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Spatial stress correlations in strong colloidal gel systems
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Colloidal gel systems exhibit increasingly slow relaxation and ultra-long-ranged spatial correlations of the
dynamics similar to other jammed materials. These cooperative dynamics point to the presence of long-ranged
stress correlation in these systems, which remain largely uninvestigated in the literature. In this work, we
systematically investigate the nature of stress correlations in soft colloidal gel materials in the limit of moderate
to high packing fractions and strong attraction. In this regime, centrosymmetric potential description for particle
interaction fails as strong attraction can lead to frictional contacts, as shown explicitly in previous experiments.
Accordingly, we model the system similarly to the cohesive granular media with Langevin dynamics to
incorporate the effects of rolling and sliding resistant contacts and thermal fluctuations. We show that the spatial
stress correlations are long ranged with very slow spatial decay close to the gel point. Similarly to previous
studies on the frictional granular matter, the full stress autocorrelation matrix is dictated by the pressure and
torque autocorrelations due to mechanical balance and material isotropy constraints. Surprisingly, it is observed
that the gel materials do not behave as a normal elastic solid close to the gel point as assumed loosely in
the literature because the real-space pressure fluctuations decay slower than normal. Furthermore, we link the
abnormal pressure fluctuations to the non-hyperuniform behavior of the system (granular matter and gel) with
respect to the local packing fraction fluctuations, thus relating the deviations from the normal elastic behavior
across various jammed systems under a common framework.
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I. INTRODUCTION

Colloids form disordered solids in seemingly different
ways based on the interparticle potential and the volume frac-
tion. At a high volume fraction, crowded interaction between
hard-sphere colloids gives rise to the caging effect and dy-
namical arrest, which results in the repulsive colloidal glass
[1]. Increasing the strength of attraction leads to the forma-
tion of attractive glass. In contrast, colloids form space-filling
percolated networks of fractal clusters and manifest solid-like
properties at very low volume fractions under strong attrac-
tion. Previous studies primarily focused on the low volume
fractions regime [2] for better imaging of the structural evo-
lution. In contrast, the behavior of the colloidal gel systems
in the intermediate volume fractions regime is more complex
and less evident since the system will be affected by both
the caging effects and the fractal correlations. One of the
critical unexplored issues in the colloidal gel community is
understanding the mechanical response of the colloidal gel in
the limit when the gels are neither too dilute nor too dense,
and the structural arrest is driven by the complex interplay
between the steric hindrance and attractive bonding. It is even
more challenging to relate the behavior of such a colloidal gel
system to that of other amorphous solids formed at relatively
high packing fractions, such as glass and granular materials,
under a unified framework.

Unlike perfect crystals, amorphous solids have many
microscopic degrees of freedom in their equilibrium states

*Corresponding author: saikat.roy@iitrpr.ac.in

as it is not necessarily the global minimum of the potential
energy surface; instead, it is at some local minimum. These
metastable states are known as inherent states, and the
characterization of these states is difficult as the system
properties are strongly dependent on the preparation protocol.
Although properties of the inherent states vary across
different amorphous media, rare universality in some of
the macroscopic properties, such as vibrational properties,
is found. Simulations on model glass [3], granular matter
[3,4], and supercooled liquids [5–7] show a power-law decay
of spatial shear stress correlation (1/rd in d dimension)
with quadrupolar anisotropy. Experiments on colloidal gel
systems using time-resolved light scattering and photon
correlation imaging suggest the presence of ultra-long-ranged
spatial correlation [2,8] of dynamics which span up to the
system size far greater than any relevant length scale used
to describe the mechanical response of the fractal colloidal
gel. Interestingly, the bond-breaking event in the gel network
has nonlocal consequences [9,10] and corresponding large
rearrangements far away from the rupture event. Very little
understanding is available in the literature regarding the
physical mechanism behind these long-ranged cooperative
dynamics in the colloidal gel system and its connection
to the broad class of amorphous solids showing similar
behavior. In this article, we show the presence of long-ranged
stress correlations in the colloidal gel network, which is the
plausible reason for the long-ranged dynamical correlations.

On the theoretical front, Lemaître showed that mechanical
balance and material isotropy are sufficient to capture these
long-range stress correlations without the involvement of any
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elasticity [11–13]. Although simulation data on the granular
matter and model glass support the theoretical predictions,
no study has been devoted to understanding the nature of
stress correlations and applicability of the existing theories
in strongly attractive systems such as colloidal gels in the
dense limit. When the thermal fluctuations are negligible
compared to the strong attractive potential, −U/kBT � 20,
dense colloidal suspension rapidly forms thermally irre-
versible microstructure that can support an external load. The
mechanism of macroscopic aging and thixotropy observed in
such systems is nontrivial and cannot be attributed to struc-
tural aging since the microstructure gets completely frozen
in the limit of a strong attraction and high packing frac-
tion. Recent experiments [14,15] studied similar systems and
demonstrated a correlation between the contact scale aging
and the macroscopic shear modulus and yield stress aging.
Another plausible way the system can age is by redistributing
the quenched stress heterogeneities created during the struc-
tural arrest via small long-range-correlated displacements of
its constituents. Such strongly aggregating dense colloidal gel
systems find applications in diverse areas like foods, phar-
maceuticals, cosmetics, aerogels, and drug delivery. Hence,
it will be of great interest to find out whether these systems
present long-range correlations or not since the nature of the
correlation will regulate the macroscopic mechanical response
and aging features of the colloidal gel. It is also essential
to test whether the existing theories [11,12] can capture the
stress correlations in this type of soft gel material formed at
relatively low packing fractions with large structural and me-
chanical heterogeneity compared to other amorphous systems.

In this work, we show via numerical simulations that the
stress correlations in the colloidal gel are entirely determined
by two spatially isotropic functions: the pressure and torque
autocorrelations. We find that pressure autocorrelations show
divergence at small wave numbers close to the gel point and
far away from it; the slope of the divergence decreases. It
implies that the elastic theory, generally applied to the gel
network at low pressure, must be revisited. Although the
gel network is formed at low packing fractions compared
to granular materials, the symmetry and nature of the stress
autocorrelation matrix show remarkable universal features.

II. SIMULATION METHODOLOGY
AND THEORETICAL BACKGROUND

Simulation of isotropic compression of flocculated col-
loidal particulate networks is performed using open source
code, the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [16]. Under compression, the spatial
and temporal evolution of the colloidal gel network will
mainly depend on the hydrodynamic and elastic interactions.
Our study employs very slow strain rates (≈10−5 s−1) to
mimic quasistatic compression, and as a result of that, the
ratio of the drag force (ηε̇) to elastic force (Gε) becomes
negligible. Here, η, ε̇, G, and ε represent solvent viscosity,
strain rate, particle modulus, and strain, respectively. Previous
experimental studies [17,18] also show that the hydrodynamic
interactions do not play a dominant role in the dynamics
when the strain rates are small and a system-spanning network
has been formed. Incorporating the hydrodynamics will only

lead to a lower packing fraction for the structural arrest and
different fractal dimension [19], which is expected to have
a negligible influence on the nature of stress correlations. In
light of these experiments and the order-of-magnitude calcu-
lation of the relevant forces, we exclude the hydrodynamic
forces in the simulation. Most of the previous simulations
[20] on the gel system consider central forces, sometimes
with an angle-dependent three-body term, to impart angular
rigidity to the interparticle bonds. But in the limit of mod-
erate to high packing fraction, due to the surface asperities
and strong attraction, the colloidal particles may come into
contact, and consequently, tangential interactions like sliding
and rolling effects will become important, as observed in the
experiments and simulations [14,15,21–24]. Such effects can
easily be incorporated by modeling the colloidal gel system as
cohesive granular media under stochastic forcing, and recent
simulations [25–29] show encouraging results in capturing the
rheology of the colloidal gel system with the same model.
In this work, we also model the colloidal gel system with
the help of the DEM (discrete-element method) simulation
[30] generally applied for the granular materials. Only adding
adhesion to the dry granular materials will not resemble the
colloidal gel system; additionally, one needs stochastic forc-
ing to obtain a fractal gel-like structure. So, our simulation is
completely different from the simulation generally employed
for wet granular materials under no thermal fluctuations.

The simulation starts with the random placement of
N = 16 000 soft elastic disks of diameter D in a two-
dimensional periodic square box of size 295D, corresponding
to a packing fraction, φ ≈ 0.1. The contact deformation is
modeled as Hookean, and the normal part of the elastic repul-
sive force is given as F e,i j

N = −knδni j where kn is the normal
stiffness. This force acts when the overlap distance between
two particles δni j < 0. In addition to the elastic part, normal
viscous damping, −γnvni j

(here vni j
is the normal component

of the relative velocity between particle pair i and j and γn is
the normal viscoelastic damping coefficient) is also added to
obtain the static equilibrium in a reasonable time. Similarly,
for the tangential part, the force F i j

T varies linearly with the
tangential overlap until the initiation of sliding, which takes
place when F i j

T � ±μF e,i j
N , where μ is the sliding friction

coefficient. We also add tangential damping similar to normal
damping. A constant attractive force of magnitude F0 acting
center to center between two particles is introduced when a
contact is made. It should be noted that the Coulomb inequal-
ity applies to the repulsive elastic normal force only. The
rolling resistance between the particles is incorporated [21]
and modeled similarly to the contact elasticity and friction for
the sliding mode. The rolling force [31] is given as

F i j
r = krδroll − γrvroll, (1)

where kr is the rolling stiffness, δroll is the rolling displace-
ment, γr is the damping constant for the rolling mode, and vroll
is the relative rolling velocity. Like sliding friction, the rolling
force is limited by μrF e,i j

N , where μr denotes the rolling
friction coefficient. In this work, kn = kt = 2 × 105 N/m,
kr = kt/10, μ = μr = 0.5, γn = γt = γr = 50 kg/s, and
F0/knD = 0.0025. The pressure values reported in the main
text are in SI units. The particles are given random kicks to
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FIG. 1. Evolution of the gel microstructure under compression. (a) Initial low packing fraction, φ = 0.22, showing the presence of
large voids and density heterogeneities. (b) Intermediate packing fraction, φ = 0.3, with small voids after structural rearrangement under
compression. (c) Final compact state, φ = 0.44, with minimal density heterogeneity.

their translational and rotational degrees of freedom, compen-
sated by a damping term. The Langevin equation is solved to
update the particle positions and velocities,

mi
d2xi

dt2
= F i − miγt

dxi

dt
+ f

i
(t ), (2)

Ii
d2θ i

dt2
= T i − Iiγr

dθ i

dt
+ Li(t ), (3)

where f
i
(t ) and Li(t ) are respectively a δ-correlated random

force/torque having zero mean with the following properties:

〈 f
i
(t ) · f

j
(t + τ )〉 = 2	δ(τ )δi j ;

〈Li(t ) · L j (t + τ )〉 = 2	δ(τ )δi j . (4)

Here γt and γr are translational and rotational damping co-
efficients, mi and Ii, are the mass and moment of inertia of
the particle i, F i and T i are the force and torque due to
interparticle interactions, 	 is the strength of fluctuations, and
xi and θ i denote the translational and rotational degrees of
freedom.

Thermal fluctuations will lead to the flocculation of parti-
cles as the interaction is attractive, and the flocs are brought
closer by the isotropic compression. We employ compression
on top of the thermal fluctuations for the rapid formation of the
percolating network. In fact, as per our simulation protocol,
the gel formation process involves two timescales: one is the
compression timescale and another is the Brownian timescale.
Fast compression will lead to higher gelation concentration
and dense microstructure, whereas slow compression will give
rise to open microstructure and lower gel point. One can
tune the timescale of the compression to obtain different mi-
crostructures at a given temperature. Once the flocs connect to
form a system spanning percolating network at the gel point,
Brownian motion has little effect on the dynamics since the
attractive potential is much stronger than the thermal force
(strong gel). The dynamics of the strong gel are determined
by the internal stress field induced during the structural arrest
at the gel point and the imposed deformation field. When the
thermal fluctuations are comparable to the attraction, weak
gels are formed, and the Brownian forces will have a signif-
icant role in the microscopic dynamics of the gel network.
We focus only on the strong gels in this study; hence the
rearrangement of the microstructure due to thermal motion is
not possible.

We compress the gel network isotropically and quasistati-
cally at a very slow strain rate to various target pressures. The
strain rates are chosen in such a way [32] that the product
of the natural inertial timescale (

√
mD/F0) associated with

the characteristic attraction force and the maximum strain
rate is very small (∼10−6). In this slow compression limit,
the inertial effects are significantly reduced. The system is
then allowed to reach mechanical equilibrium (i.e., total force
and torque on each particle are negligibly small [O(10−7)]
with almost zero kinetic energy [O(10−16)]) at different target
pressures before we start measuring the stress correlations.
The packing fraction φ, corresponding to P = 2.75 N/m, is
0.22, and we went up to φ = 0.44 corresponding to the highest
pressure investigated, P = 328 N/m. In Fig. 1, we present the
snapshots of the configurations at different packing fractions
showing the structural evolution of the colloidal gel system
under compression. The first stable percolating network forms
at around φ ≈ 0.21 with large density inhomogeneities, and
as the compression proceeds, voids collapse, and the structure
becomes compact with lesser density fluctuations. For each
pressure, we performed simulations with ten different inde-
pendent initial configurations and found minimal variations
(less than 5%) in the properties of interest. We construct the
stress field from the particle-level force data and calculate
all the correlations between different stress components. The
stress tensor in Fourier space [33] reads

σγ δq = 1

2A

∑

i, j,i �= j

F γ

i j rδ
i j

e−iq·ri − e−iq·r j

iq · ri j

, (5)

where A is the system area, q is allowed wave vector, γ , δ

denote the Cartesian coordinates, F i j is the interparticle force,
ri is the position of particle i, and ri j is the radial vector
between particles i and j. As the stress tensor is nonsymmetric
because of noncentral interactions, this representation will
have four spherical components in Fourier space [12]:

σ1q = − 1
2 (σxxq + σyyq ),

σ2q = 1
2 (σxxq − σyyq),

σ3q = 1
2 (σxyq + σyxq),

σ4q = 1
2 (σxyq − σyxq).
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FIG. 2. (a) Fourier space stress correlation fields in the Cartesian
frame, Sabq, for P = 2.75 (φ = 0.22) are shown as a matrix (symmet-
ric). The first row corresponds to 1, 1; 1, 2; 1, 3; and 1, 4 components,
and similarly, other components are shown in the subsequent rows.
(b) The same field in the radial frame, Sabq.

III. STRESS CORRELATIONS AND ISOTROPY

If the system is translation invariant, the autocorrelation
matrix of these Cartesian spherical stress components in
Fourier space reads as S∼∼q = 1

A 〈σ
˜

q σ
˜

∗
q〉c, where ∗ denotes the

complex conjugate and 〈 〉c represents the second cumulant
for the ensemble average. S∼∼q is calculated for all the stress
components defined earlier. We show the same in Fig. 2(a)
as a matrix of fields for pressure P = 2.75, which is very
close to the gel point. We observe similar fields for P = 328
(not shown). Only pressure S11 q and torque S44 q autocorre-
lations and their cross correlations are isotropic and the rest
are anisotropic. The whole matrix is clearly symmetric with

FIG. 3. (a) Angle-averaged off-diagonal correlations Sab q,
ab = 13, 14, 23, 24, 31, 32, 41, 42, for P = 2.75 (φ = 0.22).
(b) Contact orientation distribution at P = 2.75 (φ = 0.22). Same
distribution is observed at P = 328 (φ = 0.44) (not shown)

unexpected anisotropic cross correlations between the torque
and other fields as previously observed in granular matter
[11,12]. Although the gel network is formed at a very low
packing fraction with fractal correlations, it is very surprising
that the structure of the stress autocorrelation fields bears a
striking resemblance to that in frictional granular matter. To
understand the role of material isotropy, we now calculate the
Fourier space autocorrelations matrix in the radial frame with
basis (eq, eφ). The corresponding stress vector components are
given as

σ
q̂
1 q = − 1

2 (σqq q + σφφ q),

σ
q̂
2 q = 1

2 (σqq q − σφφ q),

σ
q̂
3 q = 1

2 (σqφ q + σφq q),

σ
q̂
4 q = 1

2 (σqφ q − σφq q),

where q̂ ≡ q/q denotes the direction vector in reciprocal
space. The autocorrelation matrix of these radial components

is given by S∼∼ q = 1
A 〈σ

˜

q̂
q(σ

˜

q̂
q)∗〉c. It can be easily shown [12]

that under the constraint of material balance and isotropy, the
structure of the radial autocorrelation fields contains just two
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FIG. 4. Plot of the pressure autocorrelation function Sab q,
ab = 11, 12, 21, 22, for (a) P = 2.75 (φ = 0.22) and (b) P = 328
(φ = 0.44). Plot of the torque density autocorrelation func-
tion Sab q, ab = 33, 34, 43, 44, for (c) P = 2.75 (φ = 0.22) and
(d) P = 328 (φ = 0.44).

spatially isotropic functions, namely pressure and torque au-
tocorrelations. The same field is shown in Fig. 2(b), depicting
excellent agreement with the theory, which implies that the
constraints of mechanical balance and material isotropy are
indeed satisfied in our system. The off-diagonal components,
expected to be identically zero from theory, show remnant
fluctuations. In previous studies [12], these residual fluctua-
tions were attributed to numerical inaccuracy, which is indeed
true in the present study as angle averaging [see Fig. 3(a)]
strongly reduces the fluctuations revealing their random na-
ture. We also compute the contact orientation distribution and
find that the contact network remains isotropic throughout the
deformation [see Fig. 3(b)]. This provides additional proof of
the material isotropy.

Next, we investigate the pressure and torque autocorrela-
tions (Fig. 4). The torque correlation approaches zero in the
q → 0 limit for high pressure, whereas it reaches a finite
nonzero value for low pressure. It implies that the gel net-
work carries some long-range torque correlation close to the
gel point, which gives rise to a correlated system spanning
vortex-like motions [see Fig. 5(a)], which precludes the ap-
plicability of classical elasticity theory. At high pressure, the
torque fluctuations become hyperuniform leading to localized
nonaffine motions [Fig. 5(b)]. The pressure correlations show
divergence: q−ν in the small-wave-number limit for low pres-
sure, whereas it approaches almost a constant value as q → 0
for high pressure. The divergence exponent is measured by
averaging over all the components of relevant correlations
(11,12,21,22) [Fig. 4(a)], and it turns out that the pressure
autocorrelations show a divergence of the form q−0.51±0.02 at
P = 2.75.

IV. PRESSURE FLUCTUATIONS

In earlier works [12], it was shown that the normal elastic
behavior demands normal fluctuations of pressure and torque
density. The torque autocorrelations are not hyperuniform for
the colloidal gel at low pressure. However, at high pressure
P = 328, torque autocorrelations become hyperuniform, and
thus the stress autocorrelation is fully determined by the pres-
sure fluctuations statistics. Hence, we compute the pressure
fluctuations in real space by randomly placing a circular win-
dow of radius R and measuring the variance of pressure VP(R)
due to circle-to-circle and sample-to-sample fluctuations,

VP(R) ≡ 〈P(R)2〉 − 〈P(R)〉2 ∼ 1

Rη
. (6)

In the case of normal fluctuations, the variance is expected to
decay as the inverse area of the probing window, i.e., 1/R2,

FIG. 5. Nonaffine part of the displacement field, i.e., displacement of a particle (from its reference position) subtracted from the
corresponding displacement that would have occurred had the particle moved affinely as per the macroscopic strain. (a) Colloidal gel system
at low pressure, P = 2.75 (φ = 0.22). (b) Colloidal gel system at high pressure, P = 328 (φ = 0.44).
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FIG. 6. (a) Pressure variance as a function of the radius of the
probing circular window. The solid straight lines are the best lin-
ear fits and represent the power law with exponent −1.5 ± 0.02
and −1.9 ± 0.03, respectively, for low and high pressure. (b) Force
chains in colloidal gel sample, P = 2.75 (φ = 0.22), (c) P =
328 (φ = 0.44). The compressive force is drawn in red, whereas the
green color represents the tensile force. We compute the magnitude
of the pairwise normal force and scale the line (joining two particle
centers for a pairwise interaction) thickness as per the magnitude.

and consequently, the stress or pressure correlation shows no
divergence in the low-wave-number limit. In a more generic
sense, the exponent of the divergence in the Fourier space
is related to the exponent of the decay of the pressure fluc-
tuations in real space as ν = 2 − η [12]. In Fig. 6(a) we
show the pressure fluctuations as a function of R for both
pressures, P = 2.75 and P = 328. For low pressure, VP(R)
decays like R−1.5, which is slower than the normal decay.
This slope is in line with the slope of the divergence in
the stress correlations in Fourier space. Note that although
the torque correlations are not hyperuniform at low pressure,
the long-range stress correlations are predominantly decided
by the pressure fluctuations. Far above the gel point, the pres-
sure fluctuations become approximately normal with a slope
of 1.9, leading to almost divergence-free behavior of the pres-
sure autocorrelations in the small-q limit. Again, the statistics
of the pressure fluctuations determine the long-distance decay
of the stress correlations.

Force chains. To understand the microscopic origin of the
long-distance decay behavior for low and high pressures, we
plotted the real-space map of the force chains in Figs. 6(b) and
6(c). One can clearly observe the inhomogeneity in the force
chain network at low pressure created due to the presence
of large voids in the gel contact network. We also determine
the characteristic chain length as a function of the packing
fraction above which the particle network looks uniform. The
local particle density is calculated in square boxes of increas-
ing length, and it shows little fluctuations when the size of the

FIG. 7. The correlation length, ξ , is plotted as a function of
packing fraction, φ. The solid line represents the power-law fit with
a slope of −1.78 ± 0.05.

box is larger than the correlation length, which corresponds to
the characteristic chain length [26]. Due to the finite system
size, the correlation length at each packing fraction is taken as
the box size, where the standard deviation of the local density
normalized by the global density becomes 0.5. For a fractal
network with an invariant fractal dimension, the correlation
length ξ shows power-law decay with the packing fraction
with an exponent −1/(d − d f ) (see Fig. 7), where d f is the
fractal dimension and d is the Euclidean dimension. Our data
suggest a fractal dimension of 1.44. The gel network is fractal
in nature at low pressure, and the inhomogeneity in the force
chain network is created due to the strong fractal-like struc-
tural correlations, whereas the frictional granular media is not
fractal but still gives rise to strong heterogeneity in the force
chains [11,12]. As the frictional granular matter jams at high
packing fractions, these anomalous correlations, once formed,
do not relax through structural rearrangement. In contrast,
under compression, the gel network loses fractal correlations
and undergoes structural rearrangement through the collapse
of voids leading to homogeneous and isotropic force chain
networks at high pressures.

V. LOCAL VOLUME FRACTION FLUCTUATIONS
AND HYPERUNIFORMITY

The transition from fluid to solid-like phase across diverse
amorphous materials presents many mechanical similarities
in terms of finite modulus, yield stress, etc., which can be
captured under a common notion of “jamming” [34]. The jam-
ming transition in the amorphous materials happens without
any apparent structural signature; i.e., the particle configu-
ration remains disordered in the solid-like phase similar to
the liquid phase. But, the exhibition of solid-like properties
in the absence of the long-range crystalline order must be
due to some long-range pair correlations. Previous studies
on the granular materials [35–37] and many other systems
[38] indeed presented the existence of a long-ranged di-
rect correlation function which is a direct consequence of
the hyperuniformity, i.e., the unusual suppression of density
fluctuations in the long-wavelength limit. In the case of a
hyperuniform system of point particles, the structure factor
S (q) tends to zero in the limit |q| → 0, which in real space
translates into a slower growth (slower than Rd ) of the number
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variance of particles in a spherical observation window of
radius R in the large-R limit. For finite-size and size-disperse
particles, the hyperuniformity condition in the real space de-
mands that the local volume fraction fluctuations decay faster
than the inverse of the observation window volume [39],
and in the Fourier space, instead of the structure factor, the
compressibility [40] vanishes in the low-wave-number limit.
Although most of the studies focused on characterizing the
local density fluctuations in the frictionless granular materials
jammed at very high packing fractions and established a link
between the hyperuniformity and the jammed state, very few
studies were directed toward exploring the long-wavelength
density fluctuations in systems jammed at comparatively low
packing fractions such as colloidal gel, colloidal glass, and
frictional granular materials. To understand the commonalities
or lack thereof between diverse jammed systems, character-
ization of the long length scale density fluctuations is of
great fundamental interest. The virial stress tensor in the
smaller subvolumes of the system is given by the volume
average of the dyadic products between the contact forces
and the branch vector over all the contacts in that subregion,

σαβ = 1
V

∑
j �=i

rα
i j F

β
i j

2 . As per this definition, the spatial stress
fluctuations will depend on the number density fluctuations,
which translates into the local volume fraction fluctuations for
finite-size particles. Hence, we believe that the local density
fluctuations will also influence the fluctuations of the local
pressure in the jammed amorphous system and ultimately
dictate the long-distance decay of the pressure correlations.

Accordingly, to understand the structural origin of the
abnormal or normal pressure fluctuations under a common
framework, we compute the local volume fraction fluctuations
as it provides the appropriate structural descriptions of these
disordered packings. We randomly place a circle of radius
R within the system and measure the local volume fraction
within this window [39,41]. Similarly to the pressure variance,
we measure the variance of the packing fraction, Vφ (R) ≡
〈φ(R)2〉 − 〈φ(R)〉2 ∼ 1

Rd+α , where exponent α expresses the
degree of uniformity [41]. For normal uniformity, α = 0; for
hyperuniform systems (disordered isotropic systems where
long-wavelength fluctuations are suppressed), α > 0; and
α < 0 denotes hyperfluctuations observed in fractal networks
[42]. We also simulated frictional and frictionless granu-
lar materials per the recent works [11,12] to measure the
real-space packing fraction fluctuations. For the granular sim-
ulation, we used an amorphous granular assembly of N =
16 000 disks, half of which have a radius 0.35 and the other
half with a radius 0.49. Here, for completeness, we show
the pressure fluctuations in real space in Fig. 8 for frictional
and frictionless materials as per our recent works [11,12].
In Fig. 9, we plot the variance of the local packing frac-
tion Vφ as a function of R for colloidal gel (P = 2.75 and
P = 328; here μ = 0.5) and the granular materials (μ = 0
and μ = 0.5; here P = 72). The colloidal gel network at
low pressure shows hyperfluctuations; i.e., the local packing
fraction fluctuations decay slower than the reciprocal of the
area of the observation window. The gel network at high
pressure shows hyperuniformity as the exponent of the decay
of Vφ is greater than 2. We also simulated a larger system
size (N = 105) for the colloidal gel system to explore the

(a)

(b)

FIG. 8. The variance of pressure, VP(R), as a function of radius of
the probing circular window [11,12]. (a) Frictional granular matter.
The solid line is the best linear fit with VP(R) ≈ 1

R . (b) Frictionless
granular matter: The solid line is the best linear fit with VP(R) ≈ 1

R2 .

packing fraction fluctuation at a larger length scale compared
to what could be explored in the smaller system without any
finite-size corrections. Figure 10 presents the local packing
fraction variance for the large colloidal gel system under low
and high pressure. A similar picture emerges to that of the
smaller system size: the low-pressure gel shows hyperfluctua-
tions and the high-pressure gel hugely suppresses the packing
fraction fluctuations, mimicking a hyperuniform organization
of the constituent particles. Similarly, the frictionless granular
materials also show hyperuniform behavior with respect to
the local packing fraction fluctuations (R−3 decay). Lastly, the
frictional granular materials do not exhibit hyperuniformity;
rather they show uniform behavior like 1/R2 decay similar to
disordered liquids.

To further strengthen our real-space results of the den-
sity fluctuations, we additionally compute the structure factor
S (q) for the monodisperse colloidal gel system [35] and
the isothermal compressibility [40], χ (q), for the bidisperse
granular system. For the monodisperse system, the density
fluctuations are hyperuniform provided the structure factor
S (q) tends to zero as the wave number q → 0. For the size-
dispersed systems, S (q) exhibits no unusual suppression in
the low-wave-number limit; instead, the isothermal compress-
ibility χ (q) tends to zero as q → 0. The static structure factor
is calculated by taking a direct Fourier transform of the par-
ticle positions and angularly averaging over all q of equal
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FIG. 9. Variance of the local packing fraction, Vφ vs R, as observed in granular materials and gels. The solid line is the best linear fit and
represents the power-law scaling.

magnitude q [35,39,43]:

S (q) = 1

N

∣∣∣∣∣

i=N∑

i=1

exp(iq · ri )

∣∣∣∣∣

2

. (7)

For calculating the compressibility χ (q) for a size-
dispersed system, the partial structure factors are first
calculated as [40]

Si j (q) = 1

N
〈ρi(q)ρ j (−q)〉, (8)

where ρi(q) represents the partial density fields and given as

ρi(q) = ∑Ni
j=1 exp(iq · r j ). Ni denotes the number of particles

in species i such that the total number of particles N = ∑
Ni.

Let us also denote the species concentration as ci, which is
given as Ni/N and the density, ρ = N/V . For a bidisperse
system, the compressibility is given as [40,44]

ρkBT χ (q) = S11(q)S22(q) − S2
12(q)

c2
1S22(q) + c2

2S11(q) − 2c1c2S12(q)
, (9)

where kB is Boltzmann’s constant and T is temperature.

FIG. 10. Variance of the local packing fraction, Vφ vs R, as ob-
served in colloidal gels for large system size, N = 100 000. The solid
line is the best linear fit and represents the power-law scaling.

In Fig. 11, we present a comparative picture of the structure
factor and compressibility data for diverse jammed amor-
phous materials. For monodisperse colloidal gel systems at
low pressure, the structure factor S (q) diverges in the limit of
small wave number, representing hyperfluctuations, which is
the antithesis of a hyperuniform system. Unboundedness of
S (q) in the low-q limit gives rise to slower than normal decay
of the packing fraction fluctuations on domains of increasing
size. On the contrary, the gel system when compressed to a
high pressure shows almost a linear decay of the structure
factor as the small-wave-number limit is approached. Hence,
the gel system suppresses the density fluctuations in the
limit of large length scale upon compression to higher
pressure. Also, for the bidisperse frictionless granular sys-
tem, compressibility displays anomalous low-q linear decay

FIG. 11. (a) Structure factor for the low-pressure colloidal
gel (P = 2.75 and φ = 0.22) for the largest system investigated
(N = 105). (b) Structure factor for the colloidal gel system at high
pressure (P = 328 and φ = 0.44) for the largest system investigated
(N = 105). (c) Compressibility for the bidisperse frictional granular
materials above the jamming point (P = 72 and φ = 0.81). Here,
N = 16 000. (d) Compressibility data for the bidisperse frictionless
granular materials above the jamming point (P = 72 and φ = 0.84).
Here, N = 16 000.
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representative of hyperuniform density fluctuations. Con-
versely, in the presence of friction, the compressibility for
granular systems plateaus to a finite positive value for q → 0
and shows no sign of decay. Hence, the frictional granular
matter certainly does not belong to a hyperuniform system.
This is the most interesting result of this work as it establishes
a strong link between the abnormal pressure fluctuations and
the non-hyperuniform behavior of the many-particle systems.
The normal elastic decay of stress correlations is intimately
linked to the long-wavelength suppression of the local packing
fraction fluctuations, i.e., hyperuniform behavior. This obser-
vation points to some sort of nontrivial self-organization of the
disordered network in exhibiting the normal elastic behavior.
The self-organization is controlled by the mechanical and
topological constraints. For frictionless materials, although
the structural arrest takes place at high packing fractions,
the particles can rearrange easily through sliding whereas in
frictional material, the sliding is constrained by the Coulomb
friction which frustrates the relaxation of the density inho-
mogeneities. The positivity constraint on the normal force is
released in the colloidal gel system and as the structural arrest
takes place at low packing fraction, the system can reorganize
and minimize the density fluctuations at high pressure.

VI. SUMMARY

In conclusion, we convincingly demonstrate that under
the mechanical balance and material isotropy constraints,
the full stress autocorrelation matrix in soft gel materials is
determined by the torque and pressure autocorrelations simi-
larly to frictional granular matter, thus suggesting a universal
behavior across diverse amorphous solids. Interestingly, close
to the gel point, we observe the divergence in pressure cor-
relations in the q → 0 limit and non-hyperuniform torque

correlations whose contribution to the stress correlations at
long length scale is subdominant and the pressure fluctuation
statistics strongly determine the exponent of the divergence.
We have also linked this divergence to inhomogeneous and
anisotropic force networks formed due to the presence of
large voids at low packing fractions. At high pressure, the
system shows almost divergence-free elastic behavior with
hyperuniform torque fluctuations and the normal pressure de-
cay as the large voids collapse and the system has enough
space to relax the force inhomogeneities which is not possible
for the frictional granular matter jammed at high packing
fractions. Most importantly, we identify a connection between
the abnormal pressure fluctuations and the non-hyperuniform
behavior of the system with respect to the local packing frac-
tion fluctuations, thus establishing a common framework to
understand the deviations from the normal elastic like behav-
ior across different jammed systems. The result of this work
begs for the development of a novel theoretical framework to
understand the mechanical response of gel at low pressure
and real granular materials as these systems clearly deviate
from the normal elastic behavior as shown. This work pro-
vides a plausible understanding of the physical mechanism
behind ultra-long-ranged cooperative dynamics with the help
of long-range stress correlations. Although we expect our
results to be generic and unaffected by the spatial dimen-
sion, future work will focus on confirming the same in three
dimension.
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