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Nonthermoelastic martensitic features in ideal martensites due to volume effects
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We study martensitic transformation behavior by considering the coupling of volumetric strain and the trans-
formation strain in a group-subgroup transformation within a Ginzburg-Landau framework. Nonthermoelastic
features, including large residual strain, large thermal hysteresis, and incomplete transformation gradually,
appear with increasing coupling strength. The volume change associated with the transformation due to the
coupling is demonstrated to be the essential physics for nonthermoelastic features that appear in an ideal
thermoelastic martensitic transformation. A materials descriptor for features associated with a martensitic
transformation is proposed based on insights from the model.
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I. INTRODUCTION

The martensitic transformation (MT) is a solid-to-solid
phase transformation in alloys, ceramics, and proteins char-
acterized by a diffusionless, shear driven movement of atoms
[1–4]. The resultant rich microstructures and functionalities
have led to various technological applications such as en-
hancement of the strength of steel, improvement of toughness
in yttria-stabilized zirconia ceramics, and the shape mem-
ory and superelastic effects in shape memory alloys (SMAs)
[1,5,6]. Thus, the means to control mechanisms that influence
the evolution and microstructure of MTs is scientifically and
technologically important.

In SMAs, the MT is thermoelastic and completely re-
versible [7,8]. Upon cooling from high temperature, the high
symmetry parent phase transforms into the low symmetry
martensite phase with twinned microstructure that disappears
on reheating to the parent phase. The process is reversible.
Moreover, martensite can also be induced by applying stress
and the phase can be reversed to the parent on unloading.
The elastic compatibility between parent phase and martensite
leads to a coherent interface, which is very mobile during
the temperature or stress induced MT without the appearance
of irreversible dislocations [9,10]. As a result, such an ideal
thermoelastic MT possesses features such as small thermal
hysteresis, little residual martensite, and good cyclic stability
[11–13].

In contrast, the MT in alloys such as steels, CoNi, and
FeNi, is nonthermoelastic with characteristics of irreversibil-
ity [2,8]. A microstructure with a lenticular morphology
appears in sudden bursts upon cooling from the parent phase;
however, it does not disappear upon reheating [7,14] so that
the process is irreversible. Moreover, the nonthermoelastic
MT is always incomplete, with residual parent phase at
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low temperature and residual martensite at high temperature
[15–17]. Thus the motion of the interface between two phases
is hindered upon temperature change or external stress and
irreversible dislocations are inevitably generated and accumu-
lated [8]. As a result, such a nonthermoelastic MT has large
thermal hysteresis, residual phases, and poor cyclic stability.

The intrinsic origin of the above differences between ther-
moelastic and nonthermoelastic MTs lies in the symmetry
change during the transformation. It has been pointed out
that that the symmetry groups of the parent and marten-
site phases need to have a group-subgroup relationship
as a necessary condition for reversibility. Interestingly, it
has been observed experimentally that nonthermoelastic
features appear in thermoelastic martensitic transformation
systems [18,19]. Moreover, the nonthermoelastic feature of
lenticular structure appears as a result of volume change. [20].
However, the differences between the thermoelastic and the
nonthermoelastic features have not been modeled [7,21–24].
In the present study, we propose a Ginzburg-Landau model to
uncover the mechanisms of thermoelastic martensitic systems
with nonthermoelastic features.

In the model, we couple the volumetric strain (e1) with
the order parameter deviatoric shear strain (e2). With in-
creasing coupling strength, features of nonthermoelastic MT
including large residual strain, large thermal hysteresis, and
incomplete transformation appear. Such an evolution is at-
tributed to the appearance of volumetric strain (e1) during
the transformation as a result of the coupling between e1

and e2. This coupling hinders the growth of martensite by
penalizing further transformation. As the basic physics we
include in the model demands continuity of displacements,
the elastic fields are forced to satisfy compatibility as we do
not include a source for dislocations. Nevertheless, we tested
the validity of both the linear and nonlinear strain compat-
ibility equations as a function of the coupling strength. We
performed two-dimensional (2D) time-dependent simulations
and showed that the thermal hysteresis increases with the
coupling strength as a result of heating and cooling. The
morphology after the transformation consists of lenticular
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martensite within the untransformed austenite matrix. On
heating, residual martensite persists at higher temperatures
and its fraction increases with the coupling strength. As the
coupling strength increases, we monitor the deviation in the
elastic compatibility relation as the system tries to accom-
modate the effects of the volume. We propose a materials
descriptor for the volume change in terms of the strains and
show how it captures the tendency of the thermal hysteresis
behavior in a number of shape memory alloys.

The paper is organized as follows. In Sec. II, we dis-
cuss the mesoscale model that captures the salient aspects of
martensitic transformation. Section III gives the model results
showing that the transformation behavior and microstructure
vary with coupling strength. Section IV discusses the reasons
for the emergence of nonthermoelastic features and predicts
phenomena that can be experimentally validated. We summa-
rize the main results in Sec. V and provide further applications
of the model.

II. FORMULATION OF THE GINZBURG-LANDAU MODEL

A. Free energy

We consider a two-dimensional model system with a first-
order square-to-rectangle martensitic transformation [25–29].
As shown in Fig. 1, the martensitic transformation is driven
by a deviatoric strain order parameter (OP) e2 = 1√

2
(εxx −

εyy) which describes the tetragonal distortions, where εi j =
1
2 ( ∂ui

∂x j
+ ∂u j

∂xi
) is the linearized strain tensor. There exist other

symmetry adapted combinations of the strain tensor compo-
nents, including the volumetric strain e1 = 1√

2
(εxx + εyy) and

the simple shear stain e3 = εxy. The total free energy density
is thus given by

f = fOP + fgradient + fnon-OP + fcoupling, (1)

where fOP is the homogeneous Landau contribution represent-
ing the free energy for a square-to-rectangle distortion, fgradient

is the gradient term responsible for the interface energy, and
fnon-OP represents the non-OP part of the elastic free energy
due to e1 and e3. The fOP is given by

fOP = 1
2 A2(T )e2

2 + 1
4βe2

4 + 1
6γ e2

6, (2)

where A2 = (C11 − C12) and depends on temperature via
A2(T ) = A2T0(τ − 1). The τ = T

T0
is the scaled temperature

and T0 is the transition temperature. The fgradient is given by

fgradient = 1
2 g|∇e2|2, (3)

where g is the interfacial energy. fnon-OP is assumed to be
harmonic and is given by

fnon-OP = 1
2 A1e1

2 + 1
2 A3e3

2, (4)

where A1 = C11 + C12 and A3 = 4C44 are the elastic moduli
calculated from C11, C12, and C44, the elastic constant tensor
components. fcoupling describes the coupling between e2 and
e1, and will be discussed in the next subsection.

FIG. 1. The schematics for the thermoelastic and nonthermoe-
lastic martensitic features. The yellow squares with solid frame
represent the austenite. The red rectangles and blue rectangles
with dashed frame are the variants of martensite for thermoelastic
martensitic transformation and nonthermoelastic features. The order
parameter deviatoric strain e2 is nonzero once the transformation
occurs. The volumetric strain e1 is close to zero in martensite for
thermoelastic transformation (a), in contrast to the nonthermoelastic
features (b) where e1 is finite.

B. Coupling between volumetric strain and deviatoric
shear strain

As shown in Fig. 1(a), during the thermoelastic marten-
sitic transformation, the deviatoric strain e2 �= 0, whereas the
volumetric strain e1 ≈ 0. For nonthermoelastic martensitic
transformation, both e2 �= 0 and the volumetric strain e1 de-
part from 0, as shown in Fig. 1(b).

To realize the two types of martensitic transformations in
a unified model, we introduce a term in the free energy that
couples the deviatoric and volumetric strains, i.e.,

fcoupling = αe1e2
2, (5)

where α controls the coupling strength between e1 and e2. As
e2 becomes nonzero during the course of the phase transfor-
mation, the coupling accentuates the volume strain e1, which
starts to hinder the transformation with non thermoelastic fea-
tures. Without the coupling, e1 is not appreciably influenced
by e2 and thus we obtain the usual thermoelastic martensitic
features. The total free energy is given by

F =
∫

d�r( fOP + fgradient + fnon-OP + fcoupling). (6)
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C. Dynamic evolution

The dynamic equations for the free energy is written in
terms of the displacement fields by means of force balance
equations given by

ρ−̈→u = ∇ · −→σ . (7)

Here the elastic stresses are obtained from the total free energy
in Eq. (6) as

σi j =
∑

k

δF

δek

δek

δεi j
. (8)

The equations of motion for the displacement variables ui

become

∂2ux

∂t2
= ∂σxx

∂x
+ ∂σxy

∂y
,

∂2uy

∂t2
= ∂σxy

∂x
+ ∂σyy

∂y
. (9)

The total stress fields are determined from the elastic free
energy using

σxx = G1√
2

+ G2√
2
,

σyy = G1√
2

− G2√
2
,

σxy = G3, (10)

where

G1 = ∂F

∂e1
= A1e1 + αe2

2,

G2 = ∂F

∂e2
= A2e2 + βe3

2 + γ e5
2 + g(∇2e2) + 2αe1e2,

G3 = ∂F

∂e3
= A3e3. (11)

Finally, the transformation behavior and microstructure as-
sociated with the square-to-rectangle transformation as a
function of temperature for different values of coupling co-
efficient α are simulated using the equations of motion.

The continuum model is implemented numerically on a
two-dimensional 256 × 256 lattice with periodic boundaries.
An Euler level scheme is found to be adequate for captur-
ing the salient features with discretization δx = 1, δy = 1,
and δt = 0.02. However, we also used a fourth-order Runge-
Kutta (RK4) scheme to study the influence on the linear and
nonlinear strain compatibility relationships as α increases.
We choose reduced values for the parameters appropriate
for FePd [30]: A1 = 1.0, A2 = 2.27, A3 = 4.54, β = −276,
γ = 4.86 × 105. The thermal cycling simulations start from
austenite with e2 = 0 at τ = 2.0. A random fluctuation was
introduced to every site so that the variants are randomly
nucleated during cooling. A stepwise cooling procedure was
employed and the system evolves for 1000 steps at each tem-
perature interval of 0.01.

FIG. 2. The order parameter (OP) as a function of temperature
for different values of α. (a) α = 0, (b) α = 10, (c) α = 20, (d) α =
35, (e) α = 40, and (f) α = 50. The data shown are for the second
thermal cycle. The start and finish temperatures of martensitic trans-
formation are Ms and Mf ; the start and finish temperatures of reverse
transformation are As and Af . The temperatures were obtained by the
tangent method.

III. RESULTS

We present the effects of the coupling on the marten-
sitic transformation related to (1) the transformation behavior,
(2) the microstructure evolution, and (3) the thermal cycling
behavior.

A. The effects of coupling e1 and e2

on the transformation behavior

It has been shown experimentally that the transformation
temperatures, especially the reverse transformation tempera-
ture, are fairly high in nonthermoelastic MT alloys such as
Fe-C steels and FeNi alloys [16,31]. Moreover, a thermal
hysteresis larger than 100 K is always observed in Fe-Mn-
Si-Cr-Ni [32], FeMnSi [33], and FeNiCoAl [34] systems with
nonthermoelastic MT. There also exists a clear residual strain
after thermal cycling in nonthermoelastic systems such as
CoNi and FeMnCrSiNi [16,35]. We first investigate the influ-
ence of coupling on the transformation temperature, thermal
hysteresis, and residual strain.

Figure 2 shows the order parameter e2 as a function of
temperature for different coupling strengths α = 0, 10, 20, 35,
40, and 50. The order parameter is calculated by averaging the
absolute value of e2 over the entire system. The two curves in
each panel correspond to cooling (blue) and heating (red) pro-
cesses for the second thermal cycle where the strains evolve to
finite values. As the transformation is first order, the deviatoric
strain e2 deviates at the transformation temperature regardless
of the value of α. However, the transformation temperature in-
creases with α. For α = 0–20, the thermal hysteresis is small
with the heating and cooling curves essentially overlapping.
For α from 35 to 50, the thermal hysteresis is large.

As shown in Fig. 2(e), the start and finish temperatures of
the martensitic transformation (Ms and M f ) and the start and
finish temperatures of the reverse transformation (As and A f )
were obtained by the tangent method from the order parameter
versus temperature curve. The exponential increase in A f and
Ms as a function of α is shown in Fig. 3(a) with A f increasing
more dramatically than Ms. Figure 3(b) shows the exponential
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FIG. 3. The features are plotted as a function of coupling strength
α. The dotted lines are the fits to the data based on exponen-
tial growth. (a) The transformation temperatures as a function of
α following Ms = 1.04 + 0.01e0.1α and Af = 1.06 + 0.01e0.1α .

(b) The thermal hysteresis �T = (As+A f )−(Ms+M f )

2 as a function of
α following �T = 0.0047 + 0.1e0.1α . (c) The residual strain (RS) as
a function of α following RS = 0.06 + 0.06e0.0007α .

increase in thermal hysteresis �T versus α. �T is calculated
from �T = (As+A f )−(Ms+M f )

2 . For α small, the values of A f ,
Ms, and �T , are quite stable but increase sharply for α = 35,
which is a critical point indicating that the nonthermoelastic
features emerge.

The coupling strength α also affects the residual strain, the
difference in the order parameter e2 of the austenite under

cooling and heating (Fig. 2). The values of austenite were de-
termined from the average value of e2 within the temperature
range 1.60–1.9 for α smaller than 40 and within the range
2.6–2.9 for α = 50. The error bar represents the 95% confi-
dence interval in the order parameter in the above temperature
range. Figure 3(c) shows that the residual strain increases with
α, the dotted line indicates a fit to the data based on exponen-
tial growth. The residual strain here is defined as the difference
between the order parameter (OP) strains at a given tempera-
ture after cooling and heating during one thermal cycle. Thus,
Figs. 2 and 3 reveal that aspects of nonthermoelastic features
appear as the result of the coupling. And the transformation
features (P) including transformation temperature, thermal
hysteresis, and residual strain all increase with α following
a functional form of the exponential behavior, P = A + Beα .

B. The effects of coupling e1 and e2 on the microstructure

Figure 4 shows the variation of typical configurations and
the corresponding distribution of e2 as a function of heating
and cooling for different coupling strength α.

For α = 0, 10, and 20, thermoelastic martensite with a
typical polytwinned microstructure is formed on cooling and
then transforms back to austenite on heating at almost the

FIG. 4. Snapshots of selected configurations for eight different values of α as a function of temperature for (a) cooling process and
(b) heating process. Yellow color represents the parent phase; blue and red colors represent the two martensite variants. The local strain
distribution is shown by the probability density function (pdf) with respect to the order parameter e2.
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FIG. 5. The fraction of residual martensite and austenite as a
function of α. (a) The fraction of austenite at τ = 0.0. (b) The
fraction of martensite at τ = 2.0.

same temperature. The corresponding local strain distribution
also transforms from a single peak around zero austenite to
a distribution with two sharp peaks corresponding to the two
degenerate states of martensite. When α increases to 35, 40,
and 45, the system transforms into a system with lenticular
martensite, which is similar to nonthermoelastic martensite
structure. It is seen that the austenite in yellow is retained
and coexists with martensite at low temperatures (τ � 1.0).
This is consistent with the corresponding local strain distri-
bution with an extra peak around zero in addition to the two
peaks for martensite. When heated, it completely transforms
back to austenite (τ > 1.5) and the local strain distribution
returns to the single peak profile. We note that the size of the
lenticular martensite decreases with α. The cooling process
for α = 50 is similar to that for α = 45. However, during
the heating process, the martensite cannot transform back to
austenite completely, leaving residual martensite up to the
temperature limit of our study (τ = 2.0). The three-peak pro-
file of the corresponding local strain also signals the existence
of residual martensite. We note that there exists a two-step-
like phase transformation with structure which is similar to
nonthermoelastic martensite disappearing in the system for
α = 30. On cooling, austenite transforms first to lenticular
martensite with residual austenite (like nonthermoelastic) and
then transforms abruptly into martensite with a typical poly-
twinned microstructure (thermoelastic).

The existence of residual austenite at low temperature and
residual martensite at high temperature in Fig. 4 captures
the main features of the experimental observations in most
nonthermoelastic alloys such as FeNi [15] and CoNi [36].
Figures 5(a) and 5(b) show the fraction of austenite at τ =
0.0 and that of martensite at τ = 2.0, respectively, during a
thermal cycle. With α increasing, the fraction of austenite
gradually grows from 0, indicating that the transformation
of austenite is arrested by the coupling αe1e2

2. The fraction
of martensite shows a tendency similar to that of the resid-
ual austenite. Thus, the irreversible nonthermoelastic feature
appears in the reversible thermoelastic martensitic transforma-
tion with raising the coupling strength α.

FIG. 6. (a) The transformation dependence on the temperature
for α = 50 for 5 heating progress. (b)–(c) The relationship between
residual strain (e1 and e2) and heating number n respectively.

C. The effect of coupling of e1 and e2 on thermal cyclic behavior

To further confirm that the large coupling coefficient
α leads to nonthermoelastic features, we simulated the
characteristic thermal cycling behavior. It has been shown
experimentally that more residual strain will be accumulated
during thermal cycling for a system with greater degree of
nonthermoelastic transformation features [37–39]. We thus
carried out five successive thermal cycles for systems with
different α. For α = 50 as an example, Fig. 6(a) shows the
order parameter e2 as a function of temperature for five suc-
cessive heating processes. The first cooling process starting
from an initial state of e2 = 0 at τ = 2.0 serves as a baseline to
calculate the residual strain. The residual e1 and e2 are defined
as the deviation from the average value of e1 and e2 within a
small temperature range τ (1.6–1.9) from the baseline (for the
system with α = 50, τ is within 2.6–2.9). Figures 6(b) and
6(c) show the residual e1 and e2 as a function of the cycle
number n for different values of α, respectively. The error bar
is set as the 95% confidence interval.

For α = 0, 10, and 20, the residual strains (e1 and e2)
change little with increasing cycling number. With increasing
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FIG. 7. Spatial distribution of order parameter strain e2

(left panel) and nonorder parameter strain e1 (right panel) in (a) a
system of thermoelastic martensitic transformation with α = 0 and
(b) a system of nonthermoelastic martensitic transformation with
α = 40.

α to 35, 40, and 50, the residual strain (e1 and e2) increases
with the cycle number. The above results indicate that small
α captures the thermal cycle feature of the thermoelastic
martensite such as NiTi, whereas the large α limit leads to
accumulation of residual strains in nonthermoelastics, such as
Fe-based alloys [1].

In summary, coupling between deviatoric strain e2 and
volumetric strain e1 leads to an increase in the phase transfor-
mation temperature, the thermal hysteresis, and the residual
strain. In addition, lenticular martensite appears with increas-
ing α, giving rise to an incomplete phase transformation with
typical characteristics of a nonthermoelastic martensitic trans-
formation [7,14]. More strain is accumulated continuously
with thermal cycling for larger α.

IV. DISCUSSION

We address the underlying physics for ideal thermoelastic
martensite with nonthermoelastic features and the experimen-
tal validity of the model.

A. Stress concentration at the austenite
and martensite phase boundary

We first compare the low temperature microstructures of a
typical thermoelastic MT (α = 0) and one with nonthermoe-
lastic features (lenticular martensite) (α = 40). Figures 7(a)
and 7(b) show the morphologies of e2 (left panel) and e1

(right panel) at τ = 0.0 for a thermoelastic MT and lenticular
martensite, respectively. As shown by the color bar for e2, the

FIG. 8. The temperature dependence of (a) stress (σPB) and
(c) energy (EPB) at the phase boundary between austenite and marten-
site for different systems with α = 0, 10, 20, 35, 40, and 50. (b) and
(d) The σPB and the EPB at temperature τ = 0 as a function of the
coupling strength α, respectively.

two variants of martensite are colored in red (positive) and
blue (negative) and the austenite with e2 = 0 is in yellow.
Similarly, the positive and negative e1 are in blue and magenta
with e1 = 0 white.

The polytwinned microstructure of typical thermoelastic
martensite is visible in the e2 panel and the corresponding
distribution of e1 is quite uniform with e1 around 0. In con-
trast, Fig. 7(b) shows lenticular martensite embedded in an
austenite matrix in the e2 panel and a similar e1 panel. The e1

for a system with lenticular martensite is no longer trivial. The
martensite regions with e2 �= 0 possess negative e1 values and
the residual austenite regions with e2 close to 0 have positive
e1 values.

This is easy to see from Eqs. (6) and (4) if one considers the
quadratic homogeneous free energy F = C + A1e2

1 + αe1e2
2.

In equilibrium, ∂F
∂e1

= 0 and the steady state value of e1 that
minimizes the free energy is given by

e1 = −αe2
2

2A1
. (12)

Thus, the magnitude of e1 is negatively related to the coupling
strength α, When the coupling is absent, (α = 0), the free
energy landscape is symmetric with a minimum at zero, i.e.,
e1 = 0. Since the coupling coefficient α is positive in the
current study, e1 is negative when the coupling is present.
As shown in Fig. 7(b), negative e1 can be found in the
martensite regions. However, the value of e1 in the residual
austenite regions is much larger than zero, indicating that
these regions are far from equilibrium. Such nonequilibrium
residual austenite is the major difference from the thermoelas-
tic martensite features.

The phase boundary stresses σPB can be calculated using
Eq. (10). As the stress component σyy behaves similarly to
σxx, we consider σPB to be σxx for the mesh points at the phase
boundary between austenite and martensite. Equation 8(a)
shows σPB as a function of temperature τ for systems with
different coupling strengths.

For α = 0, σPB is trivial before and after the phase transfor-
mation. As α increases, σPB is very small at high temperature
and is finite below the transformation temperature. Figure 8(b)
shows that σPB increases monotonically with the coupling
strength. The free energy at the boundary, EPB, as a function
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FIG. 9. The order parameter strain e2 and the energy at the
phase boundary EPB of the system with α = 30 as a function
of temperature τ .

of temperature is plotted in Fig. 11(a) and as a function of α at
τ = 0 in Fig. 11(a). Both curves show a similar trend with α.

In the absence of coupling, e1 is essentially 0 and there
is little boundary stress so that self-accomodation is easy to
satisfy in thermoelastic MT. With α �= 0, the presence of e1

enhances the stress at the phase boundary, increasing EPB and
arresting the transformation, resulting in the nonthermoelastic
martensite microstructure shown in Fig. 7(b).

During the martensitic transformation with nonthermoelas-
tic features, σPB and EPB prevent free movement of the phase
boundary, thus resulting in greater degree of undercooling and
superheating to promote the transformation. This causes the
thermal hysteresis to increase with increasing α. For systems
with large coupling strength, σPB and EPB are too large to
complete the transformation, resulting in residual austenite or
martensite. Moreover, the release of σPB is rather slow and can
persist at high temperatures. Thus, during thermal cycling, σPB

accumulates and leads to residual strain at high temperatures.

FIG. 10. The average of the elastic compatibility correction, θ , calculated using Eq. (13) (linear strain compatibility) and Eq. (14) (nonlinear
strain compatibility) for systems with coupling strengths α = 0, 10, 20, 35, 40, and 50 at τ = 0.0. θ is calculated using Euler and fourth-order
Runge-Kutta schemes. The distribution of θ is shown in the box chart. The midline in the box represents the median; the little box inside the
outer box is the average θ . The whiskers extend from the box to the minimum and maximum values. The dashes away from the whiskers are
the limits of the outliers. The average value 〈θ〉 over the whole system is essentially zero. The panels at the bottom are the spatial distributions
of θ for typical simulations.
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As shown in Fig. 4, a two-step phase transformaton oc-
curs with disppearing nonthermoelastic in the system with
coupling strength α = 30. The order parameter e2 and the
EPB of the system as a function of temperature τ for α =
30 are shown in Fig. 9. The value of e2 increases with de-
creasing temperature, and two jumps in e2 were observed.
The two anomalies correspond to the transformation from
austenite to nonthermoelastic martensite and that from the
nonthermoelastic martensite to ideal thermoelastic marten-
site. The EPB increases for the former transformation, which
inhibits the movement of the phase boundary, whereas EPB

decreases for the latter transformation as the energy generated
during cooling overcomes the effects of e1. The two-step
martensitic transformation behavior has been observed in
FePdCo and FePdMn alloys that possess face-centered-
cubic to face-centered-tetragonal (fcc-fct) thermoelastic
MT and face-centered-tetragonal to body-centered-tetragonal
(fct-bct) nonthermoelastic MT at different temperatures
[40,41].

B. Validity of strain compatibility due to e1 and e2 coupling

The OP strain e2 and the non-OP strain (e1 and e3) are
not independent because they are the derivatives of the same
underlying displacement field. They satisfy compatibility
constraints to ensure lattice integrity. Formally, for small
strains, the linear constraint is expressed through the
Saint-Venant equation in two dimensions,

θ = ∇2e1 −
(

∂2

∂x2
− ∂2

∂y2

)
e2 −

√
8

∂2

∂x ∂y
e3. (13)

If θ = 0, then elastic compatibility is satisfied, whereas θ �= 0
indicates that there is a source term due to nonlinear effects
as a result of the strains not being small and also numeri-
cal instability in solving the displacement equations. In real
systems dislocations or cracks would violate integrability
[42]. We have not incorporated a dislocation field in our
model.

The nonlinear strain compatibility equation in 2D, up to
second order in strain components, is given by

θ = ∂2εxx

∂y2
+ ∂2εyy

∂x2
− 2

∂2εxy

∂x∂y

+
(

−∂εxx

∂x

∂εyy

∂x
− ∂εxx

∂y

∂εxx

∂y

+ 2
∂εxx

∂x

∂εxy

∂y
− ∂εyy

∂x

∂εyy

∂x

− ∂εyy

∂y

∂εxx

∂y
+ 2

∂εxy

∂x

∂εyy

∂y

)
. (14)

The corresponding expression in terms of e1, e2, and e3 is
given in [43]. In order to check the validity of the linear and
nonlinear compatibility relations above, we calculated 〈θ〉 for
α = 0, 10, 20, 35, 40, and 50 at τ = 0.0 using both the Euler
and fourth-order Runge-Kutta schemes. As Fig. 10 shows,
in general the average value 〈θ〉 over the whole system is
essentially zero; however, locally there are deviations from
compatibility which increase with coupling strength α. In
general, the correction to linear compatibility is an order of

FIG. 11. (a) The thermal hysteresis �T as a function of
e1e2

2 as well as α from our simulation results. With α increasing, e1e2
2

increases and so does the thermal hysteresis �T . The dotted line
is the fit to the data based on exponential growth, �T = −0.12 +
0.1e128524(e1e2

2 ). (b) The experimental results on the thermal hysteresis
as a function of η1(η2

2 + η2
3 ) follow the same the exponential form,

�T = −18 + 10e68[η1(η2
2+η2

3 )].

magnitude larger than for the nonlinear case using Euler. With
RK4, these corrections are an order of magnitude even smaller
than Euler. The Euler results for the nonlinear compatibility
are comparable to the RK4 results for linear compatibility.
Thus, both the precision of the numerical scheme and the
nonlinear terms in strain compatibility need to be taken into
account when checking compatibility. The four panels at
the bottom show the spatial distribution of θ for different
coupling strengths, α = 0, 20, 35, and 50 as calculated by
Euler and RK4 for linear and nonlinear compatibility. The
RK4 results illustrate that deviations from compatibility are
greatest at domain walls where there are large changes in
strains.

When the coupling coefficient α is 0, 10, and 20, the
spatial distribution of θ is fairly uniform. Therefore, in these
simulations, the elastic compatibility condition for strains
is satisfied. However, with increasing α, the spatial distribu-
tion is rather uneven as the larger values of e1 during the
martensitic transformation make it difficult to always locally
satisfy compatibility over the timescales of the simulations
[44,45]. Therefore, in systems with nonthermoelastic features,
continuity inside the microstructure is instantaneously not
satisfied. This would in a real martensite lead to nucleation
of dislocations [46,47].
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C. A materials descriptor associated
with the martensitic transformation

In our model, the thermoelastic martensite and non-
thermoelastic martensite features are distinguished by the
coupling term αe1e2

2. A larger coupling strength leads to
features of nonthermoelastic martensite. Therefore, we can
consider the coupling term e1e2

2 as a materials descriptor to
describe and predict thermal hysteresis.

Figure 11(a) shows how the thermal hysteresis changes
with the coupling e1e2

2 and with the coupling strength α

based on our simulation results. We find that e1e2
2 of marten-

site increases with increasing α, and the thermal hysteresis
also increases consistently. The same exponential form can
fit the thermal hysteresis as a function of e1e2

2, which gives
�T = −0.12 + 0.1e128524(e1e2

2 ).
For real materials undergoing a simple cubic to

tetragonal, tetragonal to orthorhombic, or face-centered-cubic
to face-centered-tetragonal transformation, the lattice pa-
rameters a0 for austenite and a, b, c for martensite can be
used used to calculate the symmetry adapted strains η1 =
(ε11 + ε22 + ε33)/

√
3, η2 = (ε11 − ε22)/

√
2, and η3 = (ε11 +

ε22 − 2ε33)/
√

6, where the strain components are ε11 = 1 +
a−a0

a0
, ε22 = 1 + b−√

2a0√
2a0

, and ε33 = 1 + c−√
2a0√

2a0
[48]. η2 and

η3 are both deviatoric strains, and η1 is the volume strain.
We then form the requisite symmetry allowed combination
η1(η2

2 + η2
3 ) to explore whether the relationship is satisfied

experimentally.
Figure 11(b) shows the experimental thermal hysteresis

as a function of η1(η2
2 + η2

3 ) for different martensitic alloys
[48–60]. The experimental results on the thermal hysteresis
as a function of η1(η2

2 + η2
3 ) follow the same the exponential

form, �T = −18 + 10e68[η1(η2
2+η2

3 )]. Thus, a very similar trend

can be seen for both our simulation results and the experimen-
tal results.

V. SUMMARY

In summary, we have introduced a coupling between the
non-order parameter volumetric strain and the order parameter
deviatoric shear strain into the free energy of a Landau model
to investigate non-thermoelastic features in an ideal thermoe-
lastic martensitie. The model reproduces features of both
types of transformations, including (1) the change of ther-
mal hysteresis, transformation temperature and residual strain,
(2) the microstructure evolution and (3) the thermal cycling
behavior. The coupling accentuates e1 during the transforma-
tion, which greatly enhances the stress and energy at the phase
boundary and effectively gives rise to a source term in strain
compatibility which would nucleate dislocations. Our simula-
tions show the emergence of non-thermoelastic features in our
thermoelastic martensitic model, and the coupling can serve as
a materials descriptor for thermal hysteresis. Although most
known martensitic alloys exhibit non-thermoelastic features
only as a result of nucleating dislocations, we speculate that
alloys with high elastic limits may show similar behavior.
For example, high entropy shape memory alloys with high
strength and large hysteresis, such as Ti20Hf15Zr15Cu25Ni25

[61], (TiZrHf )50Ni25Co10Cu15 [62,63] are potential candi-
dates for this type of behavior.
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