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Dynamics of the geometric phase in inhomogeneous quantum spin chains
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The dynamics of the geometric phase are studied in inhomogeneous quantum spin chains after a quench.
Analytic expressions of the Pancharatnam geometric phase (PGP) are derived for both the period-2 quantum Ising
chain (QIC) and the disordered QIC. In the period-2 QIC, due to the periodic modulation, the phase difference
between the boundaries of the half Brillouin zone (0, π ] changes with time, and consequently, the winding
number νD(t ) of the PGP is not quantized and thus is not topological anymore. Nevertheless, the PGP and its
winding number show nonanalytic singularities at the critical times of the dynamical quantum phase transitions
(DQPTs). This relation between the PGP and the DQPT is further confirmed in the disordered QIC. It is found
that the critical time of the DQPT inherited from the homogeneous system and the additional one induced by
weak disorder are also accompanied by the nonanalytic singularity of the PGP by decomposing the PGP into
each quasiparticle mode. The connection between the nonanalytic behavior of the PGP at the critical time and
the DQPT, regardless of whether the winding number is topological, can be explained by the fact that they both
arise when the Loschmidt amplitude vanishes.
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I. INTRODUCTION

The geometric phase has seen remarkable advance-
ments [1–3] since Berry published his seminal paper [4],
in which a quantum system is subjected to an adiabatically
changing environment and manifests a geometric behavior in
its phase [5]. The Berry phase encodes the state of the system
and has been associated with a variety of condensed matter
phenomena, such as the quantum Hall effect [6] and quantum
phase transitions [7,8]. Later, the concept of Berry’s phase was
generalized to the cyclic evolution of the quantum system [9]
and to an even more general context that is neither unitary nor
cyclic, which is known as the Pancharatnam geometric phase
(PGP) [10]. Recently, the PGP was proposed to characterize
the dynamical quantum phase transition (DQPT) [11].

The DQPT describes the nonanalytic behavior of the
Loschmidt echo L(t ) = |G(t )|2 during the nonequilibrium dy-
namical evolution [12,13], where the Loschmidt amplitude
G(t ) measures the overlap of the time-evolving state with the
initial state, i.e.,

G(t ) = 〈ψ0|ψ (t )〉 = 〈ψ0|e−iHt |ψ0〉. (1)

Like for the equilibrium phase transition, one can define the
dynamical free energy density by the rate function λ(t ) =
− limN→+∞ 1

N ln [L(t )], which shows the cusplike singulari-
ties at the critical times of DQPTs [14]. To date, the DQPT has
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been studied extensively in many quantum systems, such as
XY chains [15–17], the Kitaev honeycomb model [18], XXZ
model [19,20], systems with long-range interactions [21–26],
quantum Potts model [27], non-Hermitian systems [28,29],
the Bose-Einstein condensate [30], and inhomogeneous sys-
tems [31–34]. Moreover, direct observations of DQPTs have
been realized in many experiments, such as trapped ions sim-
ulations [35], a 53-qubit quantum simulation [36], a nuclear
magnetic resonance quantum simulator [37], quantum walks
of photons [38,39], and spinor condensate simulations [40].
Note that another different definition of the DQPT exists
that studies the asymptotic late-time steady state of the order
parameter [41–45]. Two types of DQPTs have been found
related to the long-range quantum Ising chain [26].

According to Berry’s theory, a quantum system acquires a
geometric phase φG(t ) over the dynamical phase φdyn(t ) dur-
ing the time evolution [4]. The PGP [10,11] can be calculated
as

φG(t ) = φ(t ) − φdyn(t ), (2)

with the total phase φ(t ) = arg[G(t )] and φdyn(t ) =
− ∫ t

0 ds〈ψ (s)|H |ψ (s)〉. One can define the winding number
νD(t ) = ∫ π

0 [∂φG
k (t )/∂k]dk/2π , which is found to be integer

quantized between two critical times and changes by unity
at critical times, so that the winding number is treated as
the dynamical topological order parameter (DTOP) [11].
The PGP shows nonanalytic singularities as dynamical
vortices at the critical times of DQPTs [46,47]. The DTOP
has been confirmed in many works, for instance, slow
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quench in the quantum Ising chain [48], the PT -symmetric
Su-Schrieffer-Heeger model [49], the massive Schwinger
model [50], systems under periodic driving [51–57], and
others [25,28,38,39]. However, clear evidence shows that
the winding number νD(t ) may be fractional quantized and
thus nontopological in the XY chain from a critical quantum
quench [58], although the discontinuous point of νD(t ) is
still one to one related to the DQPT. A significant question
that follows is whether the DQPT and its associated PGP are
always accompanied by an integer-quantized (topological)
winding number in general.

To answer this question, we investigate the PGP in two
inhomogeneous systems: the period-2 quantum Ising chain
(QIC) and the disordered QIC. It is well known that in-
homogeneity can dramatically influence the behavior of
DQPT [33,59]. The periodic modulation is found to induce
richer DQPTs than those in the homogeneous system [59].
New DQPTs appear after a quench across the critical lines
of the quantum phase transition under the influence of weak
disorder [33]. Another ensuing interesting problem is whether
the new extra DQPTs induced by the periodic modulation and
the disorder are also related to the singularity of the PGP and
its winding number. This is, indeed, the case in our work.
The results reveal that the critical times of DQPTs induced
by the periodic modulation and weak disorder can still be
characterized by the nonanalytic singularity of the PGP. This
can be understood from the fact that the vanishing of the
Loschmidt amplitude contributes not only a cusp in the rate
function for the DQPT but also a dynamical vortex for the
PGP.

However, in the period-2 QIC, the winding number νD(t )
is found not to be quantized anymore, although it still shows
discontinuities at the critical times of DQPTs. The reason for
the nonquantized winding numbers can be explained as the
phase difference φG

k=π (t ) − φG
k=0(t ) between the PGPs at the

boundaries changing with time due to periodic modulation.
This is different from the case in the XY chain from a critical
quench [58], in which the fractional-quantized winding num-
bers are related to the singularity of the Bogoliubov angle at
the gap-closing momentum.

This paper is organized in the following manner: in
Sec. II, we discuss the QIC with period-2 nearest-neighbor
interactions and give the formulas for the PGP and its winding
number (more detailed derivations are given in Appendix),
and we study the behavior of the PGP via two typical quench
processes. In Sec. III, we derive the PGP of the disordered
QIC in real space (more detailed derivations are given in
Appendix B); similarly, we give two typical examples to
illustrate the behavior of the PGP in the disordered system.
Finally, we summarize our results and draw our conclusions
in Sec. IV.

II. PERIODIC QUANTUM SPIN CHAINS

We consider the quantum Ising chain with periodic nearest-
neighbor interactions in the transverse field [59–62]. The
Hamiltonian is given by

H = −1

2

N∑
n=1

Jnσ
x
n σ x

n+1 − h

2

N∑
n=1

σ z
n , (3)

where σ a(a = x, y, z) are the Pauli matrices, Jn is the strength
of interactions between the nearest-neighbor spins, and h is
the external transverse field. We consider the QIC with period-
2 nearest-neighbor interactions (l ∈ Z),

Jn =
{

J, n = 2l − 1,

J1, n = 2l.
(4)

For convenience, we set α = J1/J and J = 1 without losing
generality. The period-2 QIC undergoes the quantum phase
transition from the ferromagnetic (FM) phase to the param-
agnetic (PM) phase at the critical point hc = √

α when the
external field h increases [60,63].

We can solve the Hamiltonian (3) via the Jordan-Wigner
and Bogoliubov transformations (see Appendix A 1), where
the diagonal form of the Hamiltonian is

H =
∑

k


k1

(
η

†
k1ηk1 − 1

2

)
+ 
k2

(
η

†
k2ηk2 − 1

2

)
. (5)

Unlike that in the homogeneous QIC, the period-2 QIC has
two quasiparticle excitation spectra, 
k1 and 
k2. The zero-
point (ground-state) energy is given by

E0 =
∑
k>0

E0k = −
∑
k>0

(
k1 + 
k2), (6)

and the ground state is |GS〉 = ⊗
k>0 |GSk〉, with |GSk〉 =

|0k10−k10k20−k2〉 for every k (k > 0).
We study the nonequilibrium dynamical evolution induced

by a quantum quench. The system is prepared in the ground
state |ψ0〉 = ⊗

k>0 |ψ0k〉, |ψ0k〉 = |GSk〉 of an initial Hamil-
tonian H0 = H (h0). At time t = 0, the external field will be
changed suddenly to another value, h1, that corresponds to the
Hamiltonian H̃ = H (h1). In this section, we use η̃k (η̃†

k ), |ψ̃0k〉,
and 
̃k to denote the corresponding items of the postquench
Hamiltonian H̃ . The time-evolved state is given by

|ψk (t )〉 = e−iH̃t |ψ0k〉. (7)

By decomposing the Loschmidt amplitude G(t ) =∏
k>0 Gk (t ), we obtain

Gk (t ) = e−iẼ0kt

N 2

2∏
μ,ν=1

[
1 + |Gkμ,−kν |2e−i(
̃kμ+
̃−kν )t

]
, (8)

where G = −(UŨ † + VṼ †)−1(UṼ T + VŨ T ) is an antisym-
metric matrix dependent on the parameters of the pre- and
postquench Hamiltonian (see Appendix A 2). Like for the
Lee-Yang zeros, we can illustrate the DQPT in a straightfor-
ward way via the Fisher zeros in the complex time plane [12].
From Gk (z) = 0, Im(z) = t , the Fisher zeros of the Loschmidt
amplitude for every k are given by

zn(k, μ, ν) = 1


̃kμ + 
̃−kν

[ln |Gkμ,−kν |2 + i(2n + 1)π ],

(9)

with μ, ν = 1, 2. The Fisher zeros will have an intersection
with the imaginary axis of the complex time plane when the
DQPT occurs. Equation (9) implies that Fisher zeros in the
period-2 QIC have multiple branches which are different from
the single branch in the homogeneous QIC [59]. With the
help of the Fisher zeros (9), we can easily obtain the critical
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momentum kc of the DQPT which satisfies |Gkcμ,−kcν | = 1 and
the associated critical time

tc(n) = (2n + 1)π


̃kcμ + 
̃−kcν

. (10)

To study the behavior of the PGP, we rewrite the Loschmidt
amplitude Gk (t ) in polar coordinates, which is

Gk (t ) = rk (t )eiφk (t ) = rk (t )ei[φdyn
k (t )+φG

k (t )], (11)

where φ
dyn
k (t ) and φG

k (t ) are the dynamical phase and purely
geometric phase, respectively. According to Eq. (11), we get
the dynamical free energy (rate function) in the thermody-
namic limit as

λ(t ) = −
∫ π

0

dk

2π
ln r2

k (t ). (12)

Clearly, the rate function λ(t ) depends on only the mod-
ulus rk (t ) of the Loschmidt amplitude Gk (t ). However, at
the critical momentum kc, λ(t ) has a nonanalytic point, i.e.,
rkc (t ) = 0. According to the basic theory in complex math,
when a complex number has zero modulation, its argument
angle can take any value. This will be reflected by a dynamical
vortex (nonanalytic singularity) in the PGP [46,47]. This is the
essential reason why DQPTs can be characterized by the PGP.

The PGP φG
k (t ) can be extracted from the time-dependent

argument φk (t ) of the Loschmidt amplitude by

φG
k (t ) = φk (t ) − φ

dyn
k (t ), (13)

where the dynamical phase φ
dyn
k (t ) is

φ
dyn
k (t ) = −

∫ t

0
ds〈ψ (s)|H̃k|ψs〉

=
{[

1 − 2(|Gk1,−k1|2 + |Gk1,−k2|2)

(1 + |Gk1,−k1|2)(1 + |Gk1,−k2|2)

]

̃k1

+
[

1 − 2(|G−k1,k2|2 + |Gk2,−k2|2)

(1 + |G−k1,k2|2)(1 + |Gk2,−k2|2)

]

̃k2

}
t .

(14)

The dynamical phase φ
dyn
k (t ), which is found to be propor-

tional to time t , is always an analytic function. Therefore, the
nonanalytic behavior of the argument φk (t ) will be reflected in
the PGP φG

k (t ) at the critical time, where φG
k (t ) is ill defined.

Note that the PGP φG
k (t ) is usually folded into its principal

angle value, i.e., φG
k (t ) ∈ (−π, π ]. One can define the wind-

ing number to describe the accumulated change of the PGP by

νD = 1

2π

∫ π

0

∂φG
k (t )

∂k
dk = φG

k=π (t ) − φG
k=0(t )

2π
+ N , (15)

where N is the folding number of the PGP from −π to π or
from π to −π when φG

k (t ) exceeds its principal value interval.
The folding number decreases by one when the PGP is folded
from −π to π , and increases by one when folded from π

to −π .
In the literatures [25,28,38,39,46,47,49–57,64–70], φG

k (t )
are found pinned to zero at the boundary of the half Brillouin
zone (or the whole Brillouin zone for topological insula-
tors [28,54]) in the homogeneous systems, i.e., φG

k=π (t ) −
φG

k=0(t ) = 0. This ensures that the winding number νD(t ) is

integer quantized. However, the situation is different in our
periodic case. It is found that the PGP changes value with time
at the boundary of the half Brillouin zone under the periodic
modulation, which results in the winding number not being
quantized. In the following, we will show our interesting
findings using two typical examples.

A. Quench from the FM phase to the PM phase

We further investigate the PGP φG
k (t ) and the associated

winding number νD(t ) for the period-2 QIC by showing two
typical quench examples. We take the value α = J1/J = 0.5,
which implies the system undergoes an Ising transition at the
critical point hc = √

α ≈ 0.707.
First, we study the case of quench from the FM phase to

the PM phase. In Fig. 1(a), we show the contour plot of PGP
φG

k (t ) as a function of (k, t ), where the quench path is from
h0 = 0.5 to h1 = 2.0. The symmetry of the Hamiltonian and
the initial state ensures φG

k (t ) = φG
−k (t ), so throughout this

paper we show only the PGP in the (k, t ) plane for k > 0. We
obtain the critical momentum kc and the critical times tc(n)
of the DQPTs, which are marked by red crosses, according to
Eqs. (9) and (10). Obviously, there is one critical momentum,
kc ≈ 1.10, corresponding to multiple critical times, tc(n) =
(2n + 1)tc(0), n = 0, 1, . . . [see Fig. 1(a)]. It can be seen that
φG

k has nonanalytic singularities (dynamical vortices circled in
blue) at the critical times tc(n) and critical momentum kc. Fur-
thermore, we notice that φG

k (t ) does not complete full circles
in the half Brillouin zone, i.e., φG

k=π (t ) − φG
k=0(t ) 	= 2nπ . For

instance, when t = 2, φG
k (t ) changes value by 0 → −π

folding−→
π → 0.46π [see the blue line t = 2 in Fig. 1(a)]; when t =
3.78, φG

k (t ) changes value by 0 → −π
folding−→ π → −π

folding−→
π [see the blue line t = 3.78 in Fig. 1(a)]. Here, −π

folding−→ π

denotes restricting φG
k (t ) to its principal angle value (−π, π ].

This implies that the associated winding number νD(t ) may
not be an integer, according to Eq. (15).

To establish that this is, indeed, the case, we calculate and
plot the winding number νD(t ) as a function of t in Fig. 1(b).
In order to see the critical times clearly, we also show the
corresponding rate function λ(t ). It is clear that the winding
number νD(t ) is not integer quantized. Specifically, when
t = 2, the winding number νD(t ) ≈ −0.77 [see the blue line
t = 2 in Fig. 1(b)]; when t = 3.78, νD(t ) ≈ −1.5 [see the blue
line t = 3.78 in Fig. 1(b)]. Nevertheless, the winding number
νD(t ) is found to jump discontinuously at the critical times
of the DQPTs. This means that the winding number can still
detect the DQPTs even though it is not topological.

We now focus on three factor components of the PGP φG
k (t )

for the momenta k = 0, k = π , and k = kc [see Figs. 2(a)
and 2(b)], which are very relevant to νD(t ) according to
Eq. (15). It is found that at the boundary of the half Bril-
louin zone, φG

k=0(t ) ≈ 0 remains almost constant all the time;
however, φG

k=π (t ) changes continuously with time. The phase
difference φG

k=π (t ) − φG
k=0(t ) ≈ φG

k=π (t ) changes with time,
and thus, the winding number cannot be integer quantized
anymore. We tested other parameters and found this to be a
general behavior in the case of quench from the FM phase
to the PM phase (see Fig. 8 in Appendix A 3). Note that
the jump in φG

k=π (t ) at time t∗ results from restricting the
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FIG. 1. (a) Contour plot of PGP φG
k (t ) as a function of (k, t ) for

the quench from the FM phase to the PM phase (h0 = 0.5 to h1 =
2.0). The phase vortices are marked by blue circles at the critical
momentum and critical times (kc, tc(n)). The red crosses denote the
critical momenta and critical times obtained according to Eqs. (9)
and (10). (b) The time evolutions of the winding number νD(t ) (red
squiggly lines) and the rate function λ(t ) (black line) are plotted for
comparison. It can be seen that νD(t ) is not integer quantized and
jumps discontinuously at the critical times tc(n), n = 0, 1, 2, 3, . . . .

PGP to its principal angle value, which will not lead to
the presence of the DQPT. For the critical momentum kc ≈
1.10 of the DQPT, we can see that φG

kc
(t ) has nonanalytic

points at times t = tc(0), tc(1), which are exactly the critical
times of the DQPT. In summary, the discontinuous integral
jumps of the winding number result from the nonanalytic
behaviors of the PGP at the critical times; the winding number
is not quantized due to the time-dependent contribution from
the PGP difference φG

k=π (t ) − φG
k=0(t ).

B. Quench from the PM phase to the FM phase

As a second example, we consider the case of quench
from the PM phase to the FM phase. In Fig. 3(a), we show

FIG. 2. Factor components of the PGP are plotted as a function of
t (a) for k = 0 and k = π and (b) for k = kc ≈ 1.10. At the boundary
of the half Brillouin zone, φG

k=0(t ) ≈ 0 is almost constant, but φG
k=π (t )

changes value with time. Note that the jump of φG
k=π (t ) at time t∗

results from restricting the PGP to its principal angle value, which
will not lead to the presence of the DQPT. However, for the critical
momentum kc, φG

kc
(t ) shows nonanalytic singularities at critical times

t = tc(0) and tc(1). The black line is the rate function λ(t ), which
shows singularities at critical times t = tc(0) and tc(1).

the contour plot of the PGP φG
k (t ) as a function of (k, t ).

Here, the quench path is from h0 = 2.0 to h1 = 0.5, which
is the inverse path of the previous example shown in the
Figs. 1 and 2. Unlike that in the case of quench from the
FM phase to the PM phase, there are three critical momenta,
kc1, kc2, and kc3, corresponding to three groups of critical
times, tc1(n) = (2n + 1)tc1(0), tc2(n) = (2n + 1)tc2(0), and
tc3(n) = (2n + 1)tc3(0), n = 0, 1, 2, . . . . This can be under-
stood based on Eq. (9); that is, three branches of Fisher zeros
have intersections with the imaginary axis in the complex
time plane [59]. At the critical momentum and critical times
(kc, tcm(n)), m = 1, 2, 3, φG

k (t ) has dynamical phase vortices,
as circled in blue [see Fig. 3(a)]. Similar to the case of quench
from the FM phase to the PM phase, φG

k (t ) does not complete
full circles in the half Brillouin zone. For instance, when t =
0.53, φG

k (t ) changes value by π
folding−→ −π → 0, which im-

plies the corresponding winding number νD(t = 0.53) ≈ 0.5.
We plot the winding number νD(t ) and rate function λ(t ) in
Fig. 3(b). It can be seen that the winding number νD(t ) shows
an approximately linear change with time t within two neigh-
boring critical times. As expected, the discontinuous points of
νD(t ) are accompanied by the critical times of DQPTs and the
dynamical vortices in PGP [see Fig. 3(b)].

We also investigate the case of quench within the same
phase in Appendix A 3 (see Fig. 9), where the DQPT is
absent. It is clear that the PGP φG

k (t ) is analytic on the
(k, t ) plane, and its winding number νD(t ) is a continuous
function of time when the DQPT does not occur. All the
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FIG. 3. (a) Contour plot of PGP φG
k (t ) as a function of (k, t )

for the quench from the PM phase to the FM phase (h0 = 2.0 to
h1 = 0.5). The phase vortices are marked by blue circles at the
critical momentum and critical times (kc, tc(n)). The red crosses
denote the critical momenta and critical times obtained according to
the Fisher zeros (9) and Eq. (10). (b) The winding number νD(t ) and
rate function λ(t ) as functions of time t . Note that the critical time
tc1(0) is not distinguished clearly, so we use the first-order derivative
dλ/dt of the rate function to highlight the singularity (see the inset).

examples reveal that the PGP and the winding number are
not topological in the periodic-2 QIC, which is different from
that in homogeneous systems [11,28,48,49,51,52]. In both
periodic and homogeneous systems, the discontinuous points
of the winding number νD(t ) and the dynamical vortices
in the PGP are closely related to the critical times of the
DQPTs, and they occur when the Loschmidt amplitude equals
zero.

In previous works in which the homogeneous systems
were intensively studied [11,28,48,49,51,52], the winding
number νD(t ) itself was integer quantized, and so were the

(a)

(b)

FIG. 4. Factor components φG
k=0(t ) for different parameters α in

the case of quench from the PM phase to the FM phase (h0 = 2.0 to
h1 = 0.5). (a) The speed of oscillation tends to decrease with α from
0.5 to 1. (b) In particular, the oscillation period goes to the infinity as
α approaches unity, and φG

k=0(t ) is zero for the homogeneous system
(α = 1).

discontinuous jumps of νD(t ) at the critical time of the DQPT.
The quantized jumps of νD(t ) at DQPTs are also observed in
period-2 QIC, but νD(t ) is no longer quantized. The discrep-
ancy between these two types of quantization can be traced
back to different physical origins. The quantization of the
jump is protected by the dynamical vortex of the PGP in
(k, t ) space. The PGP diverges at the dynamical vortex where
the Loschmidt amplitude G(t ) = r(t )e[i(φG(t )+φdyn (t )] vanishes
and its phase is ill defined. However, according to Eq. (15),
both the boundary term and the jump term contribute to the
winding number. Although the jump term always provides
quantized contributions as just explained, the boundary term
[φG

k=π (t ) − φG
k=0(t )] is not necessarily quantized in general.

For example, in the period-2 QIC, the PGP exhibits different
behaviors as time is changed at the boundary of the half
Brillouin zone (k = 0 and k = π ) in the presence of periodic
modulation.

To illustrate the effect of periodic modulation, we show
the factor component φG

k=0(t ) for different parameters α in
Fig. 4, where α = 1 corresponds to the homogeneous system.
It is clear that φG

k=0(t ) oscillates with time in the periodic
QIC, and the speed of oscillation tends to decrease with α

from 0.5 to 1 [see Figs. 4(a) and 4(b)]. In particular, φG
k=0(t )

is zero in the homogeneous system (α = 1). Therefore, we
conclude that the PGP changing with time at the boundaries
of the half Brillouin zone results from the periodic mod-
ulation. Actually, the change in the PGP with time at the
boundary of the half Brillouin zone is also observed in the
periodic Kitaev chain [47]. Therefore, it is inferred that the
winding number in the periodic Kitaev chain is not quantized
either.
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III. DISORDERED QUANTUM SPIN CHAINS

In this section, we extend the PGP to disordered systems.
The Hamiltonian of the QIC with disordered hopping interac-
tions is

H = −1

2

N∑
n=1

Jnσ
x
n σ x

n+1 − h

2

N∑
n=1

σ z
n , (16)

where Jn = J + �Jn are the hopping interactions between the
nearest-neighbor spins. �Jn are independent random numbers
distributed uniformly in the interval [−w/2,w/2] with the
strength of disorder w. For convenience, we take J = 1 with-
out loss of generality.

By using the Jordan-Wigner and Bogoliubov transforma-
tions [71,72], the Hamiltonian in Eq. (16) can be reduced to
the diagonal form (see Appendix B 1)

H =
∑

n


n

(
η†

nηn − 1

2

)
(17)

in real space, where η†
n and ηn are fermionic creation and

annihilation operators and 
n is the excitation energy for n
quasiparticle mode.

The ground state is |GS〉 = ⊗
n |0n〉 in real space, where

|0n〉(n = 1, . . . , N ) denotes the vacuum state in the quasipar-
ticle mode 
n, i.e., ηn|0n〉 = 0. The ground-state energy is
given by

E0 = −
N∑

n=1

1

2

n. (18)

We study the quantum quench from H0 = H (h0) to H̃ =
H (h1), where the initial state |ψ0〉 = |GS〉 is taken as the
ground state of the prequench Hamiltonian. Therefore, the
time-evolved state at arbitrary time after quench is given by

|ψ (t )〉 = e−iH̃t |ψ0〉. (19)

Considering the relation between the ground states of the pre-
and postquench [33,73], we have

|ψ0〉 = 1

N exp

(
1

2

∑
mn

η̃†
mGmnη

†
n

)
|ψ̃0〉, (20)

where |ψ̃0〉 = |G̃S〉 is the ground state of the postquench
Hamiltonian. Therefore, we obtain the Loschmidt amplitude
and decompose G(t ) = 〈ψ0|ψ (t )〉 = e−iẼ0N t

∏N−1
m=1 Gm(t ) for

every quasiparticle mode 
m, with

Gm(t ) = e−iẼ0mt
∏
n>m

1

N 2
mn

[1 + e−i(
̃m+
̃n )t |Gmn|2] (21)

in real space, where N 2
mn = 1 + |Gmn|2 is the normalization

coefficient (see Appendix B 2). The associated Fisher zeros
of the Loschmidt amplitude can be calculated by G(z) = 0,
that is,

z j = 1


̃m + 
̃n
[ln |Gmn|2 + i(2 j + 1)π ], j ∈ N. (22)

According to Eq. (22), we obtain the condition for the occur-
rence of the DQPT and the critical times as

|Gmn| = 1, tc( j) = (2 j + 1)π


̃m + 
̃n
. (23)

Similar to Eq. (11), in polar coordinates, the factor of the
Loschmidt amplitude is given by

Gm(t ) = Re[Gm(t )] + iIm[Gm(t )]

= rm(t )eiφm (t ) = rm(t )ei[φdyn
m (t )+φG

m (t )], (24)

with the modulus rm(t ) =
√

Re[Gm(t )]2 + Im[Gm(t )]2 and
the argument φm(t ) = arg [Gm(t )]. The associated dynamical
phase φ

dyn
m (t ) is

φdyn
m (t ) = −

∫ t

0
ds〈ψ (s)|H̃m|ψ (s)〉 =

(
1

2
− pm

)

̃mt, (25)

with

pm =
∑

n>m |Gmn|2∏
n>m(1 + |Gmn|2)

. (26)

Therefore, the PGP in the disordered QIC can be calculated
by

φG
m (t ) = φm(t ) − φdyn

m (t ). (27)

In the following, we will show two typical examples to
illustrate the PGP φG

m (t ) in the disordered QIC with weak
disorder, so that there is only one extra group of DQPTs
induced by the weak disorder in the system [33].

A. Numerical results

To illustrate the effect of the weak disorder on the DQPT,
we show the rate functions for the weakly disordered QIC
(w = 0.001) and the homogeneous QIC (w = 0) in Fig. 5.
The quench path in Fig. 5(a) is from h0 = 0.5 to h1 = 1.5.
It can be seen that the homogeneous QIC has critical times
tc1(n) = (2n + 1)tc1(0), tc1(0) ≈ 1.99 [see the blue line in
Fig. 5(a)]. However, the system has one more group of crit-
ical times in the presence of weak disorder, where the new
critical times induced by the disorder are given by tc2(n) =
(2n + 1)tc2(0), tc2(0) ≈ 3.14. Similar behaviors are also ob-
served in Fig. 5(b), where the quench path is from h0 = 1.5
to h1 = 0.5. The homogeneous QIC has only one group of
critical times, tc1(n) = (2n + 1)tc1(0), tc1(0) ≈ 2.57, and the
new extra critical times emerge in the disordered QICs, which
are given by tc2(n) = (2n + 1)tc2(0), tc2(0) ≈ 3.13. Note that
we display the results of three disordered samples for each
quench case. It is found that the different samples influence
only the values of the rate functions and do not change the
critical times of the DQPT. The critical times are generally
determined by the disorder strength w, which has been tested
for several values. Therefore, in our work, we do not need
to average over large numbers of disordered configurations,
which greatly reduces our workload.

Unlike the case in the periodic QIC, the PGP cannot be
decomposed into every momentum k due to the lack of lattice
translation invariance. However, we can decompose the PGP
into the quasiparticle mode 
m in real space according to
Eqs. (24), (25), and (27). In Fig. 6, we show the contour plot of
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(a)

(b)

FIG. 5. Rate functions in the disordered QIC with strength of
disorder w = 0.001. The quench path in (a) is from h0 = 0.5 to
h1 = 1.5, and that in (b) is from h0 = 1.5 to h1 = 0.5. For each
case, we give results for three disorder samples. It can be seen that
different weakly disordered samples influence only the values of rate
functions and do not change the critical times. For comparison, we
also display the rate function of the homogeneous QIC (w = 0). It is
clear that new critical times tc2(n), n = 0, 1, . . . of DQPTs emerge
in the presence of weak disorder. The system size is N = 1000.

the PGP φG
m (t ) for the quench from h0 = 0.5 to h1 = 1.5 in the

(m, t ) plane, in analogy with the (k, t ) plane in the period-2
QIC. We mark the two dynamical vortices by blue circles,
which are consistent with the critical times tc1(0) and tc2(0)
calculated according to Eq. (23) [see Fig. 6(b)]. Typically,
the dynamical vortices are related to the nonanalytic contri-
bution to the PGP from one specific component, φG

m (t ). To
find those singular components, we analyze the quasiparticle
modes near the dynamical vortices and find that the nonana-
lytic point of φG

m=1(t ) corresponds to the critical time tc2(0)
and that of φG

m=161(t ) corresponds to the critical time tc1(0)
[see Fig. 6(a)].

Similarly, we study the PGP φG
m (t ) for the quench from

h0 = 1.5 to h1 = 0.5 (see Fig. 7). Two dynamical vortices
exist at the critical times tc1(0) and tc2(0) [see Fig. 7(b)].
According to Fig. 7(a), the critical times tc1(0) and tc2(0) are
induced by the nonanalytic points of φG

m=161(t ) and φG
m=3(t ),

respectively.
To summarize this section, we reformulate the PGP in real

space, which allows us to study the PGP in the disordered
QIC where the momentum is not a good quantum number.
We observe the DQPT independently not only from the rate
function but also from the dynamical vortices of PGP in the
(m, t ) plane. The consistency of the two methods confirms the
validity of our approach. It is found that the disorder induces
new DQPTs in addition to those from the homogeneous QIC,
and the new DQPTs are also accompanied by the nonanalytic
singularities of the PGP. Recall that in the periodic QIC, the
nonanalytic singularities of the PGP occur when the modulus

FIG. 6. (a) The factor components of the PGP φG
m (t ) for m = 1

(red lines) and m = 161 (blue lines) in the disordered QIC with w =
0.001. The quench path is from h0 = 0.5 to h1 = 1.5. It can be seen
that φG

m=1(t ) and φG
m=161(t ) show nonanalytic singularity at the critical

times tc2(0) ≈ 3.14 and tc1(0) ≈ 1.99, respectively. (b) The contour
plot of the PGP φG

m (t ) in the (m, t ) plane. There are two dynamical
vortices, circled in blue, corresponding to critical times tc1(0) ≈ 1.99
and tc2(0) ≈ 3.14. The red crosses denote the critical momenta and
critical times obtained according to Eq. (23).

of the Loschmidt amplitude equals zero. Likewise, this is also
the case in the disordered QIC.

IV. CONCLUSION

In this paper, we investigated the PGP in periodic and
disordered QICs after a sudden quench. In the period-2 QIC,
we found that the winding numbers νD(t ) are not quantized
and thus not topological. By comparing the results of the pe-
riodic QIC with that in the homogeneous system, we clarified
that the non-integer-quantized winding numbers result from
the periodic modulation, which can dramatically change the
behavior of the PGP at the boundary of the half Brillouin
zone. Nevertheless, the PGP still manifests nonanalytic sin-
gularities at the critical times of the DQPT. This clarifies that
the standard definition of the winding number can no longer
serve as a topological quantum number in the period-2 QIC.
Furthermore, we gave a general expression to calculate the
PGP in real space, which allowed us to investigate the PGP in
the disordered QIC. Although the disorder breaks the transla-
tional invariance, we can calculate the PGP by collecting the
contribution from every quasiparticle mode 
m in real space.
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FIG. 7. (a) The factor components of the PGP φG
m (t ) for m = 3

(red lines) and m = 161 (blue lines) in the disordered QIC with w =
0.001. The quench path is from h0 = 1.5 to h1 = 0.5. It can be seen
that φG

m=3(t ) and φG
m=161(t ) show nonanalytic singularity at the critical

times tc2(0) ≈ 3.13 and tc1(0) ≈ 2.57, respectively. (b) The contour
plot of the PGP φG

m (t ) in the (m, t ) plane. There are two dynamical
vortices, circled in blue, corresponding to the critical times tc1(0) ≈
2.57 and tc2(0) ≈ 3.13. The red crosses denote the critical momenta
and critical times obtained according to Eq. (23).

We found that all the critical times, including the one induced
by weak disorder, of the DQPTs in the disordered QIC have
a one-to-one correspondence with the nonanalytic points of
the PGP. From our results, the DQPT and the nonanalytic
behavior of the PGP are closely related in all three cases, the
homogeneous, periodic, and disordered systems, regardless of
whether the winding number is quantized (topological).

Finally, we emphasize that the one-to-one correspondence
between the nonanalytic singularity of the PGP and the DQPT
is because they both occur when the modulus r(t ) of the

Loschmidt amplitude G(t ) = r(t )e[i(φG(t )+φdyn (t )] vanishes. Our
work reveals the essential connection between the DQPT and
the nonanalytic behavior of the geometric phase, which is
of great help for understanding the general properties of the
quantum system in the short-term dynamical process. Mean-
while, we also recognize the limitations of using the winding
number as dynamical topological order parameters to describe
DQPTs, which calls for a new dynamical order parameter to
characterize the notion of phase and phase transitions out of
equilibrium.
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APPENDIX A: PERIOD-2 QIC

1. Diagonalization of the period-2 QIC

For the period-2 QIC (3), by applying the Jordan-Wigner
transformation σ+

n = c†
neiπ

∑
m<n c†

mcm , σ−
n = e−iπ

∑
m<n c†

mcm cn,
and σ z

n = 2c†
ncn − 1 with spin raising and lowering op-

erators σ±
n = (σ x

n ± iσ y
n )/2, we obtain a spinless Fermion

model [74–77],

H = −1

2

N∑
n=1

{[Jn(c†
ncn+1 + c†

nc†
n+1) + hc†

ncn] + H.c.}. (A1)

Note that {Jn} is a period-2 sequence, so the Hamiltonian (A1)
can be mapped in the complex lattices (N ′ = N/2),

H = −1

2

N ′∑
n=1

{[J (a†
nbn + a†

nb†
n) + ha†

nan]

+ [αJ (b†
nan+1 + b†

na†
n+1) + hb†

nbn] + H.c.}, (A2)

where a2l−1 �→ c2l−1 and b2l �→ c2l (l ∈ Z). The Hamilto-
nian (A2) contains the superconductor terms a†

nb†
n and b†

na†
n+1,

which ensure that the parity of the number of fermions
is conserved. After a Fourier transformation with an =

1√
N ′

∑
k eiknak and bn = 1√

N ′
∑

k eiknbk , the superconductor

terms give the terms a†
kb†

−k and b†
ka†

−k in momentum space.
The Hamiltonian thus takes the form H = ∑

k>0 
†
k Hkk in

the half Brillouin zone k ∈ (0, π ], with the spinor operator


†
k = (a†

k, a−k, b†
k, b−k ) and

Hk = J

2

⎛
⎜⎜⎜⎜⎝

−2h/J 0 −(1 + αe−ik ) −(1 − αe−ik )

0 2h/J (1 − αe−ik ) (1 + αe−ik )

−(1 + αeik ) (1 − αeik ) −2h/J 0

−(1 − αeik ) (1 + αeik ) 0 2h/J

⎞
⎟⎟⎟⎟⎠. (A3)
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The factor Hk is obviously a Hermitian matrix, which can be
diagonalized to the form Hk = Z
Z† with diagonal matrix

k = diag(
k1,−
k1,
k2,−
k2). By defining the canoni-
cal transformation

�
†
k = (η†

k1,−ηk1, η
†
k2,−ηk2) = (a†

k, a−k, b†
k, b−k )Z, (A4)

we obtain the Hamiltonian in diagonal form,

H =
∑
k>0

�
†
k
k�k . (A5)

Furthermore, the canonical transformation (A4) can be ex-
pressed as(

�k

�
†T
k

)
=

(
U (k) V (k)

V ∗(k) U ∗(k)

)(
�k

�
†T
k

)
= M

(
�k

�
†T
k

)
, (A6)

where �k = (ηk1, η−k1, ηk2, η−k2)T and �k = (ak, a−k,

bk, b−k )T .

2. Loschmidt amplitude in the period-2 QIC

We study the quantum quench from H0 = H (h0) to H̃ =
H (h1). According to Eq. (A6), the canonical transformation
between the quasiparticle operators of pre- and postquench
Hamiltonians is given by(

�k

�
†T
k

)
= MM̃−1

⎛
⎝ �̃k

�̃
†T
k

⎞
⎠

=
(

UŨ † + VṼ † UṼ T + VŨ T

U ∗Ṽ † + V ∗Ũ † U ∗Ũ T + V ∗Ṽ T

)⎛
⎝ �̃k

�̃
†T
k

⎞
⎠.

(A7)

By considering the quasiparticle ground states satisfying
ηkμ|ψ0k〉 = 0 and η̃kμ|ψ̃0k〉 = 0, we can express the ground
state |ψ0k〉 of the prequench Hamiltonian as a superposition
of the ground state |ψ̃0k〉 for the postquench Hamiltonian,

|ψ0k〉 = 1

N exp

[
1

2
�̃

†
k G�̃

†T
k

]
|ψ̃0k〉

= 1

N

2∏
μ,ν=1

(1 + Gkμ,−kνη
†
kμ

η
†
−kν

)|ψ̃0k〉, (A8)

where G = −(UŨ † + VṼ †)−1(UṼ T + VŨ T ). According to
Pauli’s exclusion principle of fermions and momentum

conservation, the matrix G has nonzero elements Gkμ,−kν , that
is,

G =

⎛
⎜⎜⎜⎝

0 Gk1,−k1 0 Gk1,−k2

−Gk1,−k1 0 Gk2,−k1 0

0 −Gk2,−k1 0 Gk2,−k2

−Gk1,−k2 0 −Gk2,−k2 0

⎞
⎟⎟⎟⎠. (A9)

Therefore, we can obtain the Loschmidt amplitude G(t ) =∏
k>0 Gk (t ), with

Gk (t ) = e−iẼ0kt

N 2

2∏
μ,ν=1

[
1 + |Gkμ,−kν |2ei(
̃kμ+
̃−kν )t

]
, (A10)

where N = ∏2
μ,ν=1 Nkμ,−kν = ∏2

μ,ν=1

√
1 + |Gkμ,−kν |2 is

the normalization coefficient.

3. PGP in period-2 QIC

In polar coordinates, we have

Gk (t ) = Re[Gk (t )] + iIm[Gk (t )]

= rk (t )eiφk (t ) = rk (t )ei[φdyn
k (t )+φG

k (t )], (A11)

where Re[Gk (t )] and Im[Gk (t )] are the real and imaginary
parts of Gk (t ). Therefore, the modulus rk (t ) of Gk (t ) is given
by

rk (t ) =
√

Re[Gk (t )]2 + Im[Gk (t )]2. (A12)

The argument φk (t ) of Gk (t ) is

φk (t ) = arg[Gk (t )] ∈ (−π, π ], (A13)

where we follow the standard form

arg[Gk (t )] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan y
x , x > 0,

π
2 , x = 0, y > 0,

−π
2 , x = 0, y < 0,

π + arctan y
x , x < 0, y > 0,

arctan y
x − π, x < 0, y < 0,

0, x > 0, y = 0,

π, x < 0, y = 0,

not defined, x = 0.

(A14)

with x = Re[Gk (t )] and y = Im[Gk (t )].

The dynamical phase φ
dyn
k (t ) is defined as [11]

φ
dyn
k = −

∫ t

0
ds〈ψk (s)|H̃k|ψk (s)〉 = −

∫ t

0
ds〈ψ0k|eiH̃ksH̃ke−iH̃k s|ψ0k〉 = −

∫ t

0
ds〈ψ0k|H̃k|ψ0k〉

= −t〈ψ0k|
[

̃k1

(
η̃

†
k1η̃k1 − 1

2

)
+ 
̃−k1

(
η̃

†
−k1η̃−k1 − 1

2

)
+ 
̃k2

(
η̃

†
k2η̃k2 − 1

2

)
+ 
̃−k2

(
η̃

†
−k2η̃−k2 − 1

2

)]
|ψ0k〉

= −t[
̃k1〈ψ0k|η̃†
k1η̃k1 + η̃

†
−k1η̃−k1|ψ0k〉 + 
̃k2〈ψ0k|η̃†

k2η̃k2 + η̃
†
−k2η̃−k2|ψ0k〉] − Ẽ0kt, (A15)
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where Ẽ0k = −(
̃k1 + 
̃k2). From Eq. (A8), we have

pk1,k1 = 〈ψ0k|η̃†
k1η̃k1|ψ0k〉

= 〈ψ̃0k| 1

N 2
k1,−k1

1

N 2
k1,−k2

(1 + G∗
k1,−k2η̃−k2η̃k1)(1 + G∗

k1,−k1η̃−k1η̃k1)η̃†
k1η̃k1(1 + Gk1,−k1η̃

†
k1η̃

†
−k1)(1 + Gk1,−k2η̃

†
k1η̃

†
−k2)|ψ̃0k〉

= |Gk1,−k1|2 + |Gk1,−k2|2
(1 + |Gk1,−k1|2)(1 + |Gk1,−k2|2)

. (A16)

Similarly, we obtain

pk1,k1 = |Gk1,−k1|2 + |Gk1,−k2|2
(1 + |Gk1,−k1|2)(1 + |Gk1,−k2|2)

, (A17)

p−k1,−k1 = |Gk1,−k1|2 + |G−k1,k2|2
(1 + |Gk1,−k1|2)(1 + |G−k1,k2|2)

, (A18)

pk2,k2 = |G−k1,k2|2 + |Gk2,−k2|2
(1 + |G−k1,k2|2)(1 + |Gk2,−k2|2)

, (A19)

p−k2,−k2 = |Gk1,−k2|2 + |Gk2,−k2|2
(1 + |Gk1,−k2|2)(1 + |Gk2,−k2|2)

. (A20)

By substituting Eqs. (A17), (A18), (A19), and (A20) into
Eq. (A15), we have a final formula for the dynamical phase
φ

dyn
k (t ):

φ
dyn
k (t ) =

{[
1 − 2(|Gk1,−k1|2 + |Gk1,−k2|2)

(1 + |Gk1,−k1|2)(1 + |Gk1,−k2|2)

]

̃k1

+
[

1 − 2(|G−k1,k2|2 + |Gk2,−k2|2)

(1 + |G−k1,k2|2)(1 + |Gk2,−k2|2)

]

̃k2

}
t .

(A21)

Therefore, according to Eqs. (A13) and (A21), the PGP can
be calculated as

φG
k (t ) = φk (t ) − φ

dyn
k (t ). (A22)

As mentioned in Sec. II A, the PGP exhibits different
behaviors at the boundaries of the half Brillouin zone [see
Fig. 2(a)]. Here, we show more examples of the PGPs at the
boundaries of the half Brillouin zone in Fig. 8. In all the
quench protocols that we have tested from the FM phase to
the PM phase, we found that while φG

k=0(t ) ≈ 0 is vanishingly
small, φG

k=π (t ) changes more rapidly with time. As a result,
the time-dependent boundary contribution φG

k=π (t ) − φG
k=0(t )

breaks the integral quantization of the winding number.
For comparison, we show φG

k (t ) and νD(t ) for the quench
in the FM phase in Fig. 9. The quench path is from h0 = 0.2
to h1 = 0.5. It can be seen that φG

k (t ) changes value in the
interval [0,0.9] and does not have the nonanalytic oscillation
with time (see Fig. 9). Meanwhile, from Fig. 9(b), the winding
number νD(t ) and rate function λ(t ) are smooth continuous
functions with time. This clarifies that if the quench does
not cross the quantum phase transition (QPT), the dynamical
topological phase transition and DQPT will not occur in the
period-2 QIC.

APPENDIX B: DISORDERED QIC

1. Diagonalization of the disordered QIC

Spin-1/2 quantum spin chains with nearest-neighbor inter-
actions can generally be mapped to the spinless fermion in
quadratic form via the Jordan-Wigner transformation

H =
∑
mn

[
c†

mAmncn + 1

2
(c†

mBmnc†
n + H.c.)

]
, (B1)

where cn and c†
n are the annihilation and creation operators

of the fermion [78]. For system size N , matrices A and B are
both N × N . The Hermiticity of H demands that A is a Her-
mitian matrix, and anticommutation of the fermion operators

FIG. 8. Factor components of the PGP at the boundaries of the
half Brillouin zone (k = 0 and k = π ) are plotted as a function of t
for several choices of quench paths from the FM phase to the PM
phase. At the boundary of the half Brillouin zone, φG

k=0(t ) ≈ 0 is
almost constant. In comparison, φG

k=π (t ) changes more significantly
with time.
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FIG. 9. (a) Color plot of φG
k (t ) for the quench in the FM phase,

without crossing the QPT. (b) Corresponding winding number νD(t )
and rate function λ(t ).

demands that B is an antisymmetric matrix. Matrices A and B
are given by

Amn = −hδmn − Jnδm,n+1/2 − Jmδm+1,n/2, (B2)

Bmn = −Jmδm+1,n/2 + Jnδm,n+1/2. (B3)

To write the Hamiltonian (B1) in the diagonal form H =∑
n 
n(η†

nηn − 1
2 ), we can use the Bogoliubov transformation

in real space,

ηm =
∑

n

(Umncn + Vmnc†
n ), (B4)

η†
m =

∑
mn

(U ∗
mnc†

n + V ∗
mncn); (B5)

in matrix form it is(
η

η†

)
= M

(
c

c†

)
=

(
U V

V ∗ U ∗

)(
c

c†

)
, (B6)

with η = (η1, . . . , ηN )T and c = (c1, . . . , cN )T . The eigenen-
ergies of H can be obtained by solving the following
eigenvalue equations:

�(A − B)(A + B) = 
2�, (B7)

(A + B)(A − B) = 
2, (B8)

where 
 = diag(
1, . . . , 
N ). The matrices U and V are
given by

U = 1
2 (� + ), (B9)

V = 1
2 (� − ). (B10)

2. Loschmidt amplitude in disordered QIC

We study the quantum quench from H0 = H (h0) to H̃ =
H (h1). According to Eq. (B6), we have(

η

η†

)
= MM̃−1

(
η̃

η̃†

)

=
(

UŨ † + VṼ † UṼ T + VŨ T

U ∗Ṽ † + V ∗Ũ † U ∗Ũ T + V ∗Ṽ T

)(
η̃

η̃†

)
. (B11)

By considering ηn|ψ0〉 = 0 and η̃n|ψ̃0〉 = 0, we obtain the
relation between the ground states of the pre- and postquench,

|ψ0〉 = 1

N exp

(
1

2

∑
mn

η̃†
mGmnη

†
n

)
|ψ̃0〉

= 1

N
∏

m,n>m

(1 + Gmnη̃
†
mη̃†

n )|ψ̃0〉, (B12)

where N = ∏
m,n>m Nmn = ∏

m,n>m

√
1 + |Gmn|2 is the nor-

malization coefficient and G = −(UŨ † + VṼ †)−1(UṼ T +
VŨ T ) is an antisymmetrical matrix determined by only the
Hamiltonian parameters. Notice that the method we use to
calculate the Loschmidt amplitude in the disordered QIC is
similar to that in the period-2 QIC [see Eqs. (A6), (A7),
and (A8)].

According to Eq. (B12), the Loschmidt amplitude is given
by

G(t ) = 〈ψ0|ψ (t )〉 = e−iẼ0N t
N−1∏
m=1

Gm(t )

= e−iẼ0t

N 2

∏
m,n>m

[1 + e−i(
̃m+
̃n )t |Gmn|2], (B13)

where

Gm(t ) = e−iẼ0mt
∏
n>m

1

N 2
mn

[1 + e−i(
̃m+
̃n )t |Gmn|2] (B14)

is the component of the Loschmidt amplitude in the quasipar-
ticle mode 
̃m.

3. PGP in the disordered QIC chain

In polar coordinates, we have

Gm(t ) = Re[Gm(t )] + iIm[Gm(t )]

= rm(t )eiφm (t ) = rm(t )ei[φdyn
m (t )+φG

m (t )], (B15)

where Re[Gm(t )] and Im[Gm(t )] are the real and imaginary
parts of Gm(t ). Like in the case in the period-2 QIC, the
modulus rm(t ) and argument φm(t ) can also be obtained as

rm(t ) =
√

Re[Gm(t )]2 + Im[Gm(t )]2 (B16)
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and

φm(t ) = arg [Gm(t )], (B17)

respectively.
From the definition, we have

φdyn
m (t ) = −

∫ t

0
ds〈ψ (s)|H̃m|ψ (s)〉

= −t〈ψ0|H̃m|ψ0〉

= −t〈ψ̃0| 1

N
∏

m′,n′>m′
(1 + G∗

m′n′ η̃n′ η̃m′ )
̃m

(
η̃†

mη̃m − 1

2

)

× 1

N
∏

m′,n′>m′
(1 + Gm′n′ η̃

†
m′ η̃

†
n′ )|ψ̃0〉

= 1

2

̃mt − 
̃mt〈ψ̃0| 1

N 2

×
∏

m′,n′>m′
(1 + G∗

m′n′ η̃n′ η̃m′ )η̃†
mη̃m

×
∏

m′,n′>m′
(1 + Gm′n′ η̃

†
m′ η̃

†
n′ )|ψ̃0〉

= 1

2

̃mt − 
̃mt〈ψ̃0|

×
∏
n>m

1

N 2
m,n

(1 + G∗
mnη̃mη̃n)η̃†

mη̃m

×
∏
n>m

(1 + Gmnη̃
†
mη̃†

n )|ψ̃0〉

= 1

2

̃mt − 
̃m pmt

=
(

1

2
− pm

)

̃mt, (B18)

where

p1 =
∑

n>1 |G1n|2∏
n>1(1 + |G1n|2)

,

p2 =
∑

n>2 |G2n|2∏
n>2(1 + |G2n|2)

,

...

pN−1 = |GN−1,N |2
(1 + |GN−1,N |2)

.

Therefore, the PGPs of the disordered QIC can be calculated
as

φG
m (t ) = φm(t ) − φdyn

m (t )

= arg[Gm(t )] −
(

1

2
−

∑
n>m |Gmn|2∏

n>m(1 + |Gmn|2)

)

̃mt .

(B19)
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