formal solution of Eq. (A2) into Eq. (A1), we can get

ω2m2A = β(2A − 2B cos q) + γ A − γ

2N

N−1∑
n=0

[Aeiq(2n) + Beiq(2n+1)],

ω2m1B = β(2B − 2A cos q) + γ B − γ

2N

N−1∑
n=0

[Aeiq(2n) + Beiq(2n+1)]. (A3)

Using 1
N

∑N−1
n=0 ei2nq = δq0, the equation can be expressed as

(ω2m2 − D1)A + D2B = 0, D2A + (ω2m1 − D1)B = 0, (A4)

where D1 = D2 = 2β + γ

2 for q = 0, and D1 = 2β + γ and D2 = 2β cos q for q 
= 0.
So the frequency can be obtained,

ω2
±(q) =

(m1 + m2)D1 ±
√

(m1 + m2)2D2
1 − 4m1m2

(
D2

1 − D2
2

)
2m1m2

. (A5)

For q = 0, the frequency is

ω2
±(q) =

⎧⎪⎪⎨⎪⎪⎩
(m1 + m2)

(
2β + γ

2

)
m1m2

,

0.

(A6)

For q 
= 0, the frequency is

ω2
±(q) =

D1(m1 + m2) ±
√

D2
1(m1 − m2)2 + 4m1m2(2β cos q)2

2m1m2
. (A7)
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The �G(ω2) = ω2
−(q → 0) − ω2

−(q = 0) can be written as

�G(ω2) =
D1(m1 + m2) −

√
D2

1(m1 − m2)2 + 4m1m2(2β )2

2m1m2
, (A8)

where D1 = 2β + γ . For the large γ , the �G(ω2) is

�G(ω2) ≈ γ

m2
. (A9)

The �	(ω2) can be expressed as

�	(ω2) = ω2
+(q → 0) − ω2

−(q → 0) =
√

(2β + γ )2(m1 − m2)2 + 4m1m2(2β )2

m1m2
. (A10)

So, the �	(ω2) ≈ 2β(m2+m1 )
m1m2

when γ � 2β, independent of γ , while the �	(ω2) ≈ γ (m2−m1 )
m1m2

when γ � 2β.

2. Period-two spring model

For the period-two spring model, βn takes two values β1, β2 periodically, where β2 > β1 > 0. By analogy with Eq. (2), the
equation of motion of the system with 2N atoms can be expressed as

mμ̈2n = −β1(μ2n − μ2n−1) + β2(μ2n+1 − μ2n) − γ

N

2N−1∑
l=0

(μ2n − μl ),

mμ̈2n+1 = −β2(μ2n+1 − μ2n) + β1(μ2n+2 − μ2n+1) − γ

N

2N−1∑
l=0

(μ2n+1 − μl ). (A11)

The equations have the same lattice wave solution as Eq. (A2). Then, using a process similar to that for the period-two mass
model, the frequency is obtained,

ω2
±(q) =

D3 ±
√[

D4 + γ δq0(β1 + β2) cos q + (
1
2γ δq0

)2]
m

, (A12)

where D3 = β1 + β2 + 1
2γ and D4 = (β1 + β2)2 for q = 0, and D3 = β1 + β2 + γ and D4 = β2

1 + β2
2 + 2β1β2 cos 2q for q 
= 0.

For q = 0, the frequency is

ω2
±(q) = D3 ± D3

m
=

⎧⎪⎨⎪⎩
2
(
β1 + β2 + γ

2

)
m

,

0.

(A13)

For q 
= 0, the frequency is

ω2 =
(β1 + β2 + γ ) ±

√
β2

1 + β2
2 + 2β1β2 cos 2q

m
. (A14)

Similarly, the �G(ω2) = ω2
−(q → 0) − ω2

−(q = 0) can be written as

�G(ω2) = γ

m
. (A15)

And the �	(ω2) is

�	(ω2) = ω2
+(q → 0) − ω2

−(q → 0) = 2(β1 + β2)

m
. (A16)

It can be seen that the �	(ω2) is independent of γ .
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