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Nonreciprocal entanglement in cavity-magnon optomechanics
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Cavity optomechanics, a promising platform to investigate macroscopic quantum effects, has been widely
used to study nonreciprocal entanglement with the Sagnac effect. Here, we propose an alternative way to realize
nonreciprocal entanglement among magnons, photons, and phonons in a hybrid cavity-magnon optomechanics,
where the magnon Kerr effect is used. We show that the Kerr effect gives rise to a magnon frequency shift and an
additional two-magnon effect. Both of them can be tuned from positive to negative via tuning the magnetic field
direction, leading to nonreciprocity. By tuning system parameters such as magnon frequency detuning or the
coefficient of the two-magnon effect, bipartite and tripartite entanglements can be nonreciprocally enhanced. By
further studying the defined bidirectional contrast ratio, we find that nonreciprocity in our system can be switched
on and off, and can be engineered by the bath temperature. Our proposal not only provides a potential path to
demonstrate nonreciprocal entanglement with the magnon Kerr effect, but also opens a direction to engineer and
design diverse nonreciprocal devices in hybrid cavity-magnon optomechanics with nonlinear effects.
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I. INTRODUCTION

Macroscopic quantum entanglement, as a core resource
in quantum information science [1], is crucial to understand
the classical-to-quantum boundary [2]. Such entanglement is
generally generated in bilinear or nonlinear quantum systems.
Cavity optomechanics (COM) [3], formed by photons nonlin-
early coupled to phonons via radiation pressure, is a promising
platform to investigate quantum effects [4–11], especially
for macroscopic quantum effects theoretically [12–16] and
experimentally [17–21]. Very recently, nonreciprocal entan-
glement in COM has attracted great interest [22,23]. This is
because entanglement can be well protected (enhanced) by
breaking the Lorentz reciprocity [22]. Utilizing this, various
nonreciprocal devices in COM have been realized [24–31].
Previous proposals for studying nonreciprocal entanglement
in COM [22,23] mainly rely on the Sagnac effect [32,33],
which causes a positive or negative shift on the cavity
resonance frequency, dependent on the direction of the driv-
ing field on the cavity. Apart from COM, magnons in the
Kittle mode of ferromagnetic yttrium iron garnet (YIG)
spheres [34–38] can also provide new insights for studying
macroscopic quantum effects [39–41]. This is due to the fact
that magnons have an intrinsic Kerr effect from the mag-
netocrystallographic anisotropy [42,43], which can also give
a positive or negative frequency shift on the Kittle mode
by tuning the direction of the magnetic field [44–46]. The
Kerr effect has been employed to investigate various phenom-
ena, including multistability [42–44], long-distance spin-spin
interactions [47], quantum phase transitions [48,49], and
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sensitive detection [50]. However, nonreciprocal entangle-
ment has not yet been revealed with the Kerr effect.

Here, we propose how to realize nonreciprocal bi- and
tripartite entanglements in a hybrid cavity-magnon optome-
chanics. We find that, not only all bipartite entanglements
but also a genuine tripartite entanglement can be generated
in the absence of the magnon Kerr effect, and the initial
optomechanical entanglement can be partially transferred to
the cavity-magnon and magnon-phonon subsytems. When the
Kerr effect is considered, a mean magnon-number-dependent
frequency shift on the magnons is produced. Similar to the
Sagnac effect [32,33] on the cavity field, the Kerr-effect-
induced frequency shift can be positive or negative by tuning
the direction of the magnetic field. Different from the Sagnac
effect, the magnon Kerr effect also gives rise to an additional
two-magnon effect, which modulates the maximum values of
all entanglements in our setup. As a result, both the optome-
chanical and magnon-phonon entanglements are reduced, but
the magnon-photon and the tripartite entanglements are en-
hanced, compared to the case without the Kerr effect. By
further tuning the aligned magnetic field along the crystallo-
graphic axis [100] or [110], one can see that all entanglements
can be nonreciprocally generated. Interestingly, all entangle-
ments except for the optomechanical entanglement can be
nonreciprocally enhanced with accessible parameters. This
indicates that entanglement transfer from the optomechancial
entanglement to the cavity-magnon and magnon-phonon sub-
systems is nonreciprocal. Finally, we show that perfect
nonreciprocity for all bi- and tripartite entanglements can be
achieved, by studying the defined bidirectional contrast ratio.
The achieved bi- and tripartite entanglements in our proposal
are continuous variable (CV) entanglements, which have
been widely applied to quantum transduction [51,52], quan-
tum networking [53–58], quantum sensing [59], Bell-state
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FIG. 1. (a) Schematic diagram of the proposed cavity-magnon
optomechanical system. It consists of a driven cavity simultaneously
coupled to both a Kittle mode with Kerr nonlinearity in a YIG sphere
and a MR, with coupling strength gm and g0, respectively. The YIG
sphere is placed in a static magnetic field, along the crystallographic
axis [100] (see the red-arrowed line) or [110] (see the blue-arrowed
line) of the YIG sphere.

test [60], quantum teleportation [61–63], microwave-optics
conversion [64–67], and other CV quantum information pro-
cessing [68–71]. Thus, CV entanglement can be regarded as
a useful resource for CV quantum information science. Our
work provides a potential way to nonreciprocally enhance
and engineer quantum entanglement with the Kerr effect, and
opens a promising path to realize diverse nonreciprocal de-
vices with the magnon Kerr effect.

II. MODEL AND HAMILTONIAN

We consider a hybrid cavity-magnon optomechanical sys-
tem consisting of a strongly driven cavity with frequency ωa

coupled to both a mechanical resonator (MR) with frequency
ωb and a micron-size YIG sphere supporting a Kittle mode
with frequency ωm, where the YIG sphere is positioned in
a static magnetic field B0 (see Fig. 1). The Hamiltonian of
the proposed hybrid system can be written as (setting h̄ = 1)
H = Hom + Hkerr + Hint + Hd , where the COM Hamiltonian,
Hom = ωaa†a + 1

2ωb(p2 + q2) − g0a†aq, describes the radi-
ation pressure interaction between the cavity field and the
MR. g0 = (ωa/L)

√
h̄/mωb is the single-photon optomechan-

ical coupling strength, with L being the cavity length in the
absence of the intracavity field and m the effective mass
of the MR. The second term Hkerr = ωmm†m + K0(m†m)2

characterizes the Kerr nonlinearity of magnons in the Kit-
tle mode, where K0 is reversely proportional to the volume
of the YIG sphere, and its sign can be tuned by varying
the direction of the static magnetic field. Specifically, when
the crystallographic axis [100] ([110]) is aligned along the
magnetic field, K0 > 0 (<0) [44]. Experimentally, K0 can
be tuned from 0.05 to 100 nH for the diameter of the YIG
sphere from 1 mm to 100 µm. Here, a (a†) and m (m†) are
the annihilation (creation) operators of the cavity and Kittle
modes, respectively, and q (p) is the dimensionless posi-
tion (momentum) quadrature of the MR. The Hamiltonian
Hint = gm(a†m + am†) represents the magnetic dipole cou-
pling between the cavity and the Kittle mode with the tunable
coupling strength gm. The last term, Hd = i�0(a†e−iω0t −
aeiω0t ) with frequency ω0 and Rabi frequency �0, denotes
the coupling between the driving field and the cavity. With
the strong driving field (�0 � κa, γm), the higher-order fluc-
tuation terms in quantum Langevin equations can be safely

neglected when each operator is rewritten as the steady-state
value plus its quantum fluctuation, i.e., O → Os + O, with
O = a, m, q, p. Then the linearized Hamiltonian of the hy-
brid system is given by (see the detailed derivation in the
Appendix)

H = �̃aa†a + �̃mm†m + 1

2
ωb(q2 + p2) − 1√

2
gb(a + a†)q

+ gm(a†m + am†) + 1

2
K (m†2 + m2), (1)

where �̃a = ωa − ω0 − g0qs is the effective cavity frequency
detuning induced by the displacement qs of the MR, and
�̃m = �m + �K , with the magnon frequency detuning �m =
ωm − ω0 and the magnon frequency shift �K ≡ 2K , is the
effective magnon frequency detuning induced by the magnon
Kerr effect. The defined parameter K ≡ 2K0Nm characterizes
the strength of the two-magnon effect, which can squeeze
magnons [47]. As K0 can be positive (negative), so K > 0
(<0), leading to �K > 0 (<0). Obviously, K can be signif-
icantly amplified by the steady-state magnon number Nm =
|ms|2, which can be indirectly tuned by the strong driving field
acting on the cavity, via the beam-splitter interaction between
the cavity and the Kittle mode (i.e., a†m + am†). gb ≡ √

2g0as

is the effective linearized optomechanical coupling strength,
directly tuned by the strong driving field acting on the cavity
(i.e., as ∝ �0). For simplicity, ms is assumed to be real via
properly choosing the phase of the driving field.

III. DYNAMICS AND ENTANGLEMENT METRIC

According to the quantum Langevin equation, the dy-
namics of the linearized hybrid system governed by the
Hamiltonian (1) can be written as (see details in the Appendix)

q̇ = ωb p, ṗ = −ωbq + gb(a + a†)/
√

2 − γb p + ξ,

ȧ = −(i�̃a + κa)a + igbq/
√

2 − igmm +
√

2κaain, (2)

ṁ = −(i�̃m + γm)m − igma − iKm† +
√

2γmmin,

where ain, min, and ξ are the input noise operators with
zero-mean value (i.e., 〈ain〉 = 〈min〉 = 〈ξ 〉 = 0). Under
the Markovian approximation, two-time correlation
functions of these input noise operators in the resolved
sideband regime (i.e., ωb � γb) are given by [72]
〈a†

in(t ′)ain(t )〉= n̄aδ(t − t ′), 〈ain(t )a†
in(t ′)〉= (n̄a + 1)δ(t−t ′),

〈m†
in(t ′)min(t )〉=n̄mδ(t−t ′), 〈min(t )m†

in(t ′)〉= (n̄m+1)δ(t − t ′),
〈ξ (t )ξ (t ′) + ξ (t ′)ξ (t )〉/2 
 γb(2n̄b + 1)δ(t − t ′), where
n̄σ = [exp(h̄ωσ/kBT − 1)]−1 (σ = a, b, m), with kB being
the Boltzmann constant and T the bath temperature, are
the mean thermal excitation number in the cavity, the
Kittle mode, and the MR, respectively. In compact form,
Eq. (2) can be rewritten as u̇(t ) = Au(t ) + f (t ), where
u(t ) = [xa(t ), ya(t ), xm(t ), ym(t ), q(t ), p(t )]T and f (t ) =
[
√

2κaxa
in(t ),

√
2κaya

in(t ),
√

2γmxm
in(t ),

√
2γmym

in(t ), 0, ξ (t )]T

are the vectors of the system and the input noise operators,
respectively, and the drift (coefficient) matrix A is (see details
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in the Appendix)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κa �̃a 0 gm 0 0

−�̃a −κa −gm 0 gb 0

0 gm −γm �̃−
m 0 0

−gm 0 −�̃+
m −γm 0 0

0 0 0 0 0 ωb

gb 0 0 0 −ωb −γb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where �̃±
m = �̃m ± �K/2.

Since the input quantum noises are zero-mean quantum
Gaussian noises, the quantum steady state for the fluctuations
is a zero-mean CV three-mode Gaussian state, fully char-
acterized by a 6 × 6 covariance matrix Vi j = 〈ui(t )u j (t ′) +
u j (t ′)ui(t )〉/2 (i, j = 1, 2, . . . , 6), where the steady-state V
can be given by solving the Lyapunov equation

AV + VAT = −D. (4)

Here, D = diag[κa(2n̄a + 1), κa(2n̄a + 1), γm(2n̄m + 1),
γm(2n̄m + 1), 0, γb(2n̄b + 1)] is defined by 〈ni(t )n j (t ′) +
n j (t ′)ni(t )〉/2 = Di jδ(t − t ′). To investigate bipartite
and tripartite entanglement of the proposed system, the
logarithmic negativity EN [73,74] and the residual contangle
Rτ [75] are employed, respectively. A bona fide quantification
of tripartite entanglement is given by the minimum residual
contangle [75], Rmin

τ ≡ min[Rm|ab
τ ,Rb|am

τ ,Ra|mb
τ ], where

Ri| jk
τ ≡ Ci| jk − Ci| j − Ci|k � 0 (i, j, k = a, m, b), with Cu|v

being the contangle of a subsystem of u and v (v contains one
or two modes), is a proper entanglement monotone defined
as the squared logarithmic negativity. A nonzero minimum
residual contangle Rmin

τ > 0 means the presence of genuine
tripartite entanglement in the system.

IV. NONRECIPROCAL ENTANGLEMENT
WITH KERR EFFECT

Before starting, we first point out that nonreciprocal
entanglement induced by the magnon Kerr effect is different
from the mechanism of the Sagnac effect. This is due to
the fact that, the magnetic field mediated Kerr effect not
only gives a redshift (blueshift) in magnon frequency, but
also generates a two-magnon effect. To study nonreciprocal
entanglement, the following experimentally accessible
parameters are used: ωa = ωm = 2π × 10 GHz, ωb/2π =
10 MHz, κa/2π = γm/2π = 0.4ωb, γb/2π = 100 Hz,
gm = gb = 2π × 0.5ωb, K = κa, T = 10 mK, �̃a = ωb, and
�m = −ωb. These parameters numerically guarantee
the system stability according to the Routh-Hurwitz
criterion [76]. To investigate nonreciprocal entanglements,
we plot three logarithmic negativities and the minimum
residual contangle versus the magnon frequency detuning
�m in Fig. 2. The red and blue curves respectively denote
the magnetic field along the crystalline axis [100] and [110],
corresponding to �K > 0 and �K < 0. For comparison,
entanglement without the Kerr effect (i.e., �K = 0) is also
presented (see the green curve in Fig. 2). From Fig. 2(a), we
can see that the optomechanical entanglement Eab decreases
first and then increases with �m in the absence of the Kerr
effect (see the green curve), while magnon-photon (Eam)

FIG. 2. Logarithmic negativities (a) Eab, (b) Eam, (c) Emb, and
(d) the minimum residual contangle Rmin

τ , vs magnon frequency
detuning �m with �K > 0 (the red curve), �K = 0 (the green
curve), and �K < 0 (the blue curve). The parameters are ωa =
ωm = 2π × 10 GHz, ωb/2π = 10 MHz, κa/2π = γm/2π = 0.4ωb,
γb/2π = 100 Hz, gm = gb = 2π × 0.5ωb, K = κa, T = 10 mK, and
�̃a = ωb.

and magnon-phonon (Emb) entanglements increase first
and then decrease [see Figs. 2(b) and 2(c)], which is fully
opposite to Eab. This indicates that the initial magnon-phonon
entanglement is partially transferred to the cavity-magnon
and cavity-phonon subsystems, owing to the mediation
of photons. Besides, a genuinely tripartite entanglement
is generated around �m ≈ −ωb, as demonstrated by the
nonzero minimum residual contangle Rmin

τ in Fig. 2(d).
When the Kerr effect is taken into account, both Eab

and Emb have a certain reduction, but Eam and Rmin
τ are

enhanced. By tuning the direction of the magnetic field, i.e.,
changing �K > 0 (<0) to �K < 0 (>0), all entanglements
have different responses (see red and blue curves in
Fig. 2), corresponding to the nonreciprocity. Utilizing
this nonreciprocity, magnon-phonon, magnon-photon, and
magnon-photon-phonon entanglements can be enhanced by
∼2, 3, and 3 times, respectively.

We also plot all entanglements versus the effective Kerr
strength K in Fig. 3 to investigate the effects of the Kerr non-
linearity and the magnetic field direction on entanglements.
The parameters are the same as those in Fig. 2 but �m = −ωb.
From Fig. 3(a), we can see that Eab nearly has a linear de-
pendence on the strength of the Kerr effect for both �K > 0
and �K < 0. But it monotonously decreases (increases) when
�K > 0 (<0). Figure 3(b) shows that Eam is nonlinearly de-
pendent on K . Specifically, Eam first decreases (increases) and
then increases (decreases) when �K > 0 (< 0). For Emb in
Fig. 3(c), we find it is linearly dependent on K when �K < 0,
but when �K > 0, the dependence becomes nonlinear (see the
blue solid curve), that is, Emb decreases slowly when �K > 0
than the case of �K < 0 first, then the situation becomes op-
posite passing through the cross-point. For Rmin

τ in Fig. 3(d),
we can see that it is nearly unchanged with K for �K < 0, but
sharply increases to the maximal value and then decreases for
�K < 0. These results indicates that all entanglements can be
nonreciprocally enhanced with the Kerr effect.
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FIG. 3. Logarithmic negativities (a) Eab, (b) Eam, (c) Emb, and
(d) the minimum residual contangle Rmin

τ , vs the effective Kerr
strength K with �K > 0 and �K < 0. The solid circles in [(a)–(d)]
denote �K > 0, and the open circles denote �K < 0. Other parame-
ters are the same as in Fig. 2 except for �m/ωb = −1.

V. SWITCHABLE NONRECIPROCITY

In order to quantitatively describe nonreciprocal entan-
glement, we introduce the bidirectional contrast ratio C
(satisfying 0 � C � 1) for bipartite and tripartite entangle-
ments in the nonreciprocal regimes,

C i j
E = |Ei j (> 0) − Ei j (< 0)|

Ei j (> 0) + Ei j (< 0)
,

CR =
∣∣Rmin

τ (> 0) − Rmin
τ (< 0)

∣∣
Rmin

τ (> 0) + Rmin
τ (< 0)

, (5)

where C i j
E (CR) = 1 and 0 correspond to the ideal and no

nonreciprocities for bipartite (tripartite) entanglements. The
higher is the contrast ratio C, the stronger is the nonreciprocity
of entanglement. To clearly show this, we numerically plot
the contrast ratio C versus the frequency detuning (�m) in
Fig. 4(a), where the black, red, blue, and green curves re-
spectively denote the bidirectional contrast ratios Cab

E , Cam
E ,

Cmb
E , and CR. Obviously, the nonreciprocity of all bipartite

and tripartite entanglements can be switched off and on by
tuning �m for K = κa. Moreover, the bidirectional contrast
ratios for all entanglements can be tuned from 0 to 1 by
varying �m. This indicates that all entanglements with ideal
nonreciprocity can be achieved in our proposal, via tuning the
magnon frequency detuning. In Fig. 4(b), we further study
the effect of Kerr strength K on the bidirectional contrast
ratios at �m = −ωb. It is clearly shown that all entanglements
are reciprocal in the absence of the Kerr effect, i.e., K = 0.
When the Kerr effect is considered, all entanglements become
nonreciprocal, even for the weak Kerr effect (e.g., K = 0.2κa).
For the strong Kerr effect (e.g., K = 1.2κa), the bidirectional
contrast ratios Cab

E = Cam
E = CR = 1 can be obtained, while

Cab
E < 1 in the whole region. This shows that the nonreciproc-

ities of the bipartite entanglements including magnon-photon
and magnon-phonon entanglements and the genuinely tripar-
tite entanglements can have ideal nonreciprocities via tuning
the strength of the effective Kerr effect. Similar to the case of

FIG. 4. (a) Bidirectional contrast ratio C for three bipartite and
tripartite entanglements as functions of (a) magnon frequency detun-
ing �m and (b) the effective strength K . The parameters are the same
as those in Fig. 2.

tuning �m, the nonreciprocities for all entanglements can also
be switched off and on with the Kerr effect. In addition, we
examine the effect of temperature on the bidirectional contrast
ratios with different parameters in Figs. 4(c) and 4(d). We
find the nonreciprocity of the magnon-phonon entanglement
is robust against the temperature when �m = −0.8ωb and
K = κa [see the blue curve in Fig. 4(c)], while nonreciproc-
ities of other entanglements increase slowly first with T . By
further increasing T , a sharp increase occurs and the ideal
nonreciprocal photon-phonon, magnon-photon, and magnon-
photon-phonon entanglements can be achieved [see the other
curves in Fig. 4(c)]. When �m = −ωb and K = 0.8κa [see
the curves in Fig. 4(d)], one can see that nonreciprocities
of all entanglements have similar behaviors with the case of
the magnon-photon entanglement in Fig. 4(c). The findings
suggest that a higher temperature is beneficial to obtain the
large or optimal nonreciprocity for entanglement, providing
another promising path to engineer the nonreciprocity.

VI. CONCLUSION

We have proposed a scheme to realize nonreciprocal en-
tanglements with the magnon Kerr effect among magnons,
photons, and phonons in a hybrid cavity-magnon optome-
chanical system. By applying a strong driving field on the
cavity, the Kerr effect gives rise to a positive (negative)
frequency shift in the magnon frequency and an additional
two-magnon effect. The signs of the frequency shift and the
coefficient of the two-magnon effect are dependent on the di-
rection of the applied magnetic field, leading to nonreciprocal
entanglements. By further tuning the system parameters, such
as the magnon frequency detuning and strength of the Kerr
effect, we find entanglements among magnons, photons, and
phonons can be nonreciprocally enhanced via changing the di-
rection of the magnetic field. We also show that entanglement
nonreciprocity in our proposal, characterized by the defined
bidirectional contrast ratio, can be switched off and on by
tuning the system parameters. With proper parameters, ideal
nonreciprocal entanglements can be achieved. Finally, we find
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that nonreciprocity can be improved with the bath temper-
ature, even to the ideal value. The results suggest that our
scheme provides an alternative path to realize nonreciprocal
entanglement with the Kerr effect and engineer nonreciprocity
with the bath temperature.
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APPENDIX

In this Appendix, we give a detailed derivation of the ef-
fective Hamiltonian (1) and the drift matrix A given by Eq. (3)
in the main text.

We consider a hybrid cavity-magnon optomechanical sys-
tem consisting of a driven cavity simultaneously coupled to
a micron-sized yttrium iron garnet (YIG) sphere and a me-
chanical resonator. The Hamiltonian of the total system can
be written as (setting h̄ = 1)

H = Hom + Hkerr + Hint + Hd , (A1)

with

Hom = ωaa†a + 1
2ωb(p2 + q2) − g0a†aq,

Hkerr = ωmm†m + K0(m†m)2

Hint = gm(a†m + am†)

Hd = i�0
(
a†e−iω0t − aeiω0t

)
. (A2)

Using a unitary transformation R = exp[−iω0(a†a +
m†m)t], we can change the system’s operators as
a → a exp(−iω0t ), a† → a† exp(iω0t ), m→m exp(−iω0t ),
and m†→m† exp(iω0t ). Thus,

Hom → (ωa − ω0)a†a + 1
2ωb(p2 + q2) − g0a†aq,

Hkerr → �mm†m + K0(m†m)2, (A3)

Hint → Hint, HD → i�0(a† − a),

where �m = ωm − ω0.
With the Heisenberg-Langevin approach, the quantum dy-

namics of the considered system can be governed by the
following quantum Langevin equations,

q̇ = ωb p,

ṗ = −ωbq + g0a†a − γb p + ξ,

ȧ = −[i(ωa − ω0) + κa]a + ig0aq − igmm + �0 +
√

2κaain,

ṁ = −(i�m + γm)m − igma − iK0m†mm +
√

2γmmin,

(A4)

where κa and γm are the decay rates of the cavity and me-
chanical modes, respectively. ain, min, and ξ are the input
noise operators with zero-mean value (i.e., 〈ain〉 = 〈min〉 =
〈ξ 〉 = 0).

Below we employ the standard linearization method [12]
to derive the linearized Hamiltonian in Eq. (1) (see the main

text). We rewrite each operator as the sum of the mean value
(i.e., operator expectation) and the corresponding fluctuation,
i.e.,

q → qs + q, p → ps + p, a → as + a, m → ms + m.

(A5)

Substituting Eq. (A5) into Eq. (A4), we can obtain the follow-
ing equations for the mean values of the operators,

q̇s = ωb ps, ṗs = −ωbqs + g0|as|2 − γb ps,

ȧs = −(i�̃a + κa)as − igmms + �0, (A6)

ṁs = −(i�̃m + γm)ms − igmas,

where �̃a = ωa − ω0 − g0qs is the effective cavity frequency
detuning induced by the displacement of the mechanical
resonator, and �̃m = �m + �K with �K = 2K = 4K0Nm =
4K0|ms|2 is the effective magnon frequency detuning induced
by the Kerr effect. In the long-time limit, q̇s = ṗs = ȧs =
ṁs = 0. The steady-state condition directly gives

ps = 0, qs = g0|as|2/ωb,

ms = −igmas/(i�̃m + γm), (A7)

as = (�0 − igmms)/(i�̃a + κa).

Also, the equations for the quantum fluctuations, which are
obtained by substituting Eq. (A5) into Eq. (A4) and neglecting
high-order fluctuation terms, are given by

q̇ = ωb p, ṗ = −ωbq + gb(a + a†)/
√

2 − γb p + ξ,

ȧ = −(i�̃a + κa)a + igbq/
√

2 − igmm +
√

2κaain, (A8)

ṁ = −(i�̃m + γm)m − igma − iKm† +
√

2γmmin,

where gb = √
2g0as is the enhanced linearized optomechan-

ical coupling via tuning the strong driving field. Obviously,
Eq. (A8) is the same as Eq. (2) in the main text. The corre-
sponding linearized Hamiltonian of the hybrid system without
dissipation can be written as

H = �̃aa†a + �̃mm†m + 1

2
ωb(q2 + p2) − 1√

2
gb(a + a†)q

+ gm(a†m + am†) + 1

2
K (m†2 + m2), (A9)

which is just Eq. (1) in the main text.
By further defining quadratures,

xa(t ) = a + a†

√
2

, ya(t ) = a − a†

i
√

2
,

xm(t ) = m + m†

√
2

, ym(t ) = m − m†

i
√

2
, (A10)

Equation (A8) can be rewritten as

q̇ = ωb p, ṗ = −ωbq + gbxa − γb p + ξ,

ẋa = −κaxa + �̃a + gmym +
√

2κaxa
in(t ),

ẏa = −�̃axa − κaya − gmxm +
√

2κaya
in(t ), (A11)

ẋm = −γmxa + �̃−
mym + gmya +

√
2γmxm

in(t ),

ẏm = −�̃+
mxm − γmym − gmxa +

√
2γmym

in(t ),
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where xa
in(t ) = (ain + a†

in )/
√

2, ya
in(t ) = (ain − a†

in )/i
√

2,
xm

in(t ) = (min + m†
in )/

√
2, and ym

in(t ) = (min − m†
in )/i

√
2.

Here, �̃±
m = �̃m ± �K/2. In compact form, Eq. (A11) can be

given by

u̇(t ) = Au(t ) + f (t ), (A12)

where u(t ) = [xa(t ), ya(t ), xm(t ), ym(t ), q(t ), p(t )]T and
f (t ) = [

√
2κaxa

in(t ),
√

2κaya
in(t ),

√
2γmxm

in(t ),
√

2γmym
in(t ), 0,

ξ (t )]T are the vectors of the system and the input noise
operators, respectively, and the drift (coefficient) matrix A is
given by Eq. (3) in the main text.

[1] D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of
Quantum Information (Springer, Berlin, 2000).

[2] S. Haroche, Entanglement, decoherence and the quan-
tum/classical boundary, Phys. Today 51(7), 36 (1998).

[3] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[4] W. Xiong, J. Chen, B. Fang, M. Wang, L. Ye, and J. Q. You,
Strong tunable spin-spin interaction in a weakly coupled nitro-
gen vacancy spin-cavity electromechanical system, Phys. Rev.
B 103, 174106 (2021).

[5] X.-Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori,
Quantum-criticality-induced strong Kerr nonlinearities in op-
tomechanical systems, Sci. Rep. 3, 2943 (2013).

[6] J. Chen, Z. Li, X. Q. Luo, W. Xiong, M. Wang, and H. C.
Li, Strong single-photon optomechanical coupling in a hybrid
quantum system, Opt. Express 29, 32639 (2021).

[7] W. Xiong, M. Wang, G. Q. Zhang, and J. Chen,
Optomechanical-interface-induced strong spin-magnon
coupling, Phys. Rev. A 107, 033516 (2023).

[8] W. Xiong, D. Y. Jin, Y. Qiu, C. H. Lam, and J. Q. You, Cross-
Kerr effect on an optomechanical system, Phys. Rev. A 93,
023844 (2016).

[9] X. Y. Lü, H. Jing, J. Y. Ma, and Y. Wu, PT -Symmetry Breaking
Chaos in Optomechanics, Phys. Rev. Lett. 114, 253601 (2015).

[10] W. Xiong, Z. Li, Y. Song, J. Chen, G. Q. Zhang, and M. Wang,
Higher-order exceptional point in a pseudo-Hermitian cavity
optomechanical system, Phys. Rev. A 104, 063508 (2021).

[11] W. Xiong, Z. Li, G. Q. Zhang, M. Wang, H. C. Li, X. Q. Luo,
and J. Chen, Higher-order exceptional point in a blue-detuned
non-Hermitian cavity optomechanical system, Phys. Rev. A
106, 033518 (2022).

[12] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A.
Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Op-
tomechanical Entanglement between a Movable Mirror and a
Cavity Field, Phys. Rev. Lett. 98, 030405 (2007).

[13] L. Tian, Robust Photon Entanglement via Quantum Interference
in Optomechanical Interfaces, Phys. Rev. Lett. 110, 233602
(2013).

[14] Y. D. Wang and A. A. Clerk, Reservoir-Engineered Entangle-
ment in Optomechanical Systems, Phys. Rev. Lett. 110, 253601
(2013).

[15] S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entan-
gling Macroscopic Oscillators Exploiting Radiation Pressure,
Phys. Rev. Lett. 88, 120401 (2002).

[16] D. G. Lai, J. Q. Liao, A. Miranowicz, and F. Nori, Noise-
Tolerant Optomechanical Entanglement via Synthetic Mag-
netism, Phys. Rev. Lett. 129, 063602 (2022).

[17] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W.
Lehnert, Entangling mechanical motion with microwave fields,
Science 342, 710 (2013).

[18] C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, A. A.
Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, Stabi-
lized entanglement of massive mechanical oscillators, Nature
(London) 556, 478 (2018).

[19] S. Kotler, G. A. Peterson, E. Shojaee, F. Lecocq, K. Cicak,
A. Kwiatkowski, S. Geller, S. Glancy, E. Knill, R. W.
Simmonds, J. Aumentado, and J. D. Teufel, Direct observation
of deterministic macroscopic entanglement, Science 372, 622
(2021).

[20] L. Mercier de Lépinay, C. F. Ockeloen-Korppi, M. J. Woolley,
and M. A. Sillanpää, Quantum mechanics-free subsystem with
mechanical oscillators, Science 372, 625 (2021).

[21] R. Riedinger, A. Wallucks, I. Marinkovic, C. Löschnauer, M.
Aspelmeyer, S. Hong, and S. Gröblacher, Remote quantum
entanglement between two micromechanical oscillators, Nature
(London) 556, 473 (2018).

[22] Y. F. Jiao, S. D. Zhang, Y. L. Zhang, A. Miranowicz, L. M.
Kuang, and H. Jing, Nonreciprocal Optomechanical Entan-
glement against Backscattering Losses, Phys. Rev. Lett. 125,
143605 (2020).

[23] Y. F. Jiao, J. X. Liu, Y. Li, R. Yang, L. M. Kuang, and H.
Jing, Nonreciprocal Enhancement of Remote Entanglement be-
tween Nonidentical Mechanical Oscillators, Phys. Rev. Appl.
18, 064008 (2022).

[24] H. Xu, L. Jiang, A. A. Clerk, and J. G. E. Harris, Nonreciprocal
control and cooling of phonon modes in an optomechanical
system, Nature (London) 568, 65 (2019).

[25] Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou,
F. W. Sun, G. C. Guo, and C. H. Dong, Experimental realization
of optomechanically induced non-reciprocity, Nat. Photon. 10,
657 (2016).

[26] D. W. Zhang, L. L. Zheng, C. You, C. S. Hu, Y. Wu, and
X. Y. Lü, Nonreciprocal chaos in a spinning optomechanical
resonator, Phys. Rev. A 104, 033522 (2021).

[27] X. Y. Yao, H. Ali, F. L. Li, and P. B. Li, Nonreciprocal Phonon
Blockade in a Spinning Acoustic Ring Cavity Coupled to a
Two-Level System, Phys. Rev. Appl. 17, 054004 (2022).

[28] Y. Jiang, S. Maayani, T. Carmon, F. Nori, and H. Jing, Nonre-
ciprocal Phonon Laser, Phys. Rev. Appl. 10, 064037 (2018).

[29] M. Peng, H. Zhang, Q. Zhang, T. X. Lu, I. M. Mirza, and H.
Jing, Nonreciprocal slow or fast light in anti-PT -symmetric
optomechanics, Phys. Rev. A 107, 033507 (2023).

[30] H. Xie, L. W. He, X. Shang, G. W. Lin, and X. M. Lin, Nonre-
ciprocal photon blockade in cavity optomagnonics, Phys. Rev.
A 106, 053707 (2022).

[31] W. A. Li, G. Y. Huang, J. P. Chen, and Y. Chen, Nonreciprocal
enhancement of optomechanical second-order sidebands in a
spinning resonator, Phys. Rev. A 102, 033526 (2020).

[32] G. B. Malykin, The Sagnac effect: Correct and incorrect expla-
nations, Phys. Usp. 43, 1229 (2000).

024105-6

https://doi.org/10.1063/1.882326
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/PhysRevB.103.174106
https://doi.org/10.1038/srep02943
https://doi.org/10.1364/OE.438114
https://doi.org/10.1103/PhysRevA.107.033516
https://doi.org/10.1103/PhysRevA.93.023844
https://doi.org/10.1103/PhysRevLett.114.253601
https://doi.org/10.1103/PhysRevA.104.063508
https://doi.org/10.1103/PhysRevA.106.033518
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.110.233602
https://doi.org/10.1103/PhysRevLett.110.253601
https://doi.org/10.1103/PhysRevLett.88.120401
https://doi.org/10.1103/PhysRevLett.129.063602
https://doi.org/10.1126/science.1244563
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1126/science.abf2998
https://doi.org/10.1126/science.abf5389
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1103/PhysRevLett.125.143605
https://doi.org/10.1103/PhysRevApplied.18.064008
https://doi.org/10.1038/s41586-019-1061-2
https://doi.org/10.1038/nphoton.2016.161
https://doi.org/10.1103/PhysRevA.104.033522
https://doi.org/10.1103/PhysRevApplied.17.054004
https://doi.org/10.1103/PhysRevApplied.10.064037
https://doi.org/10.1103/PhysRevA.107.033507
https://doi.org/10.1103/PhysRevA.106.053707
https://doi.org/10.1103/PhysRevA.102.033526
https://doi.org/10.1070/PU2000v043n12ABEH000830


NONRECIPROCAL ENTANGLEMENT IN CAVITY-MAGNON … PHYSICAL REVIEW B 108, 024105 (2023)

[33] S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan,
H. Jing, F. Nori, D. N. Christodoulides, and T. Carmon, Flying
couplers above spinning resonators generate irreversible refrac-
tion, Nature (London) 558, 569 (2018).

[34] B. Z. Rameshti, S. V. Kusminskiy, J. A. Haigh, K. Usami,
D. Lachance-Quirion, Y. Nakamura, C. M. Hu, H. X. Tang,
G. E. W. Bauer, and Y. M. Blanter, Cavity magnonics, Phys.
Rep. 979, 1 (2022).

[35] H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan,
Quantum magnonics: When magnon spintronics meets quan-
tum information science, Phys. Rep. 965, 1 (2022).

[36] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and
Y. Nakamura, Hybrid quantum systems based on magnonics,
Appl. Phys. Express 12, 070101 (2019).

[37] Y. P. Wang and C.-M. Hu, Dissipative couplings in cavity
magnonics, J. Appl. Phys. 127, 130901 (2020).

[38] S. Zheng, Z. Wang, Y. Wang, F. Sun, Q. He, P. Yan, and H. Y.
Yuan, Tutorial: Nonlinear magnonics, arXiv:2303.16313.

[39] J. Li, S. Y. Zhu, and G. S. Agarwal, Magnon-Photon-Phonon
Entanglement in Cavity Magnomechanics, Phys. Rev. Lett. 121,
203601 (2018).

[40] M. Yu, H. Shen, and J. Li, Magnetostrictively Induced Station-
ary Entanglement between Two Microwave Fields, Phys. Rev.
Lett. 124, 213604 (2020).

[41] Z. Zhang, M. O. Scully, and G. S. Agarwal, Quantum en-
tanglement between two magnon modes via Kerr nonlinearity
driven far from equilibrium, Phys. Rev. Res. 1, 023021
(2019).

[42] R. C. Shen, J. Li, Z. Y. Fan, Y. P. Wang, and J. Q. You, Me-
chanical Bistability in Kerr-modified Cavity Magnomechanics,
Phys. Rev. Lett. 129, 123601 (2022).

[43] R. C. Shen, Y. P. Wang, J. Li, S. Y. Zhu, G. S. Agarwal, and
J. Q. You, Long-Time Memory and Ternary Logic Gate Using
a Multistable Cavity Magnonic System, Phys. Rev. Lett. 127,
183202 (2021).

[44] Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q.
You, Bistability of Cavity Magnon Polaritons, Phys. Rev. Lett.
120, 057202 (2018).

[45] Y. P. Wang, G. Q. Zhang, D. Zhang, X. Q. Luo, W. Xiong, S. P.
Wang, T. F. Li, C. M. Hu, and J. Q. You, Magnon Kerr effect
in a strongly coupled cavity-magnon system, Phys. Rev. B 94,
224410 (2016).

[46] G. Q. Zhang, Y. P. Wang, and J. Q. You, Theory of the
magnon Kerr effect in cavity magnonics, Sci. China: Phys.
Mech. Astron. 62, 987511 (2019).

[47] W. Xiong, M. Tian, G. Q. Zhang, and J. Q. You, Strong long-
range spin-spin coupling via a Kerr magnon interface, Phys.
Rev. B 105, 245310 (2022).

[48] G. Q. Zhang, Z. Chen, W. Xiong, C. H. Lam, and J. Q. You,
Parity-symmetry-breaking quantum phase transition in a cavity
magnonic system driven by a parametric field, Phys. Rev. B 104,
064423 (2021).

[49] G. Liu, W. Xiong, and Z. J. Ying, Switchable superradiant phase
transition with Kerr magnons, arXiv:2302.07163.

[50] G. Q. Zhang, Y. Wang, and W. Xiong, Detection sensitivity
enhancement of magnon Kerr nonlinearity in cavity magnon-
ics induced by coherent perfect absorption, Phys. Rev. B 107,
064417 (2023).

[51] T. Tian, Y. Zhang, L. Zhang, L. Wu, S. Lin, J. Zhou, C. K. Duan,
J. H. Jiang, and J. Du, Experimental Realization of Nonrecipro-
cal Adiabatic Transfer of Phonons in a Dynamically Modulated
Nanomechanical Topological Insulator, Phys. Rev. Lett. 129,
215901 (2022).

[52] C. Zhong, X. Han, and L. Jiang, Microwave and Opti-
cal Entanglement for Quantum Transduction with Electro-
Optomechanics, Phys. Rev. Appl. 18, 054061 (2022).

[53] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum
State Transfer and Entanglement Distribution among Distant
Nodes in a Quantum Network, Phys. Rev. Lett. 78, 3221 (1997).

[54] J. Kimble, The quantum internet, Nature (London) 453, 1023
(2008).

[55] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P.
Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Chiral quantum
optics, Nature (London) 541, 473 (2017).

[56] C. Gonzalez-Ballestero, A. Gonzalez-Tudela, F. J. GarciaVidal,
and E. Moreno, Chiral route to spontaneous entanglement gen-
eration, Phys. Rev. B 92, 155304 (2015).

[57] S. A. H. Gangaraj, G. W. Hanson, and M. Antezza, Robus-
tentanglement with three-dimensional nonreciprocal photonic
topological insulators, Phys. Rev. A 95, 063807 (2017).

[58] G. Hu, X. Hong, K. Wang, J. Wu, H. X. Xu, W. Zhao, W.
Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W.
Qiu, Coherent steering of nonlinear chiral valley photons with
a synthetic Au-WS2 metasurface, Nat. Photon. 13, 467 (2019).

[59] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing,
Rev. Mod. Phys. 89, 035002 (2017).
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