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Hybrid potential model with high feasibility and flexibility for metallic and covalent solids
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Pair-functional potentials are generally used for metallic solids, whereas cluster potentials are more ap-
propriate for covalent solids; however, both face critical difficulties that cannot be solved based purely on
the optimization of potential functions, e.g., the lattice stability for hcp metals with high c/a ratios and the
conflict between stacking-fault energy and cleavage energy for covalent solids, which can be attributed to their
respective physical foundations and approximations according to their bonding characteristics. By incorporating
the long-range many-body effect in pair-functional potentials and the short-range angular-dependent terms in
cluster potentials, a unified hybrid potential model is physically justified and proposed in the present study
for both metallic and covalent bonding solids to resolve the aforementioned critical issues and other specific
cases. The proposed model was not only successfully demonstrated for a series of elemental solids, including
20 fcc, bcc, and hcp metals and three covalent elements, but also was extended to construct cross potentials
for three representative compound systems, i.e., CuNi, TiC, and BN, which suggests that the present hybrid
potential model possess higher compatibility and feasibility for various metallic and covalent systems than
the respective pair-functional potentials and cluster ones. Overall, the hybrid potential model not only com-
plements the current potential library but also builds a foundation for further potential development with high
flexibility.

DOI: 10.1103/PhysRevB.108.024108

I. INTRODUCTION

Materials genome engineering and integrated computa-
tional materials engineering have strategically established
the fourth paradigm of materials research by incorporat-
ing the goal-oriented and mechanism-directed design [1],
which necessitates high-throughput computations and sim-
ulations with high feasibility and confidence at different
scales. Although the proposal of density-functional theory
(DFT) with reliable pseudopotential has facilitated high-
throughput first-principles calculations to derive various
high-precision properties under ambient conditions, the defi-
ciency of high-feasibility empirical interatomic potential still
imposes limitations in the variety of material systems and
the extension of transferability, specimen size, and simulation
time for high-efficiency large-scale atomistic simulations un-
der critical environments, e.g., defect interactions in crystals
[2,3], plastic deformation mechanism [4–6], solid-state diffu-
sion processes [7], phase competition [8], and crystal structure
prediction [9], which fundamentally limits the applications in
broad scenarios by considering the reliability and quality of
the simulations.

*Corresponding author: zrf@buaa.edu.cn

The development of empirical potentials can be traced back
to the pair potential [10], like the Lennard-Jones [11], Morse
[12], and Born-Mayer models [13]; however, these models ne-
glect the long-range many-body effects or short-range angular
dependence, which inherently lead to certain drawbacks in
deriving the properties of metallic and covalent solids, for ex-
ample, the conflict between the cohesive energy and vacancy
formation energy [14], unrealistic zero Cauchy pressures for
cubic structures [14], unphysically low stacking-fault energies
(SFEs) for fcc and hcp metals, and instability for diamond
structures [15]. To remedy such deficiencies, two groups of
improved potential models have been proposed, including
the group of pair-functional potentials to introduce the long-
range many-body interactions, e.g., embedded-atom method
(EAM) [16], tight-binding (TB) [17,18], and Finnis-Sinclair
(FS) [19] potentials, and the group of cluster potentials,
which contains the short-range angular-dependent terms, e.g.,
Stillinger-Weber (SW) [15], Tersoff [20–22], and Brenner po-
tentials [23].

The fundamental concept behind the former group is
that the delocalized electrons in metallic solids are strongly
affected by neighboring atoms as the local configuration be-
comes more crowded [12]; thus, interactions between the
central atom and the environment (many-body contribution)
need to be introduced. By treating the central atom as an
impurity embedded in a host created by its neighboring atoms,
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Daw and Baskes [16] introduced the embedding energy in the
EAM model, which effectively addressed the issues related to
the relaxed surface energies [16], surface composition profiles
[24], and point-defect properties [25]. Similarly, yet from a
different physical approximation, the TB model was proposed
based on second-moment approximation [17,18,26–28], while
the Finnis-Sinclair model [19] originated from the correla-
tion between the bonding energy and the hopping integrals.
Both potential models have found extensive applications in
atomic-scale mechanistic simulations of metallic solids, such
as plastic flow [29], dislocation nucleation [5,6,30], superior
shock [31], and radiation resistance [2] with great success.
The key to their effectiveness lies in incorporating long-range
many-body effects, allowing for the accurate representation
of the delocalized nature of electrons in metallic systems.
However, it is worth noting that these potentials encounter
challenges when dealing with certain transition metals with
strongly overlapped d orbitals [32–34], which necessitates
the inclusion of the angular-dependent terms of neighboring
atoms [35–38].

In contrast to the first group, the short-range cluster poten-
tials primarily focus on the directional covalent bonding and
the localized nature of valence electrons by emphasizing their
angular-dependent characteristics. A notable example is the
classical Stillinger-Weber model [15] that characterizes the
interatomic interaction in Si semiconductors by considering
the angular dependence, and further simulation proves its suc-
cess in qualitatively describing local liquid order. The Tersoff
potential [20,21], which introduces the bond-order functional
form that depends on the angular contribution, has yielded
results in agreement with the experiments in the diffusion
and interstitial migration of C in Si [22], and it has been
extended to hcp structure metals, like Ti [39,40], Zn [37], and
Zr [41]. A further refined version of the Tersoff potential is
the Brenner potential, which replaces the original repulsion
and attraction terms with a more physical Morse-like function
and has proven better agreement of intramolecular bonding of
graphite and diamond [23]. Overall, the reliability of short-
range cluster potentials stems from the accurate reflection of
the directional covalent bonding with localized valence elec-
trons; however, they encounter significant challenges when
modeling nonequilibrium and defective local structure [42]
due to the limitation within first-neighboring atoms. As com-
mented by Los and Fasolino [43], because C is smaller than
Si, a stronger coupling between the free orbitals of undercoor-
dinated neighboring atoms exists, and long-range correction
is required [43]. On the other hand, other studies have shown
that short-range cutoff results in the following problems: (1)
no energy difference is observed between cubic and hexagonal
diamonds, and the intrinsic stacking fault energy (ISFE) is
consistently zero [44], (2) unphysical local minima appear in
the generalized stacking-fault energy (GSFE) curve [42,45],
and (3) inconsistency arises between unstable stacking-fault
energy (USFE) and cleavage energy [45]. In addition, al-
though the pair potential can be much improved for transition
metals after introducing the angle correction, the use of a short
cutoff radius disregards the intrinsic long-range interactions,
which leads to the incorrect phase stability for hcp metals with
high c/a ratios, like Zn [38,46–48].

By considering the distinct advantages of both groups
of potentials, i.e., the long-range many-body effects for the
former and short-range angle dependence for the latter, one
may wonder the possibility of combining them to overcome
the deficiency of both types of potential and enhance their
capabilities based on their respective bonding characteris-
tics. Here, by incorporating the long-range many-body effect
into pair-functional potentials and the short-range angular-
dependent terms into cluster potentials, a unified hybrid
potential model is accordingly proposed for both metallic and
covalent bonding solids, which has been demonstrated by a
series of elemental solids, including 12 metals (including fcc,
bcc, and hcp metals) and three covalent solids with reliable
mechanical property reproduction, which suggests that the
hybrid potential model possesses high compatibility for var-
ious metallic and covalent systems. Several critical issues in
specific cases have also been resolved after integrating the
two physical concepts, including the incorrect phase stability
for metals with high c/a ratios and the conflict between the
correct sequence order of SFEs and cleavage energy for co-
valent solids. In addition, the unified expression in the hybrid
potential model facilitates the construction of the cross poten-
tial, which has been easily extended to compounds such as
CuNi, TiC, and BN, indicating its flexibility for simulations
of multielemental compound/solution systems. Furthermore,
as the long-range computation in the hybrid model is limited
to the pair-functional term, the total computation remains
comparable to that of the two original models without the
computational cost catastrophe when increasing the cutoff in
the angle-dependent term. The hybrid potential model can be
transformed into different formats for the simulation codes
like LAMMPS [49] and SPaMD [50]. This paper is organized
as follows: In Sec. II, the theoretical background of the hybrid
potential model is described with the optimization scheme. In
Sec. III, the critical validation and applications of the hybrid
potential model are presented with several examples. Then,
the results are discussed in Sec. IV. Finally, the conclusions
are presented in Sec. V.

II. METHOD

A. Hybrid potential model

As each potential group originates from different physical
pictures and is successful in its respective systems, one could
leverage their respective advantages by selecting the classical
EAM [16] and Tersoff model [20–22] to construct a hybrid
potential, and the total energy is expressed as follows:

Etot =
∑

i

Fi(ρ̄i ) + 1

2

∑
i

∑
i �=j

�ij(k), (1)

where Fi(ρ̄i ) is the long-range pair-functional term for the
many-body contribution in the EAM model, and �ij(k) rep-
resents the short-range angular-dependent terms from the
Tersoff model, which includes three-body interactions. As
clarified by Daw and Baskes, Fi(ρ̄i ) is regarded as an impurity
atom embedded in the host electron cloud contributed by
the neighbors, which defines the embedding energy of the

024108-2



HYBRID POTENTIAL MODEL WITH HIGH FEASIBILITY … PHYSICAL REVIEW B 108, 024108 (2023)

impurity atom [16]. The embedding function is expressed with
the universal logarithmic function [51–53] as follows:

Fi (ρ̄i ) = F e
i

[
1 − ηi ln

(
ρ̄i

ρe
i

)](
ρ̄i

ρe
i

)ηi

, (2)

where F e
i and ηi are fitting parameters that depend on the ele-

ments and ρe
i = 1.0 for simplicity. Moreover, ρ̄i is the electron

density at the site of atom i, which depends on the surrounding
atoms and can be approximated by the contributions from the
neighbors, i.e.,

ρ̄i =
∑
i �=j

ρij(rij ), (3)

where rij is the distance between atoms i and j, and ρij is
described by an exponential function as follows [3,54–56]:

ρij(rij ) = ρd
ij exp

[
−βe

ij

(
rij

re
ij

− 1

)]
S(1)

ij

(
rij

)
, (4)

where ρd
ij and βe

ij are fitting parameters, re
ij is the is the equilib-

rium distance between the nearest neighbors, and S(1)
ij (rij ) is

the trigonometric cutoff function [20,57] defined as follows:

S1
ij(rij ) =

⎧⎪⎪⎨
⎪⎪⎩

1 , rij � rc
ij − rs

ij

1
2 + 1

2 cos
(

rij−rc
ij+rs

ij

rs
ij

π
)

, rc
ij − rs

ij � rij � rc
ij

0 , rij > rc
ij

.

(5)

This function is continuous for all ranges of rij and ranges
from one to zero within the cutoff, and here rs

ij = 0.02rc
ij for

simplicity.
Following the Tersoff model for the three-body interac-

tions, the short-range angular-dependent term is expressed as

�ij(k) = f R
ij (rij ) + bij(k) f A

ij (rij ), (6)

where the repulsive interaction f R
ij (rij ) includes the orthogo-

nalization energy when electron clouds overlap [20] and is
expressed as

f R
ij (rij ) = D(0)

ij

Sij − 1
exp

[−μij

√
2Sij

(
rij − r (0)

ij

)]
S(2)

ij (rij ). (7)

Moreover, f A
ij (rij ) represents an attractive interaction asso-

ciated with bonding and is expressed as follows:

f A
ij (rij ) = − SijD

(0)
ij

Sij − 1
exp

[−μij

√
2/Sij

(
rij − r (0)

ij

)]
S(2)

ij (rij ),

(8)

where D(0)
ij , r (0)

ij , μij, and Sij are fitting parameters, and the pair
term reduces to the usual Morse potential when Sij = 2 [23].

The smooth cutoff function S(2)
ij (rij ) is expressed as

S(2)
ij (rij )

=

⎧⎪⎪⎨
⎪⎪⎩

1 , rij � Rij − Dij

1
2 − 1

2 sin
( rij−Rij

Dij

π
2

)
, Rij − Dij � rij � Rij + Dij

0 , rij > Rij + Dij

.

(9)

The prefactor bij(k) in Eq. (6) is usually interpreted as the
bond-order term, which reflects the covalent bonding charac-
ter and is assumed to be a monotonically decreasing function
of the coordination of atoms i and j [20–22]:

bij(k) =
⎡
⎣1 +

⎛
⎝βij

∑
k �=i,j

ξijk

⎞
⎠

nij
⎤
⎦

−1/2nij

, (10)

where

ξijk (rij, rik, θijk ) = S(2)
ij (rij ) gijk (θijk ) exp

[
λm

3, ijk

(
rij − rik

)m]
,

(11)

gijk (θijk ) = γijk

⎛
⎝1 + c2

ijk

d2
ijk

+ c2
ijk

d2
ijk + (

cosθijk − cosθ (0)
ijk

)2

⎞
⎠,

(12)

and θi jk represent bond angle between bonds ij and ik; βij, nij,
γijk, λ3, ijk, cijk, dijk, and cosθ (0)

ijk are fitting parameters. Table I
compares the potential parameters of the representative ele-
ments of Cu (fcc), Fe (bcc), Ti (hcp), and C (diamond) for the
hybrid model and those from the Tersoff [58] or baseline EAM
for comparison. Notice that the baseline EAM potential could
be readily obtained by transforming the three-body term �ij(k)

to a pair function �ij(rij ) through setting the βij parameter
to zero. With the baseline EAM as a reference, it can be
seen clearly that after removing the angular-dependence term,
the three-body interaction is partially incorporated into the
many-body term, as evidenced by the increasing F e parameter
associated with the embedding energy and the decreasing D(0)

parameter associated with the three-body interaction. Here, F e
i

plays a critical role in controlling the relative contributions
of short-range angular dependence and long-range n-body
effect to the total energy, as shown in Table II. These results
indicate that the short-range angular-dependence term con-
tributes more to the total potential energy for the covalent
systems, which results in smaller values of |Fi (ρ̄i )|

Ec
ranging

from 0.24 to 0.27 for Si, C, and TiC, whereas the contribu-
tion of embedding energy term takes up a larger portion of
total energy, which varies from 0.36 to 0.54 for Ti, Cu, Ni,
and their alloy. Moreover, it can be observed that group 10
metals with unpaired d electrons exhibit stronger many-body
effects compared to the group 11 ones with full d subshell,
and the influence of the many-body effect becomes more
pronounced as the period number increases, corresponding
to the expansion of the d-shell electrons. For instance, the
values of |Fi (ρ̄i )|

Ec
for Cu, Ag, and Au are 0.30, 0.31, and 0.40,

respectively; the only exception is Pd, which may be attributed
to its unique electronic configuration, i.e., a completely filled
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TABLE I. Potential parameters of representative elements of Cu (fcc), Fe (bcc), Ti (hcp), and C (diamond) from hybrid model and
those from baseline EAM or Tersoff [3,58] models for comparison (see Supplemental Material for complete parameter tables [67]; see also
Refs. [3,39,40,42,45,55,59,75,77–97] therein).

Cu Fe Ti C

Hybrid Baseline EAM Hybrid Baseline EAM Hybrid Baseline EAM Hybrid Tersoff

m 1.0 1.0 1.0 3 3
γ 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1
λ3 Å−1 1.62883 0.631352 0.135518 0.731207 0
c 0.735724 1.15779 1.05450 41969.3 38049
d 0.128546 0.226254 0.281135 5.19033 4.3484
cosθ (0) −1.0 −0.635993 −0.867527 0.538488 0.57058
n 1.0 1.0 1.0 0.72751 0.72751
β 0.000902788 0.0 0.00189476 0.0 0.00204566 0.0 1.22528 × 10−7 1.57 × 10−7

μ Å−1 1.61149 2.20972 1.17846 1.43991 1.18117 1.99612 1.15776 1.964037
S 1.38141 1.84776 1.42630 1.30261 1.22663 1.39634 1.39070 1.576879
R Å 4.02123 4.02123 3.42818 3.42818 3.50796 3.507956 2.12084 1.95
D Å 0.203113 0.203113 0.294092 0.294092 0.292081 0.292081 0.394575 0.15
r (0) Å 2.39264 2.63864 2.37977 2.64556 2.64493 2.91182 1.67404 1.447114
D(0) eV 0.63917 0.131632 0.850178 0.529209 1.00787 0.323114 3.94443 5.166175
ρd 0.0672419 0.03662 0.0508864 0.0179783 0.0309789 0.0903512 0.0894240
βe 4.30500 3.65975 3.81579 6.37375 3.16782 3.81369 2.38696
F e 1.07161 2.75121 2.35005 2.91173 2.36157 3.61219 2.39077
η 0.651824 0.506107 1.34550 0.509394 0.850190 0.775665 3.02842
re Å−1 2.55619 2.55619 2.45951 2.45951 2.92379 2.92379 1.54746
rs 5.99480 5.99480 5.93482 5.93482 6.85690 6.85690 6.00855

4d10 shell instead of the 5s2 4d8 configuration. To quantify
the term bij(k), Fig. 1(a) shows the variation of βij · ξijk, which
exhibits a higher angular correlation for C than that for Ti,
in consistency with a strong covalent bonding nature for the
former one; Fig. 1(b) illustrates that Ni (4s2 3d8) exhibits a
higher angular effect than Cu (4s1 3d10), which stems from
the complexity of the mixed metallic and covalent bonding
owing to the overlapping d orbitals [33], where valence d
electrons remain relatively tightly bound to their parent atoms,
forming unsaturated covalent bonds with their neighbors [32].
Notably, although the group 10 metals exhibit a higher angular
effect relative to the group 11 metals, less covalent direction-

TABLE II. Comparison of parameters of F e
i , embedding ener-

gies |Fi (ρ̄i )|, cohesion energies Ec, and their ratios of representative
covalent and metallic systems.

System Si C TiC Ti Cu3Ni CuNi3

structure diamond diamond B1 hcp L12 L12

F e
i 1.49 2.39 2.36

|Fi (ρ̄i )| 1.07 2.07 2.06 2.13 1.46 2.23
Ec 4.40 7.85 7.40 5.38 3.86 4.51
|Fi (ρ̄i )|

Ec
0.24 0.26 0.27 0.40 0.38 0.50

System Cu Ni Ag Pd Au Pt Al
structure fcc fcc fcc fcc fcc fcc fcc
F e

i 1.07 2.63 0.79 1.41 1.20 3.54 1.45
|Fi (ρ̄i )| 1.07 2.62 0.78 1.37 1.18 3.54 1.41
Ec 3.55 4.86 2.49 3.73 2.98 5.52 3.50
|Fi (ρ̄i )|

Ec
0.30 0.54 0.31 0.37 0.40 0.64 0.40

ality association exists when compared to Al, which is limited
with respect to the typically directional bonding elements.

In terms of the cross-potential construction, the elemen-
tal hybrid potentials may be seamlessly combined by using
the scale-invariance rule, which involves an additional step
to fit the cross term �ab through the properties of simple
compounds with low formation energy, preferably observed in
experiments. To retain the reliability of the original elemental
potentials, the adopted scale-invariance rule is as follows:

ρ
′
aa(rij ) = saaρaa(rij ), (13)

Faa
′(ρ̄

′
i ) = Faa(ρ̄

′
i/saa ), (14)

where saa is the fitting parameter, and it is only used in the
construction of cross potential but not required for elemental

FIG. 1. Correlation between parameter βij · ξijk and bond angles
of (a) TiC and (b) various metal elements.
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FIG. 2. (a) Lattice constants, cohesive energies, (b) intrinsic
stacking fault energy (ISFE), unstable stacking fault energy (USFE),
(c) relative phase energies, and (d) surface formation energies for fcc
metals with hybrid potential alongside DFT data, experimental data,
and those of Zhou et al. [3] for comparison; EAM, embedded-atom
method.

potentials. The scale-invariance rule increases the flexibility
to combine two elemental hybrid potentials. In addition, since
the parameters of saa and sbb for the two-component elements
are closely correlated, it is sufficient to scale the charge den-
sity ρ for one-component element, and the scale parameter
for the one-component element was always chosen to be 1.0
[59,60].

B. Potential optimization

Figure S1 illustrates the core stages involved in construct-
ing the hybrid potential of preparation, initialization, and
optimization. At the preparation step, all training targets are
prepared according to the experimental or DFT data. Accord-
ing to the fitting strategy, not all potential parameters need to
be involved in the optimization process because optimizing
some critical parameters first and the remaining parameters
thereupon may lead to more reliable results [42]; thus, a cus-
tom parameter map [45] was introduced to control the degree
of free parameters for custom optimization strategy at the
initialization step. At each optimization step, adjustable fitting
parameters are varied first and then (1) executed custom map-
ping to update potential parameters and (2) tabulated potential
and computed all related properties to evaluate the predefined
cost function. Finally, the constructed potential is validated by
further property checks and then saved in a tabulated potential
form adapted to simulation software.

The optimization quality depends on the minimization pro-
cess by a cost function that quantifies the difference between
the prediction and training sets, which is defined by the least-
squares method in this work:

Ztot =
N∑

k=0

wk

(
Apredict

k − Atarget
k

Atarget
k

)2

, (15)

FIG. 3. (a) Lattice constants, cohesive energies, (b) USFE of
{110} and {112} planes, (c) relative phase energies, and (d) surface
formation energies for bcc metals with hybrid potential alongside
DFT data, experimental data, and those of Zhou et al. [3] for
comparison.

where Apredict
k is the kth prediction property, Atarget

k is the
kth target value, and wk is the corresponding weight factor
to control the optimization quality, as shown in Table SI. In
general, with different requirements of realistic simulations
adapted to certain simulation environments, one may pay
more attention to the most relevant quantities in fitting the
undetermined parameters for hybrid potentials. For instance,
in terms of mechanical simulations, the fitting targets include
at least the lattice constants, cohesive energy, lattice stabilities,
elastic constants, surface energies, and SFEs. In the case of
covalent materials, a higher weighting factor used for SFEs
and cleavage energy is based on the following facts: (1) the
SFEs of covalent materials are orders of magnitude higher
than that of metallic materials, as well as the cleavage energy
of the former is also much higher than that of the latter; and
(2) the cleavage energy is essential in cracking simulations of
brittle materials, whereas the dislocation mobility dominates
in metals.

The optimization process was conducted by using the
EAPOT platform [45,61] with the Nelder-Mead simplex
method [62]. For more details on the potential optimization
step, one can refer to the previous publications [45,61]. It
should be noted that the adjustment in the weight-factor con-
figuration [63,64] will have a certain impact on the predicted
value, whose selection is related to history with certain ex-
periences [59,65,66], and the current hybrid model is still
challenging to unify different systems.

III. RESULTS

A. Validation of hybrid potentials for single-element solids

As a first demonstration, the hybrid potential model
should be able to reproduce the fundamental properties
of single-element solids. Figures 2–4 present the predicted
structural and physical properties of representative fcc, bcc,
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FIG. 4. (a) Lattice constants, cohesive energies, (b) ISFE, USFE,
(c) relative phase energies, and (d) surface formation energies for hcp
metals with hybrid potential alongside DFT data, experimental data,
and those of Zhou et al. [3] for comparison.

and hcp metals from the optimized hybrid potentials and those
proposed by Zhou et al. [3] for comparison between the exper-
imental and theoretical data. All detailed values in the above
figures and fitted potential parameters are listed in Tables
SII–SVII for reference [67]. Compared to previous studies
[3,59,66,68], the hybrid potentials provided an improved de-
scription of fcc, bcc, and hcp metals, particularly regarding
the lattice stability between compact stacking structures and
SFEs. For instance, the predicted energy differences between
fcc and hcp phases (Ehcp − Efcc) for Au, Pd, and Pt by hybrid
potential are 5.6, 25.6, and 54.0 meV, respectively, which
closely match the DFT values of 5.5, 27.9, and 54.9 meV,
respectively. By contrast, the corresponding values from
Zhou’s EAM potentials [3] are 0.5, 2.5, and 10.1 meV, respec-
tively, and exhibit deviations of 90, 90, and 82%, respectively,
from the DFT values [see the dashed box in Fig. 2(c)]. As
shown in Fig. 3, the predicted energy differences Efcc − Ebcc

for the bcc Mo and W by the hybrid potentials are 311 and
394 meV, respectively, with the DFT data being 409 and
474 meV, respectively, yet twice larger than those obtained
from Zhou’s EAM potentials (154 and 163 meV, respec-
tively). More impressively, the ISFE values of hcp Mg, Zr,
and Ti by the hybrid potential are approximately 22, 198, and
300 mJ/m2, respectively, and agree well with the DFT values
(21, 233, and 287 mJ/m2, respectively), in contrast to those
predicted by Zhou’s EAM (4, 29, and 28 mJ/m2, respectively)
[3] [see the dashed box in Fig. 4(b)]. In addition, the hybrid
potentials provide desirable USFE values (see Fig. 5), which
presents the GSFE curves along the [112] direction alongside
the DFT and EAM data for comparison; obviously, the GSFE
curves of the hybrid potentials agree well with the DFT in
both shape and quantity. All the consistency suggests that the
constructed hybrid potentials could provide a more desirable
description of fundamental quantities that are related to the
mechanical simulations, particularly for dislocation structure
and behavior.

The capability of the present hybrid potential model can
also be ascertained by solving the difficulties that are met
when purely using pair-functional potentials or cluster poten-
tials. Table III summarizes the reproduced properties of Zn
with the hybrid potential and compares them with the EAM
potential by Sheng et al. (S.EAM) [69,70], FS potential by
Igarashi et al. (I.FS) [71], modified embedded-atom method
(MEAM) potential by Dickel et al. (D.MEAM) [48], MEAM
potential by Jang et al. (J.MEAM) [38], Tersoff potential by
Erhart et al. (E.Tersoff) [37], and bond-order potential (BOP)
by Ward et al. (W.BOP) [72]. Obviously, both the long-range
pair-functional potential and the short-range cluster poten-
tial face critical difficulties in achieving reasonable lattice
stability for hcp Zn owing to its high c/a ratio. Among the
six potentials, only S.EAM, I.FS, and D.MEAM predicted a
c/a ratio comparable to experimental and DFT data, whereas
J.MEAM, E.Tersoff, and W.BOP predicted only the ideal
one (c/a = 1.63), which may result in ultralow resistance for
basal twinning modes during deformations [38]. However,
S.EAM, I.FS, and D.MEAM cannot guarantee the stability of
hcp Zn, and the predicted ISFEs of −4.2, 0.4, and −98 mJ/m2

are far lower than the DFT value of 102 mJ/m2, indicating that
they are unsuitable for plastic simulations. In fact, Baskes and
Johnson [46,47] have long noted the failure of MEAM formal-
ism in reproducing the correct ground state when the c/a ratio
for the hcp structure is greater than the ideal [48]. A similar
issue occurs in the Tersoff model, e.g., the E.Tersoff potential
[37] predicted the stable hcp structure with c/a = 1.63, which
is far from the DFT value of 1.903. Although the long-range
pair-functional potentials consider more distant atoms, their
spherically symmetric assumption fails to provide a reason-
able c/a ratio for hcp Zn, e.g., the S.EAM potential does not
guarantee the stability of hcp Zn. According to first-principles
calculations, the anomalous c/a ratio in Zn is attributed to
the electronic correlation, where the filled d shell not only
screens the nuclear charge but is explicitly involved in the
correlation interactions [73], and the later works showed that
the experimentally known anisotropic minimum could only
be obtained after using the three-body increment method for
d-correlation contributions [74]. However, the pair-functional
potentials or cluster potentials only partially capture the long-
range many-body or angular effect of the complex d shell,
thus failing to describe phase stability for Zn with a high c/a
ratio, consistent with the observation by Baskes et al. that
“the nature of the MEAM formalism, makes it impossible
to create a potential with simultaneously lower hcp cohesive
energy than fcc and a c/a ratio greater than the ideal” (see Fig.
S2) [46,48]. To address these limitations, the hybrid potential
model incorporates the long-range many-body effect in pair-
functional potentials and the short-range angular-dependent
terms in cluster potentials, thereby achieving reasonable lat-
tice stability for elemental metals with high c/a ratios. As
shown in Table III, although the relative phase energy is lower
than the DFT value of 25.4 meV, the hybrid potential ensures
the stability of the hcp phase and reasonable SFE values,
accompanied by a c/a ratio of 1.905, which closely matches
the DFT and experimental data of 1.903.

The efficiency of the hybrid potential model is then eval-
uated for representative covalent elemental solids. Table IV
presents the physical properties of the C, Si, and Ge systems
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FIG. 5. (a) Typical γ surface of the {111} plane for Cu. (b) Schematic illustration of stacking sequences of perfect lattice, USFE, and
ISFE (c), (d) Generalized stacking fault energy (GSFE) curves along [112] directions with marked USFE and ISFE values by DFT calculations
[80,81], hybrid potentials, and EAM potentials of Zhou et al. [3] for comparison; SFE, stacking fault energy.

TABLE III. Lattice constants, c/a ratio, cohesive energies, vacancy formation energies, elastic constants, ISFE, USFE, surface formation
energies, and relative phase energies for Zn with hybrid potential alongside DFT data, experimental data, and previous studies for comparison.

a0 EC EV C11 C12 C13 C33 C44 γUSFE γISFE γ {0001} Efcc − Ehcp Ebcc − Ehcp

(Å) c/a (eV) (eV) (GPa) (GPa) (GPa) (GPa) (GPa) (mJ/m2) (mJ/m2) (mJ/m2) (meV) (meV)

Exp. 2.660a 1.86a 1.35a 0.54b 179c 38c 55c 69c 46c

DFT 2.647a 1.905a 1.10a 0.48b 160d 56d 52d 57d 23d 120e 102e 347f 25g 87g

Hybrid 2.668 1.903 1.19 0.20 131 72 31 74 26 157 94 311 10.0 43
EAM [69,70] 2.602 1.932 1.35 1.81 145 67 61 102 12 24 −4.2 302 −1.6 89
FS [71] 2.778 1.860 1.35 0.42 179 38 55 69 46 0.4
MEAM [48] 2.647 1.872 1.35 1.55 123 36 63 86 51 162 −98 591 −35 49
MEAM [38] 2.778 1.619 1.09 0.44 120 48 42 133 34 163 45 446 9.2 79
Tersoff [37] 2.700 1.629 1.33 0.26 426 215 185 465 97 133 26 347 5.0 125
BOP [72] 2.761 1.717 1.56 0.61 192 22 20 136 37 246 15

aReference [86].
bReference [82].
cReference [83].
dReference [112].
eReference [87].
fReference [84].
gReference [85].
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TABLE IV. Lattice constants (Å), cohesive energies (eV), elastic constants (GPa), ISFE (J/m2), USFEs (J/m2), cleavage energies (J/m2),
surface formation energies (J/m2), and relative phase energies of Ehdia − Ecdia (meV) for covalent solids with hybrid potential alongside DFT
data and other studies for comparison [42,75,76].

C Si Ge

DFT Hybrid Tersoff [75] DFT Hybrid Tersoff [75] DFT Hybrid Tersoff [76]

Cubic a0 3.574a 3.589 3.556 5.469a 5.513 5.432 5.763a 5.833 5.553

diamond EC 7.83a 7.85 7.47 4.60a 4.40 4.63 3.74a 3.60 4.23

C11 1054a 1007 1008 144a 137 143 104a 111 214

C12 126a 130 169 53a 62 75 37a 38 21

C440 564a 382 545 99a 93 119 72a 68 106

C44 562a 381 462 75a 68 69 56a 54 92

γ
{111}[112]
USFE 5.78b 7.58 13.36 1.82b 2.00 2.01 1.55b 1.47 3.01

γ
{111}[112]
ISFE 0.28b 0.02 0.00 0.04b 0.01 0.00 0.07b 0.01 0.00

γ
{111}[110]
USFE 9.97b 10.12 10.96 1.45b 1.73 2.40 1.10b 1.23 2.53

γ
{110}[110]
USFE 13.76c 14.21 13.46 1.70b 1.93 3.14 1.34b 1.40 3.11

γ
{100}[110]
USFE 16.81c 17.60 17.22 2.32b 2.28 4.54 1.66b 1.79 4.39

E {111}
b 14.40c 14.54 10.93 3.30d 3.95 2.57 2.17d 2.88 2.54

γ {111} 5.65c 6.74 5.46 1.57d 1.95 1.20 1.11d 1.42 1.27

Hexagonal a0 2.51a 2.54 2.51 3.85a 3.90 3.84 4.05a 4.13 3.93

diamond c0 4.18a 4.14 4.11 6.37a 6.36 6.27 6.68a 6.75 6.41

Ehdia − Ecdia 25a 1.2 0.0 11a 0.9 0.0 119a 0.9 0.0

C11 1189a 943 1064 182a 141 175 127a 104 212

C12 97a 144 141 49a 41 66 32a 22 19

C13 13a 167 140 34a 27 52 17a 17 24

C33 1295a 927 1065 203a 123 190 147a 96 207

C44 458a 422 434 49a 38 45 37a 35 95

aReference [78].
bReference [113].
cDFT calculations in this work.

predicted by the hybrid potentials and the previous Tersoff po-
tentials [42,75,76], which are compared with the DFT values.
Apparently, the hybrid potentials could reasonably reproduce
the DFT calculations (the potential parameters are listed in
Table SVIII in Supplemental Material [67]; see also Refs,
[3,39,40,42,45,55,59,75,77–97], therein). Although the pre-
dicted ISFE of 0.02 J/m2 by the developed hybrid potential
underestimates the DFT values of 0.28 J/m2 for C, it resolves
the zero-value problem encountered with the previous Tersoff
potential owing to its short-range truncation [44]. In addition,
although the Tersoff C potential [75] predicted reasonable
cleavage energy of 10.93 J/m2 (close to the DFT value of
14.40 J/m2, as shown in Table IV), the predicted USFE along
the {111} [112] slip system (13.36 J/m2) is higher than that
along the {111} [110] slip system (10.96 J/m2), in contrast
to the corresponding DFT values (5.78 and 9.97 J/m2). To
demonstrate the coupling between the cleavage energy and
SFE, we have tried to modify the cleavage energy individu-
ally with the other intrinsic properties fixed, and the results
are shown in Fig. 6(a). It can be clearly seen that γ

{111}[112]
USFE

increases simultaneously as the cleavage energy increases by
means of the Tersoff model, even though different optimiza-
tion strategies are used. To underline the origin, the surface
structure [Fig. 6(b)] and atomic configurations alongside the

GSFE curves [Figs. 6(c) and 6(d)] are compared. It is found
that the coordination environment of the near-surface atoms
and that of the atoms near the slip plane at the USFE site
are the same under the nearest-neighbor truncation [as com-
pared in Fig. 6(e)], indicating a strong correlation between
cleavage energy and USFE. After introducing the long-range
interaction, the hybrid potential model achieves reasonable
cleavage energies, i.e., the cleavage energies for the cubic
diamond of 14.54 J/m2 agree well with the DFT values
of 14.40 J/m2; moreover, the sequence of SFE is correct,
i.e., γ {111}[112]

USFE < γ
{111}[110]
USFE < γ

{110}[110]
USFE < γ

{100}[110]
USFE for cubic

diamond and γ
{111}[110]
USFE < γ

{110}[110]
USFE < γ

{111}[112]
USFE < γ

{100}[110]
USFE

for Si and Ge (see Fig. 7). All these are consistent with the
DFT results.

B. Validation of hybrid potentials for compound solids

Hybrid potentials for compound solids were constructed
based on the scale-invariance rule by combining elemental
potentials without reliability loss, and three representative
cases of CuNi, TiC, and BN cross potentials were chosen
for demonstration (the potential parameters are listed in Table
SIX). For the CuNi case, the equilibrium structures and prop-
erties of hypothetical simple compounds were obtained by
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FIG. 6. (a) USFE of {111} [112] slip system and cleavage energy for constructed Tersoff potential series. (b) Surface structure of {111}
glide plane by DFT calculation, where cyan and gray represent cubic diamond and other structures, respectively. Semitransparent atoms
represent atomic positions before relaxation, where surface atoms tend to relax inward (i.e., toward bulk). (c), (d) GSFE curves along [112]
direction on {111} planes and atomic configuration snapshots at key sites. (e) Coordination environment of near-surface atoms and that of
atoms near glide plane at USFE site.

DFT calculations to compensate for the lack of experimental
data. Table SX presents the predicted properties of the hybrid
CuNi potential, which are compared with the DFT data, and it
can be noticed that the hybrid CuNi potential could reproduce
the DFT values well. For example, the hybrid potential pre-
dicted the formation energy of Cu3Ni (L12) and CuNi (B2)
to be 18 and 83 meV, respectively, which are comparable to
the DFT values of 13 and 83 meV and show better agreement
than the values of −0.96 and 37 meV of the previous CuNi
potential [88]. In addition to the formation energy, the elastic
constants calculated by the hybrid potential agree with the
DFT data with deviations of 6.7% for C11, 14% for C12, and
5.3% for C44 of L12 (Cu3Ni) structure, in contrast to the devi-
ations of 9.7, 19, and 19% of the other CuNi potential [88].

Considering TiC as an example of metallic and covalent
systems, the cross potential was constructed based on cubic
TiC, cubic Ti2C, trigonal Ti2C, and reduced Ti3C2 [77] (see
Fig. S3 and, for more details, Ref. [67]). Table SXI presents
the calculated properties by the hybrid potential, MEAM po-
tential by Yao et al. [45], and Tersoff potential by Huang et al.
[42], which are compared with DFT values [78,90]. It can
be noted that the formation energies of cubic B1−TiC, cubic
Ti2C, trigonal Ti2C, and Ti3C2 were calculated to be −790,
−663, −680, and −715 meV, respectively, by the hybrid
potential, which showed reasonable agreement with the DFT
values of −835, −654, −645, and −702 meV, respectively. By
contrast, the calculated values of a previous MEAM potential
[89] are −395, −420, and −243 meV, respectively, whereas

the values of a previous Tersoff potential are −1285, −1289,
and −1065 meV, respectively [39,40], both of which signifi-
cantly deviate from DFT values.

The last demonstration was performed on the construction
of effective hybrid potentials of covalent compound solids to
solve related issues [42,45], such as unphysical local minima
in GSFE, incorrect sequence order of SFEs for the typical
slip systems, and low cleavage energy. Considering the BN
system as an instance, Table V and Fig. 8 present the pre-
dicted GSFE of cubic BN by the hybrid potential [67], Tersoff
potential by Kınacı et al. [98], Tersoff potential by Huang
et al. [42], and Tersoff potential in our previous work [45],
which are compared with the DFT data. It can be observed that
all the previous potentials except for that by Huang exhibit
incorrect sequences of SFEs, whereas the hybrid potential
[Fig. 8(b)] agrees well with the DFT data [Fig. 8(a)]. More-
over, the cracking events are observed in uniaxial compression
simulations of Huang’s potential without the appearance of
dislocation nucleation [Figs. S4(a) and S4(b)], which can be
ascribed to the underestimated cleavage energy of 7.42 J/m2.
Although the previous BN potential [45] predicted a cleav-
age energy (9.26 mJ/m2) more comparable to the DFT data
(13.9 J/m2), the USFE value along the {111} [112] slip sys-
tem for partial dislocation is much higher than that along
the {111} [110] slip system for full dislocation, resulting
in full dislocations exclusively [see Figs. S4(c) and S4(d)].
By contrast, the constructed hybrid BN potential successfully
addresses the problem [see Fig. S4(e)], i.e., the dislocation
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FIG. 7. GSFE curves along [112] direction on {111} planes and along [110] direction on {001}, {110}, and {111} planes of diamond with
(a) DFT calculation, (b) hybrid potential, and (c) published Tersoff potential [75] and those of Si with (d) DFT calculation, (e) hybrid potential,
and (f) published Tersoff potential [75].

appears before the cracking events, which is inconsistent
with the DFT results [99] and experimental studies [100].
Although the full dislocations have higher barriers, they are
found to dominate the plastic deformation process, which
is supported by the observation that the density of full dis-
locations (0.038 nm−2) is much higher than that of partial
dislocations (0.01 nm−2), being quite consistent with the ex-
perimental observation that full dislocations contribute to the
plastic deformation [100]. In brief, the hybrid BN potential
could provide an alternative solution to the critical issues of
the previous BN potential, further validating its fidelity for
covalent compound solids.

IV. DISCUSSION

The success of the hybrid potential model, as proposed
in Sec. II, can be attributed to the combination of the long-
range many-body effect of the metallic bonding feature and
the short-range angular effect of the covalent bonding na-
ture. Figure S5 illustrates both effects in the proposed hybrid
potential model, i.e., the long-range many-body effect in pair-
functional potentials and the short-range angular-dependent
terms in cluster potentials. The first term in the hybrid po-
tential model originates from the physical picture shown in

the EAM [101] that was derived from DFT [102], as well
as the conclusion that the energy of an impurity in a host
is a function of the electron density of a host without impu-
rities (i.e., unperturbed host) [103]. In metals, the effective
interatomic forces mediated by the conduction electron sea
may extend over significant distances [104], even up to 20
atomic spacings as supported by the experimental dispersion
relation [105]. Thus, a long-range functional term was gener-
ally utilized to capture the metallic-bond character; compared
to previous models [37,38,69–72], the hybrid potential model
has improved the prediction of phase stability for metals with
high c/a ratios. As regards the short-range angular-dependent
term, it is motivated by the valence-shell electron-pair repul-
sion (VSEPR) theory [106] and the TB theory [26]. According
to the VSEPR theory, the repulsions between pairs of valence
electrons due to overlapping tend to maximize bond angles,
and the TB theory shows that the density of states can be
efficiently determined by describing moments within Green’s
function framework [107–109], which can be further evalu-
ated explicitly in terms of hopping integrals and bond angles
[110]. By including the angular dependence, the Tersoff and
other BOP potential models [20–22] have been successfully
used for covalent solids after introducing the effect of the
different shapes of electron-pair domains. However, the the-
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TABLE V. Lattice constants, cohesive energies, elastic constants, ISFE, USFEs, cleavage energies, surface formation energies, and relative
phase energies of Ehdia − Ecdia for BN with hybrid potential alongside DFT data and other studies for comparison.

Unit DFT Hybrid Tersoff [98] Tersoff [45] Tersoff [42]

Cubic a0 Å 3.63a 3.63 3.49 3.63 3.62
BN EC eV 6.59a 6.60 7.78 6.59 6.63

C11 GPa 790a 752 636 783 680
C12 GPa 217a 221 382 171 229
C0

44 GPa 313 593 446 516
C44 GPa 448a 308 346 358 405

γ
{111}[112]
USFE J/m2 3.76b 5.86 4.68 11.1 6.72

γ
{111}[112]
ISFE J/m2 0.19b 0.02 0.00 0.00 0.00

γ
{111}[110]
USFE J/m2 7.47b 8.08 4.83 8.21 7.52

γ
{110}[110]
USFE J/m2 9.01c 11.4 7.04 11.1 10.1

γ
{100}[110]
USFE J/m2 14.5c 13.5 7.39 13.0 10.9

E{111}
b J/m2 13.9c 11.2 7.74 9.26 7.42

γ {111} J/m2 6.05c 5.14 2.64 4.63 3.25
Hexagonal a0 Å 2.55a 2.57 2.14 2.56 2.56
BN c0 Å 4.23a 4.19 4.03 4.19 4.18

Ehdia − Ecdia meV 17a 1.1 0.0 0.0 0.0
C11 GPa 929a 790 785 847 849
C12 GPa 130a 203 318 142 181
C13 GPa 57a 192 266 136 109
C33 GPa 1013a 806 925 853 920
C44 GPa 329a 281 200 324 285

aReference [78].
bReference [113].
cDFT calculations in this work.

oretical basis of the two-center, orthogonal TB approximation
that bonding exists only between the first-nearest neighbors
(1NNs) within the molecule as the valence orbitals are tightly
bound to their parent atoms [32] as well as the complex-
ity and computational inefficiency limit its applicability for
long-range effects, i.e., it is difficult to include more neighbor
atoms beyond the second-nearest neighbors (2NNs). Such a
deficiency may induce artifacts, such as the conflict between
the sequence order of SFEs and cleavage energy for covalent

solids, absent interplanar interactions for graphite, and unreli-
able diamond-to-graphite transformation [43]. By combining
the long-range functional term and the short-range angular-
dependent term, the hybrid potential model could effectively
balance their respective deficiencies while displaying their
superiorities, particularly for the mixed bonding solids con-
sisting of metallic and covalent elements.

The present hybrid potential model adopted a rough ap-
proximation (a zeroth-order approximation specifically) of

FIG. 8. GSFE curves along [112] direction on {111} planes and along [110] direction on {001}, {110}, and {111} planes of cubic BN
with (a) DFT calculation, (b) hybrid potential, and (c) published Tersoff potential [98].
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the local electron density as a linear superposition of spher-
ically averaged electron densities from each neighbor atom.
Nevertheless, it substantially reduced the computation cost,
with the errors being compensated by the short-range angular-
dependent term. It should be noted that one may introduce
high-order corrections to the spherically averaged approxima-
tion by incorporating directional dependence in the electron
density in a similar manner to the MEAM potential model,
but it may reduce the computational efficiency in simula-
tions. To demonstrate the efficiency of the hybrid potential
model, Fig. S6 presents a comparison of the wall clock time
during the uniaxial tension simulations of elemental crystals
by using the hybrid potentials, previously published MEAM
potentials, and constructed fictional potentials (see Supple-
mental Material for simulation details [67]; see also Refs.
[3,39,40,42,45,55,59,75,77–97], therein). For metallic sys-
tems, the 1NN/2NN MEAM potential [55,111] and the hybrid
potential with 2NN cutoff for the short-range term require
more time than that required by the EAM [59] and FS poten-
tials [79] because of the additional angular-dependent term.
The time required by the hybrid potential (10.4 h) is roughly
equivalent to the sum of the long-range pair-functional po-
tential (1.77 h) and the 2NN MEAM potential (9.26 h). For
covalent systems, the time required by the hybrid C potential
(0.928 h) is between the values of Tersoff cluster potentials
with 1NN [75] and 2NN (0.133 and 6.75 h, respectively)
because its short-range term used only 1NN. In addition, as
exhibited in Fig. S6(b), the increasing cutoff for the angular-
dependent term will result in more computational demands;
thus, it is much more efficient to add a long-range term in the
hybrid potential model than to directly increase the cutoff in
the cluster potential model to include the long-range interac-
tions. In brief, although the hybrid potential demands some
additional computational efforts, it might improve flexibility,
compatibility, and accuracy to a certain degree.

By further demonstrating the capability of the hybrid
potential model for compound systems consisting of both
metallic and covalent elements, it can be observed that the
elemental potentials may be seamlessly combined based on
the scale-invariance rule without any reliability loss. By con-
trast, it is challenging to use the pair-functional potentials
or cluster potentials in combining two elements with differ-
ent bonding natures, e.g., the incompatibility between EAM
and Tersoff potential, primarily due to the following reasons:
(1) compatibility issues arising from nonuniform potential
functional forms, (2) parameters with the order of magnitude
different from various sources of elemental potentials, and
(3) complexity originating from the multidimensional space
of the fitting parameters for compound systems. By combin-
ing different types of potential models, the aforementioned
difficulties could be readily resolved by the present hybrid
potential model, providing the opportunity to perform simu-
lations on systems consisting of different bonding elements

with high fidelity and feasibility. In brief, the high compati-
bility and transferability shown in the aforementioned cases
validate the fidelity of the hybrid potential model for various
simulation scenes.

V. CONCLUSIONS

In summary, by incorporating the long-range many-body
effect into pair-functional potentials and the short-range
angular-dependent terms into cluster potentials, a flexible and
accurate hybrid potential is proposed in this paper. The main
conclusions of this study can be summarized as follows:

(1) The hybrid potential had high compatibility for both
metallic and covalent elements, which was demonstrated for
20 metals (including fcc, bcc, and hcp metals) and three cova-
lent solids with reliable mechanical property reproduction.

(2) Several critical issues were resolved after combining
the two physical ideas, including the incorrect phase stability
for metals with high c/a ratios and the conflict between the
correct sequence order of SFEs and cleavage energy for cova-
lent solids.

(3) The unified expression in the hybrid potential facil-
itated the construction of the cross potential, which was
extended to compounds by combining elemental potentials
under the scale-invariance rule, such as BN, CuNi, and TiC,
indicating its flexibility for alloy and compound simulations.

(4) Finally, the physical basis for the hybrid potential
model has been justified: the basic idea of long-range many-
body pair functional term comes from DFT that assumes each
atom to be embedded in a host electron cloud as used in
the EAM model, whereas the short-range angular-dependent
correction is inspired by the VSEPR theory and TB theory to
account for the localized covalent components by the electron-
pair overlapping, as characterized in the Tersoff model.

Overall, the present hybrid potential model could provide
an alternative to constructing high-feasibility potentials for
both metallic and covalent solids with reasonable improve-
ment in the pair-functional potential and cluster potential, thus
laying a foundation for further potential development with
broader applications.
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