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Superconductivity has been experimentally observed in monolayer WTe2, in which the suggested in-plane
field measurements are of a spin-triplet nature. Furthermore, it has been proposed that with a p-wave pairing,
the material is a second-order topological superconductor with a pair of Majorana zero modes at the corners of
a finite sample. We show that for a repulsive on-site interaction and sizable Fermi surfaces, the desired p-wave
state arises naturally due to the Kohn-Luttinger mechanism, and indeed a finite superconducting sample hosts
corner Majorana zero modes. We study the behavior of the critical temperature in response to external in-plane
magnetic fields. We find an enhancement to the critical temperature that depends on the direction of the magnetic
field, which can be directly verified experimentally.
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I. INTRODUCTION

The understanding of the role of symmetry and topology on
the behavior of materials has been one of the major ongoing
developments in the field of condensed-matter physics. Within
band theory, it is now well known that distinct phases of
topological insulators and superconductors exist [1–4]. A hall-
mark of these topological phases is the existence of gapless
excitations of the surface of a finite sample. For instance, the
quantum spin Hall (QSH) state is a two-dimensional (2D) bulk
insulating state with two counterpropagating chiral modes that
are related by time-reversal symmetry. The QSH state has
been observed in mercury telluride quantum wells [5–8] and,
more relevant to our work, in monolayer WTe2 at tempera-
tures as high as 100 K [9–15].

Topological superconductors are known to host gapless
Majorana modes at the edges, and Majorana zero modes
(MZMs) bound at vortex cores. The MZMs are of spe-
cial interest for their application in quantum computation
[16,17]. Despite intensive research and various proposed
superconducting materials, unambiguous evidence for topo-
logical superconductivity with propagating Majorana modes
or MZMs remains elusive. One of the key challenges is
that unlike topological insulators, the formation of intrinsic
topological superconductivity requires synergy between the
normal-state band structure and unconventional pairing sym-
metry induced by interaction effects.

Recently, the concept of topological insulators and super-
conductors has been extended to include phases with edges
that are gapped except for “higher-order boundaries,” that
is, a lower-dimensional locus of points on the edge. These
new phases have been dubbed higher-order topological insula-
tors and superconductors. Specifically, a nontrivial nth-order
topology of a d-dimensional bulk entails that the gapless parts
of the edge are (d − n) dimensional [18–28]. For example,
in 2D, a second-order topological superconductor will host
Majorana zero modes (MZMs) on the corners of a square
sample.

Monolayer WTe2 with odd-parity pairing order has been
proposed to be one example of such higher-order topological

superconductors [29]. The material is a quantum spin Hall
insulator in the normal state, and upon electric gating has been
experimentally observed to turn superconducting with a Tc of
about 1 K [30,31]. Interestingly, Tc was found to increase in
the presence of small in-plane magnetic fields, lending sup-
port to possible odd-parity pairing symmetry. Theoretically,
in Ref. [29], the authors assumed a next-nearest-neighbor
attractive interaction between the electrons and showed that it
leads to p-wave pairing symmetry. However, the microscopic
origin of the attractive interaction remains to be elucidated.
Given the small electron density at which superconductivity
is observed, in Ref. [32], it was proposed that through virtual
interband excitonic processes, the repulsive interactions be-
tween electrons can give rise to a p-wave pairing instability.
However, these results were based on a generic band structure
rather than that specific to the monolayer WTe2.

In this work, we argue that a p-wave superconducting order
parameter in WTe2 follows naturally from the Kohn-Luttinger
mechanism of electrons near the Fermi surface. Of course, this
mechanism neglects any interband processes, which may be
important at low densities, and in this sense is complementary
to the pairing mechanism studied in Refs. [32,33]. Kohn and
Luttinger first showed that an isotropic electron gas in 3D will
develop a superconducting instability for channels with large
angular momentum under the effects of screened Coulomb
interactions [34–40]. This effect was understood as a conse-
quence of Friedel oscillations [41] that modifies the screened
Coulomb interaction, where electrons can take advantage of
the attractive portions of the oscillatory potential to form a
pair. Kohn-Luttinger-type superconductivity has been recently
studied for different lattice systems with short-range interac-
tions [40,42–62]. Even if lattice systems do not have pairing
channels with arbitrarily large angular momenta, with proper
geometry of the Fermi surface, superconductivity with uncon-
ventional pairing symmetry can still emerge out of repulsive
interactions.

We model the screened Coulomb interaction between elec-
trons by an on-site repulsive interaction U0 and study the
resulting pairing instability. At the tree level, Cooper pairs
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with a nonzero amplitude of being on the same site will
experience repulsion of the order of U0 and cannot form.
On the other hand, pairing channels with zero on-site com-
ponents by construction, which we focus on in this work,
do not experience repulsion and have a vanishing tree-level
contribution. The fate of these channels can only be deter-
mined by renormalizing the interaction vertex to second order
in U0.

Compared with previous works [40,42–62] on the Kohn-
Luttinger superconductivity for lattice systems, an important
aspect of monolayer WTe2 is the spin-orbit coupling, in which
spin singlet and spin triplet are, in general, mixed. As it turned
out, despite the existence of spin-orbit coupling in WTe2

[63–67], a spin axis is still conserved [65,68] and there is an
approximate residual U(1) spin-rotation symmetry. To their
advantage, odd-parity electron pairs with their spin aligned in
this direction necessarily have no on-site components due to
the Pauli exclusion principle and evade the on-site repulsive
interaction U0, while all other pairing channels have on-site
components. We focus on these equal-spin channels and find
that when renormalizing the interaction vertex at one-loop
order, they lead to the odd-parity pairing instability of WTe2.

Inspired by experimental observations of enhanced Tc by
an in-plane magnetic field, we investigate this effect us-
ing Landau-Ginzburg free energy. This was also studied in
Refs. [32,33]. However, in this work, we make sure that the
term added to the free energy respects the U(1) spin-rotational
symmetry that is present even when spin-orbit coupling is
taken into account. Furthermore, we also take into account
that the direction of the spin axis and the direction perpen-
dicular to the plane are not parallel to each other. We find
an enhancement to Tc that depends on the direction of the
in-plane field. A magnetic field in the b direction yields higher
enhancement to Tc than a field in the a direction of the same
magnitude. The reason for this direction dependence is that
the spin axis defined by spin-orbit coupling is not perpen-
dicular to the plane of the sample, whereas the results of
Refs. [32,33] also show an enhancement to Tc with a small
magnetic field; the details of how the enhancement depends
on the direction of the field are different from what we find,
which can be directly tested experimentally.

With the odd-parity (p-wave) order parameter, monolayer
WTe2 hosts two time-reversal Kramer’s partners MZMs at
the same corner. This situation is very similar to the one
studied in Ref. [69] of a heterostructure between a d-wave
high-Tc superconductor and a quantum spin-Hall insulator.
There, a protocol was developed to braid the two MZMs
using an in-plane magnetic field. Unfortunately, we show that
this protocol cannot be used in the case of WTe2, since the
p-wave pairing order condenses spin and breaks the U(1)
spin-rotational symmetry.

The rest of this paper is organized as follows. In Sec. II,
we introduce the lattice model for WTe2 in the presence of an
on-site repulsive interaction. In Sec. III, we study the pairing
gap equation with interactions up to one-loop accuracy, both
in real and momentum space. In Sec. IV, we discuss the
effects of an in-plane magnetic field in the sample through
the formalism of a Ginzburg-Landau theory.

FIG. 1. Monolayer WTe2 unit cell. Depicted are the two W atoms
and two Te atoms relevant to the low-energy theory. Each W atom has
a d orbital, and each Te atom has a p orbital.

II. NORMAL STATE OF MONOLAYER WTe2

The monolayer WTe2 unit cell has two W atoms and two Te
atoms that are relevant to the low-energy theory [65,70]. The
lattice consists of W chains and Te chains in an alternating
fashion are shown in Fig. 1. The chains are parallel to the a
direction and stacked along the b direction with b ⊥ a. Each
W atom has a d-wave orbital, while each Te atom has a
p-wave orbital. The four orbitals per unit cell are labeled by
two pseudospin degrees of freedom, l and σ , where lz = ±1
specifies whether it is a W or a Te orbital, and σz = ±1
distinguishes their corresponding sublattice. Each orbital can
be occupied by either a spin-up or a spin-down electron with
sz = ±1/2.

The material has an inversion symmetry around the center
of the unit cell,

I = σxlz. (1)

Time-reversal symmetry, T = isyK , is also present, with
K being the complex conjugate operation. Additionally,
the system has a nonsymmorphic glide mirror symmetry
Mx(k) = sx[σ0(1 + eikx ) + σz(1 − eikx )]lz/2 that is a combi-
nation of reflection x → −x and a half lattice translation
in the same direction. Combining inversion and mirror
glide gives a screw symmetry C2x(k) = Mx(k)I = sx[σx(1 +
eikx ) + iσy(1 − eikx )]/2. This screw symmetry is, in effect, a
π rotation about the a direction and a half lattice translation
along the same direction.

Spin-orbit coupling in WTe2 is significant [63], breaking
the SU(2) spin-rotation symmetry. However, it was shown
[65] that to leading order in k, the system still has a residual
spin axis and a U(1) spin-rotation symmetry. We denote this
spin axis as z, and the spin-orbit coupling can be written as

Hso = Vso szσzly. (2)

This z direction is not necessarily perpendicular to the plane
of the monolayer WTe2, which we henceforth refer to as the
c direction. Experimental measurements of the spin axis in
Ref. [68] show that the angle between the z and c directions is
φso = 40◦ ± 2◦. It is straightforward to check that such a spin-
orbit-coupling term is consistent with time-reversal, inversion,
and screw symmetries [65] mentioned above. Following this,
we exclude additional spin-orbit-coupling terms that further
break the U(1) spin-rotation symmetry. In what follows, we

014509-2



HIGHER-ORDER TOPOLOGICAL SUPERCONDUCTIVITY IN … PHYSICAL REVIEW B 108, 014509 (2023)

(a)

(c)

(b)

FIG. 2. Spectrum of monolayer WTe2 using the tight-binding
model in Ref. [65]. (a) The two Fermi surfaces. (b) The gapped Dirac
points. (c) The expectation values of σ and l on the Fermi surface.
We see that both |〈σ〉| and |〈l〉| are approximately one, indicating an
approximate absence of entanglement in σ and l . Further, there is a
winding in 〈σ〉, while 〈l〉 does not vary appreciably.

will simply refer to the z component of the electronic spin as
“spin.”

To obtain an effective model for the low-energy fermions,
we start from the tight-binding model fitted from density
functional theory in Ref. [65],

H0(k) = s0 ⊗

⎡
⎢⎢⎢⎢⎣

εd 0 tAB
d geiky tAB

0 f

0 εp −tAB
0 f tAB

p g

tAB
d g∗e−iky −tAB

0 f ∗ εd 0

tAB
0 f ∗ tAB

p g∗ 0 εp

⎤
⎥⎥⎥⎥⎦

+ Vsoszσzly − μ, (3)

where the 2 × 2 subblocks represent sublattice σ degrees of
freedom. The dispersion is specified by

εd/p(kx ) = μd/p + 2[td/p cos(kx ) + t ′
d/p cos(2kx )],

g(kx ) = (1 + e−ikx ), f (kx ) = (1 − e−ikx ), (4)

and

μd = 0.4935, μp = −1.3265,

td = −0.28, t ′
d = 0.075,

tp = 0.93, t ′
p = 0.075,

tAB
d = 0.52, tAB

p = 0.40, tAB
0 = 1.02,

Vso = 0.115, μ = 0.5. (5)

We plot the Fermi-surface contours in Fig. 2(a). There are
two Fermi-surface pockets each enclosing a gapped Dirac
point, as shown in Fig. 2(b). The gap is of the order of
Vso. Moreover, in Fig. 2(c), we plot the expectation values

〈σ〉 = (〈σx〉, 〈σy〉, 〈σz〉) and 〈l〉 = (〈lx〉, 〈ly〉, 〈lz〉) for the
Fermi surface in the +kx half plane.

We see in Fig. 2(c) that to a good approximation, Bloch
states on the Fermi surface are direct product states between
σ and l degrees of freedom. Indeed, we see that the lengths
〈σ〉 and 〈l〉 are almost unity, indicating pure states in each
sector. Moreover, we see that 〈l〉 is approximately a constant
pointing in the +y direction, while 〈σ〉 approximately lies in
the xy plane and winds once around the Fermi surface. This
result can be understood from the symmetry

C2x = sx[σx(1 + eikx ) + iσy(1 − eikx )]/2, (6)

for all states with kx = 0, which, in the absence of spin-orbit
coupling, requires the Bloch states to be polarized in σ . For
small spin-orbit coupling and for small pockets near ky = 0,
the Bloch states are thus nearly free of entanglement in the
σ and l sectors. By expanding around the Dirac points and
treating other terms in the Hamiltonian as perturbations, one
obtains the winding in 〈σ〉 and polarization in 〈l〉.

With this important simplification, we write the Hamilto-
nian near the Dirac points as

H±
n (δk) = −(±vxδkxσ̃

±
x + vyδkyσ̃

±
y ± Vsoszσz ) − μ, (7)

where H±
n (δk) is the projected Hamiltonian with ly = ± for

the Fermi surfaces on the ±x half plane. The Pauli operators
σ̃±

α are defined in the following way:

σ̃±
r = e±iKσz/2σre∓iKσz/2, (8)

where r = x, y, and K is the magnitude of the position of
the center of any of the Fermi surfaces. This definition is
necessary in order to maintain the screw symmetry of the
model. See Appendix A for more details.

While this Hamiltonian does not match the exact shape of
the Fermi surfaces or the exact pseudospin texture, it does
represent the correct winding and polarization in the σ and
l sectors and respects the symmetry. We expect this to be
sufficient to capture the symmetry of the superconducting
leading instability.

Finally, we model the electron-electron repulsion using a
simple on-site interaction U0. Importantly, the term “on-site”
here means that the electron density operators are not only
taken at the same unit cell coordinate R, but also at the same
orbital and same sublattice. Of course, in the actual material,
there are finite-range elements to the interaction, but we ex-
pect them to fall off rapidly as the distance grows. Let cs,α (R)
be the annihilation operator for a spin s electron at the α

orbital inside the unit cell at position R. Note that our notation
is such that the index α = {1, 2, 3, 4} labels both the σz = ±1
and lz = ±1 components. The on-site repulsive interaction is
written as

Hint = U0

∑
R,α

c†
↑,α (R)c†

↓,α (R)c↓,α (R)c↑,α (R), (9)

where U0 > 0 is the strength of the interaction and repeated
indices are summed over.

III. THE PAIRING PROBLEM

The point group of monolayer WTe2 is C2h, containing
E (the identity), C2x, Mx, and I, with MxC2x = I and
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TABLE I. Irreducible representations of WTe2 point group.

ηE ηC ηM ηI

Ag +1 +1 +1 +1
Bg +1 −1 −1 +1
Au +1 +1 −1 −1
Bu +1 −1 +1 −1

C2
2x = M2

x = I2 = E . This group has four irreducible repre-
sentations corresponding to the different signs of C2x and Mx,
as shown in Table I.

We consider the pairing vertex
∫

dkc†(k)	(k)c†(−k), in
which 	(k) is a matrix in σ , s, and l . All pairing wave
functions must satisfy the Pauli exclusion principle,

	T (−k) = −	(k). (10)

Solutions of the gap equation can be characterized depending
on how they transform under C2x and Mx,

Mx : 	(k) → Mx(k)	(Mxk)MT
x (−k) = ηM	(k), (11)

C2x : 	(k) → C2x(k)	(Cxk)CT
2x(−k) = ηC	(k), (12)

where ηM and ηC ∈ {−1,+1}. The above equations invoke
the form of symmetries at both k and −k because the pairing
is between electrons with opposite momenta. Furthermore, we
refer to the Ag and Bg representations as the s wave, and the
Au and Bu representations as the p wave.

Before the projection to the vicinity of the Fermi surface,
we begin by studying the pairing problem for the full lattice
model in real space. Let 	s1s2

α1α2
(R2 − R1) be the pairing ampli-

tude between an electron at R1, α1 and another at R2, α2 with
spins s1 and s2, respectively. The linearized self-consistent
equation for 	s1s2

α1α2
(R2 − R1) is depicted in Fig. 3, which is

	s1s2
α1α2

(R2 − R1) = −T
∑

ω

�α1α2,α
′
1α

′
2 (R1, R2, R′

1, R′
2)Gs1,s′′

1
α′

1,α
′′
1

× (iω, R′
1 − R′′

1 )Gs2,s′′
2

α′
2,α

′′
2
(−iω, R′

2 − R′′
2 )

× 	
s′′

1 s′′
2

α′′
1 α′′

2
(R′′

2 − R′′
1 ), (13)

where, for compactness, repeated indices and spatial coordi-
nates are summed over (for the rest of the paper, it is generally
not assumed so). Here, due to the spin-rotation symmetry, the
Green’s function G

s1,s′′
1

α′
1,α

′′
1
(ωm, R′

1 − R′′
1 ) is diagonal in the spin

sector, but is a matrix in α and the unit cell coordinate R. Here,
ωm is a Matsubara frequency, which is summed over.

We note that although, in general, the gap equation is
difficult to solve in real space, doing so simplifies the problem
for the interaction vertex � at the tree level, as we shall see
next.

FIG. 3. Linearized gap equation in real space.

FIG. 4. Real-space tree-level interaction vertex.

A. Tree-level pairing interaction

As we show in Fig. 4, at tree level, the interaction vertex
function is given by the on-site interaction,

�α1α2,α
′
1α

′
2 (R1, R2, R′

1, R′
2) = U0δ(R1 − R2)δ(R1 − R′

1)

× δ(R2 − R′
2)δα1α2δα1α

′
1
δα2α

′
2

+ O(U 2
0 ), U0 > 0. (14)

As a consequence of the repulsive interaction, at leading
order in U0, the right-hand side of Eq. (13) is nonpositive. The
key insight here is that to evade the strong on-site repulsion
at tree level, we expect the leading instability to be towards
a pairing order that has vanishing on-site component by sym-
metry; any other eigenfunction of the kernel of Eq. (13), in
general, has an on-site component, which invokes a negative
contribution at leading order to the right-hand side of Eq. (13).

Naturally, equal-spin pairing orders (with Cooper pairs of
electrons with the same sz) have zero on-site components
by symmetry due to the Pauli exclusion principle. From this
argument, we conclude that the leading instability is toward
equal-spin pairing. Such a pairing order experiences no re-
pulsion at tree level and, as we shall see, attractive pairing
interactions come from O(U 2

0 ) order. Indeed, we have veri-
fied, by using a momentum-space approach near the Fermi
surface, that all interspin pairing orders experience a repul-
sive interaction at tree level. This is reminiscent of the fact
that short-range repulsion promotes finite-angular-momentum
pairing in the continuum [35].

For a multiorbital system, in principle, it is possible to have
equal-spin and even-parity pairing order, e.g., by considering
pairing between a W orbital and a Te orbital. However, from
energetic considerations of the Cooper instability, it is sensible
to limit to pairing between electrons that are inversion part-
ners. In this case, from Fermi statistics, the equal-spin pairing
function is necessarily odd in parity, i.e., p wave. We will
see this explicitly by going to O(U 2

0 ) terms in the interaction
vertex.

B. Renormalized interactions

The effective attraction for the equal-spin pairing channels
comes from U 2

0 order in the interaction vertex. Without loss
of generality, we focus only on the spin-↑↑ channel. As nei-
ther the Green’s function nor the density-density interaction
flips the spin, we suppress the spin indices throughout. The
pairing vertex for the spin-↓↓ channel is related by time-
reversal symmetry. In Fig. 5, we show the diagrams involved
in the vertex calculation up to second-order terms. As is typ-
ical for Kohn-Luttinger-type pairing with local interactions,
it is straightforward to see that the first three O(U 2

0 ) dia-
grams in Fig. 5(b) cancel each other. Evaluation of the last
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(a) (b)

FIG. 5. (a) Linearized gap equation in momentum space. (b) Equal-spin interaction vertex to second order. α1, α2, α
′
1, and, α′

2 are combined
indices for σ and l .

diagrams leads to

�α1,α2,α
′
1,α

′
2 (k1, k2, k′

1, k′
2)

= [
U0δα1α

′
1
δα2,α

′
2
δα1,α2 + U 2

0 δα1α
′
2
δα2α

′
1
�α1α2 (k1−k′

2)
]

× δ(k1 + k2 − k′
1 − k′

2), (15)

with �α2α1 (q) being the particle-hole bubble,

�α2α1 (q) = −
∫

dωd p
(2π )3

Gα2α1 (iω, p)Gα1α2 (iω, p − q), (16)

and Gα1,α2 (iω, k) is the Green’s function.
The dominant contribution to the Green’s function relevant

to pairing comes near the Fermi surface. As a good approxi-
mation, we take

G(iω, k) = |ψ (k)〉〈ψ (k)|
iω − ε(k)

, (17)

where |ψ (k)〉 is the Bloch state of the band that crosses the
Fermi level at k, and ε(k) is its energy. Note that because we
are only considering one spin species, there is only one |ψ (k)〉
at each point on the Fermi surface.

The projected gap equation onto the Fermi surface reads

	̃(k) = −
∫

dk′

(2π )2
�̃(k, k′)	̃(k′)

tanh(ε(k′)/2Tc)

2ε(k′)
, (18)

where the projected interaction vertex �̃(k′, k) =
〈�(k′)|�|�(k)〉, with |�(k)〉 = |ψ (k)〉 ⊗ |ψ (−k)〉, is given
by

�̃(k′, k) = U0

∑
α

ψ∗
α (k′)ψ∗

α (−k′)ψα (k)ψα (−k)

+ U 2
0

∑
α2α1

�α2α1 (k + k′)ψ∗
α2

(k′)ψ∗
α1

(−k′) (19)

× ψα1 (k)ψα2 (−k),

and the pairing gap

	̃(k) =
∑
αβ

ψ∗
α (k)ψ∗

β (−k)	αβ (k) (20)

is the projection of 	(k) onto the Fermi surface. Plugging
Eq. (10) into Eq. (20), we obtain that by Fermi statistics,
	̃(k) = −	̃(−k). Since the Fermi-surface states are nonde-
generate for each spin, inversion simply takes 	̃(k) to 	̃(−k),
and the equal-spin pairing gap corresponds to a p-wave order.

The integral over energy in Eq. (18) gives the usual
ln(�/Tc), where � is the energy cutoff. What is left is the
angular integral over the oval Fermi surfaces. For the p-wave
solution, we can rewrite the self-consistent equation as

	(θ ) = −
∫

dθ ′ �(θ, θ ′)ν(θ ′)	(θ ′)ln
(

�

Tc

)
, (21)

where θ parametrizes the momentum on the Fermi surface, as
shown in Fig. 6, 	(θ ) = 	(kθ ), and

�(θ, θ ′) = �̃(kθ , kθ ′ ) − �̃(kθ ,−kθ ′ ). (22)

We use the density of states, ν(θ ), for the model in Eq. (7),

ν(θ ) = 1

(2π )2

μ

v2
x cos2(θ ) + v2

y sin2(θ )
. (23)

The pairing gap is an eigenfunction given by

λ	(θ ) = −
∫

dθ ′ �(θ, θ ′)ν(θ ′)	(θ ′). (24)

As usual, the pairing channel with λ > 0 has a critical temper-
ature,

Tc = � exp

(
−1

λ

)
. (25)

One feature of �(θ, θ ′) that is immediately obvious is that
the first-order contribution in U0 is zero. This can be seen from
Eq. (19), as terms proportional to U0 are symmetric under
k → −k, and thus cancel out in �(θ, θ ′); this is precisely
what we discussed in the previous section. In the following,
we focus on second-order terms for the scattering matrix �.

We evaluate �(θ, θ ′) numerically. In Fig. 7, we show our
result for �̃(kθ , kθ ′ ) and �̃(kθ ,−kθ ′ ), where kθ and ±kθ ′ be-
long to the same/different Fermi surface. The most pertinent
feature of the result is that �(kθ , kθ ′ ) < �(kθ ,−kθ ′ ) for all θ

and θ ′. This lead to �(θ, θ ′) < 0 and to λ > 0.
We note that our analysis relies on an expansion around the

Fermi surface. For small values of μ, the interplay between
the conduction and valence bands may become important and,
as studied in Refs. [32,33], can lead to odd-parity supercon-
ductivity without consideration of the Kohn-Luttinger effects.
The Kohn-Luttinger effects that we consider here are, in this

FIG. 6. Definition of kθ on the Fermi surface.
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×

FIG. 7. Numerical evaluation of the second-order terms of
�̃(kθ ′ , kθ ) (left) and �̃(−kθ ′ , kθ ) (right). As discussed in the main
text, we see that, in general, �̃(kθ ′ , kθ ) < �̃(−kθ ′ , kθ ), which is im-
portant in obtaining a p-wave superconducting channel with positive
λ. μ = 0.3, vx = 1, vy = 1/3,Vsc = 0.1.

sense, complementary to the results there and further elucidate
the exact form of the odd-parity pairing order.

C. Origin of effective attraction

The details of Fig. 7 are complicated by the pseudospin
texture on the Fermi surfaces. However, the important fea-
tures that make solutions with positive λ possible are easily
understood from the polarization bubble �̃(k, k′), which is

�(q) =
∫

d p
(2π )2

f (ε(p)) − f (ε(p − q))

ε(p) − ε(p − q)
, (26)

where q = k + k′, and f (ε) is the Fermi-Dirac function. The
integrand of �(q) is peaked when p and p − q are both near
one of the Fermi surfaces. For small q, the dominant contribu-
tion comes from when both p and p − q are on one of the two
Fermi pockets, while for q larger than the size of the Fermi
pocket, the dominant contribution can only come from when
p is on one Fermi pocket and p − q is on another. We hence
have, e.g., �(0) = 2�(2K ), where 2K is the separation of the
two Dirac points. This relation also extends to that between
�(q) = 2�(2K + q), where q is smaller than the size of a
Fermi pocket. For this reason, the projected interaction ver-
tices satisfy �̃(kθ ′ , kθ ) < �̃(−kθ ′ , kθ ), as found in Fig. 7.

Analytically, �(0) is simply the density of states ν(μ) at
the Fermi level. For μ � Vso, the density of states is given by
a Dirac-like spectrum with a linear density of states, and thus
�(0) ∝ μ. In this situation, the coupling constant in Eq. (25)
satisfies λ ∝ μ. Using this, and our discussion above, our
result indicates an exponential increase in the critical temper-
ature with increasing chemical potential at large dopings. At
small dopings, when μ � Vso, �(0) = ν(μ) tends to a con-
stant. However, as we discuss below, Tc will be exponentially
suppressed by another mechanism. Experimentally, a sharp
increase in superconductivity with doping has been observed
in Refs. [30,31], even at very small doping. Therefore, an
additional pairing mechanism such as that from interband
effects [32,33] is likely required to explain the experimental
data.

From Eq. (19), another contribution to �̃(k, k′) comes from
the matrix elements due to the pseudospin texture of the Fermi
surfaces. An essential ingredient to achieving the effective
attraction between the Cooper pairs is the Dirac dispersion,

which provides an in-plane component to the spinors on the
Fermi surface. To show this, it is helpful to consider a hypo-
thetical situation without the Dirac dispersion, in which the
spinors are completely determined by the spin-orbit coupling.
In this case, we can take the spinors on each Fermi surface
as constant. Focusing on the equal-spin states with +sz, the
relevant spinors are polarized as ψ (k) = | + sz,+σz,+ly〉 for
the Fermi surface at K and ψ (−k) = | + sz,−σz,−ly〉 for the
opposite Fermi surface. One can directly evaluate �̃(k′, k) in
Eq. (19) and verify that at both U0 and U 2

0 orders, it van-
ishes for any k, and k′ on either of the two Fermi surfaces.
Indeed, the polarized spinors indicate that the leftmost ex-
ternal fermion lines in the Kohn-Luttinger diagram (the last
one in Fig. 5) relevant to the pairing process (with opposite
momenta) correspond to fermions fully polarized on opposite
sublattices (with σz = ±1). Since the interaction is on site,
which enforces the same sublattice index for all four fermion
operators, the scattering amplitudes by both of the wavy lines
are zero. By contrast, the presence of the Dirac dispersion
ensures the fermions on the Fermi surface (FS) are located
coherently on both sublattice sites (in the limit of no spin-orbit
coupling, a Bloch state on the FS is an equal superposition
between two sublattices), and thus the scattering amplitude
is nonzero even for pairing between fermions with opposite
sublattice composition. At low dopings, the sublattice texture
on the FS is dominated by the spin-orbit coupling and nearly
polarized. In this situation, pairing from the Kohn-Luttinger
mechanism is indeed exponentially suppressed and, as we
mentioned, an additional pairing mechanism, e.g., interband
effects, is indeed needed.

Therefore, we conclude that both the Fermi-surface geom-
etry and the underlying Dirac points, even though they are
gapped by the spin-orbit interaction, lead to superconductiv-
ity due to the Kohn-Luttinger mechanism in WTe2. We note
that the same effect was shown to lead to superconducting
instabilities in a graphenelike system [42]. Due to the different
point-group symmetry, the pairing symmetry there was found
to be f wave. As we shall see, another difference is the role of
spin-orbit coupling, which is negligible in graphene but not in
the present system.

D. Order parameter symmetry representation

Our theory only puts constraints on the projection of the
order parameter on the Fermi surfaces. These constraints have
already pinned down the order parameter to be a p wave.
However, we might still ask if the Kohn-Luttinger mecha-
nism favors Au representations over Bu representations, or vice
versa.

Consider the following 	(k) making an Au representation,

	1(k) ∝ sin(kx )s0σ0l0. (27)

Being a p-wave equal-spin pairing channel, we only need
to check if it has a nonzero projection onto the Fermi sur-
face in order to determine if it is a valid order parameter.
Using Eq. (20) and the states near the Fermi surface from
the simplified Hamiltonian in Eq. (7), |ψ (k)〉 = (1, ±i)T ⊗
[cos(θ/2), sin(θ/2)eiφ]T /2, and |ψ (−k)〉 = [1, −(±i)]T ⊗
[sin(θ/2), cos(θ/2)e−iφ]T /2, we find the projection of 	1(k)
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onto the Fermi surface,

	̃1(k) ∝ sin(kx )
∑

α

ψ∗
α (k)ψ∗

α (−k)s0 = sin(kx ) sin(θ )s0.

(28)
In the case of zero spin-orbit coupling, we have θ = π/2, and
as spin-orbit coupling increases, θ decreases.

Meanwhile, Bu representations can also describe an equal-
spin p wave with nonzero projection into the Fermi surface.
Consider the following example:

	2(k) ∝ sin(kx )szσ0l0, (29)

which has a projection

	̃2(k) ∝ sin(kx ) sin(θ )sz. (30)

We see that 	1 and 	2 correspond to the equal and opposite
pairing amplitudes among spin-up and spin-down fermions.
Due to the additional U(1) spin-rotation symmetry that relates
the two, both Au and Bu representations are equally favored by
the Kohn-Luttinger mechanism.

In reality, the U(1) spin-rotation symmetry is weakly bro-
ken in the normal state. This symmetry breaking could be the
effect of a small momentum-dependent spin-orbit coupling
or due to electron interactions. In either case, these effects
are expected to remove the degeneracy between 	1 and 	2.
Whether 	1 or 	2 ends up being the leading instability will
depend on the details of the breaking of the U(1) symmetry in
the system, which can be calculated either using perturbation
theory or by including a |	1|2 − |	2|2 term in the free energy.
To the best of our knowledge, the details of the U(1) symmetry
have not been explored numerically or experimentally. We
hope that our work further motivates exploration in this area.

It is important to note that the superconducting states 	1

and 	2 would break the U(1) spin-rotation symmetry eiθsz .
This can be seen by writing

	(k) ∝ d · s isy, (31)

in which the d vector is along the ŷ and x̂ directions for
	1 and 	2, respectively, and thus breaking the spin-rotation
symmetry in the xy plane.

E. Corner Majorana zero modes

In this section, following the identification in Ref. [29],
we demonstrate the existence of Majorana corner modes in
WTe2 with the leading pairing instability dictated by the
Kohn-Luttinger mechanism. We start with the density func-
tional theory (DFT)-fitted tight-binding model in Ref. [65]
and add the pairing terms in Eqs. (27) and (29). In Fig. 8(a),
we show the distribution eigenvalues around zero energy. We
clearly see four modes that are pinned at zero energy. With
time-reversal T 2 = −1, these modes are two Kramers pairs,
Majorana zero modes. In Fig. 8(b), we plot the average prob-
ability distribution in real space for the Majorana zero modes.
One Kramer pair is localized at one corner and the other pair
is localized on the opposite corner related by inversion. This
is consistent with the results in Ref. [29].

Time-reversal symmetry can be broken by the introduction
of a magnetic field,

Hmag = hxsxσ0l0 + hysyσ0l0. (32)

(a) (b)

FIG. 8. The existence of four Majorana zero modes that are lo-
calized on two opposite corners of the sample. Each of the opposite
corners has two Majorana zero modes that are Kramer’s partners.

With time-reversal symmetry broken, the Majorana zero
modes at each corner are no longer Kramer’s partners, and
they can hybridize and gap each other out. This is also con-
firmed by our numerical study. This is important to contrast
with the Majorana pairs discussed in Ref. [69]. There, the
MZMs were obtained from a d-wave superconductor sitting
on top of a QSH state. Such heterostructure also results in a
Kramer’s pair of MZMs at the corners. Using this platform,
it is possible to braid the pair of Majoranas by tuning the
in-plane magnetic fields. Magnetic fields also break time-
reversal symmetry in the heterostructure; however, due to
the spin-singlet nature of the pairing order, the system still
has a U(1) spin-rotation symmetry in the superconducting
state. Thus, in the presence of an in-plane magnetic field, the
original time-reversal symmetry T can be combined with the
U(1) symmetry to make a new time-reversal symmetry T ′ =
eiπ/2szT that squares to +1. Together with the particle-hole
symmetry of the Bogoliubov-de Gennes (BdG) Hamiltonian,
this puts the heterostructure in the symmetry class BDI. This
composite symmetry ensures that a pair of MZMs of the same
chiral eigenvalue is protected, and is one of the prerequisites
for braiding the MZMs using in-plane fields. Since the p-
wave superconducting order of WTe2 breaks the spin U(1)
symmetry, the protocol developed in Ref. [69] cannot be used
to braid the MZMs. It remains to be seen what perturbations
can be added to manipulate and possibly braid the two MZMs
at each corner for the intrinsic p-wave state. Alternatively, one
can introduce a d-wave pairing order to monolayer WTe2 via
the proximity effect.

IV. EFFECTS OF IN-PLANE EXTERNAL
MAGNETIC FIELD

In this section, we study the effect of in-plane external
magnetic fields on Tc, using a Ginzburg-Landau theory. In the
presence of a magnetic field, the free energy can be written in
a form that is explicitly invariant under the U(1) spin rotation,

F = [α(T ) + χB2](d∗ · d ) + 2γ |dz|2

+ μB · (id × d∗) + η|B · d|2, (33)

where we denote the pairing order parameter by their d
vectors defined in Eq. (31), α = κ[T − Tc(B = 0)], and
κ, γ , μ, η, χ > 0. Here, μ (not to be confused with the chem-
ical potential) describes the Zeeman effect caused by the
magnetic field, and the η term accounts for pair breaking due
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FIG. 9. The a and b directions are the lattice vectors for WTe2,
and the c direction is perpendicular to the WTe2 plane. The z direc-
tion is the direction of the spin axis picked up by spin-orbit coupling.
The x direction is chosen to be parallel to the a direction, and the y
direction is perpendicular to the xz plane.

to orbital effects. The γ term is due to the effect of spin-orbit
coupling. Indeed, in the absence of spin-orbit coupling, the
system has a full SU(2) spin-rotation symmetry and all three d
vectors are equally favored by symmetry. We take γ > 0 such
that with no magnetic field, we have the equal-spin channels
dx and dy being the leading instabilities of the system, as
predicted by our Kohn-Luttinger analysis.

Note that the z direction is not perpendicular to the sample
plane; rather, it is the direction of spin polarization due to
spin-orbit coupling [68]. Thus, in the following, it is impor-
tant to distinguish between two different coordinate systems.
The a, b, c-coordinate system is such that the c direction is
perpendicular to the plane of the sample, and the a and b
directions are as defined in Fig. 1. On the other hand, the
x, y, z-coordinate system is such that x ‖ a, while the z direc-
tion is in the cb plane at an angle φso with the c direction. See
Fig. 9 for an illustration.

We separately study the effect of in-plane magnetic
fields along the a and b directions. For B = Baa, the
free energy reduces to

F = [
α(T ) + χB2

a

]
(d∗ · d ) + 2γ |dz|2

+ μBai[dyd∗
z − dzd

∗
y ] + η|Badx|2. (34)

In this case, the x component of the order parameter does not
mix with the other two, and setting dx = 0 always results in
a higher critical temperature. Solving the eigenvalue problem
for the y and z components gives a critical temperature,

Tc(Ba) = Tc(0) − χB2
a − γ +

√
γ 2 + μ2B2

a. (35)

Looking at the behavior near Ba = 0 we have Tc(Ba) =
Tc(0) − (χ − μ2/2γ )B2

a. For γ < μ2/2χ , small fields en-
hance the critical temperature. However, for γ > μ2/2χ ,
any field is detrimental to superconductivity. We plot both
scenarios in Fig. 10 (shown as orange curves).

(a) (b)

FIG. 10. The dependence of the critical temperature on in-plane
magnetic fields, and the strength of the spin-orbit coupling γ . For
γ < μ2/2χ , magnetic fields in the a and b directions cause an
enhancement to Tc, with the b-field direction causing bigger enhance-
ment. However, for γ > μ2/2χ , magnetic fields in the a direction
always cause Tc to decrease, while we still see enhancement for fields
in the b direction.

Next we consider B = Bbb, for which the free energy can
be written as

F = [
α(T ) + χB2

b

]
(d · d∗) + 2γ |dz|2

+ μBb[dcd∗
a − dad∗

c ] + η|Bbdb|2. (36)

Unlike the previous case, because of the misalignment be-
tween c and z, all components of d are mixed and the behavior
of the system depends on φso. For φso = 0, we have a situation
very similar to that when B = Baa, and the critical temper-
ature reduces to Eq. (35). The other limiting case is when
φso = 90◦, such that ẑ = b. In this case, the z component of the
order parameter decouples from the other components. The
critical temperature, in this case, is

Tc(B) = Tc(0) − χB2 + μB. (37)

When φso = 90◦, the critical temperature increases linearly
with the magnetic field for small fields. This is a bigger en-
hancement to Tc than what we get when B ‖ a. Additionally,
the enhancement does not depend on how big or small γ

is. Real WTe2, however, has φso ≈ 40◦. We thus expect the
enhancement of the critical temperature with small fields to
be somewhere between the two limiting cases.

For the general case, when B ‖ b, we write

F = d†[(α + χB2)1 + M]d, (38)

with

M =

⎡
⎢⎣

0 0 iμB

0 ηB2 + 2γ sin2(φso) γ sin(2φso)

−iμB γ sin(2φso) 2γ cos2(φso)

⎤
⎥⎦.

(39)

The problem of finding the Tc reduces to the problem of find-
ing the smallest eigenvalue of M. The characteristic equation
det(M − λ1) = 0 is cubic and does not have an easy solution.
In Fig. 10, we show the numerical solution to the characteristic
equation for φ = 40◦. We compare the enhancement to Tc for
when B ‖ a and for when B ‖ b. Figure 10 clearly shows that
B ‖ b yields a bigger enhancement to Tc than B ‖ a. In fact,
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when γ > μ2/2χ , Fig. 10(b) shows that we only get enhance-
ment when B ‖ b and not when B ‖ a. This is the key finding
of our work. The field dependence of Tc has been measured
for monolayer WTe2 with similar behaviors observed [71]. It
would thus be interesting to examine the dependence of Tc on
the direction of the in-plane Zeeman field.

The same problem was studied in Ref. [32], and we point
out two ways in which our results differ. First, here we make
sure that the spin-orbit-coupling term included in the free
energy respects the U(1) spin-rotation symmetry that the nor-
mal state enjoys. On the other hand, the authors of Ref. [32]
assumed dz and dy are degenerate even though they are not
related by any symmetries. Second, we take into account the
fact that the spin axis in the z direction is not parallel to the c
direction. These considerations lead to qualitatively different
results. For example, for γ > 0, the results in Ref. [32] indi-
cate that B ‖ a will not enhance Tc, whereas our result shows
that for a sufficiently small spin-orbit coupling, we get Tc

enhancement. Furthermore, for B ‖ b, the results in Ref. [32]
indicate that for a sufficiently large spin-orbit coupling, there
is no enhancement to Tc, while our results show that a small
field will always lead to an enhancement in Tc, regardless of
the value of γ .

V. DISCUSSION

In this work, we studied the superconducting ground state
of monolayer WTe2 from on-site repulsive interactions. By
constructing an effective model for the Fermi surfaces of
WTe2, we show that the leading instability of the system
is an equal-spin p-wave channel. This suggests that WTe2

is a second-order topological superconductor with a pair of
Majorana zero modes on the corners of a finite sample.

We also studied the effect of an external magnetic field on
superconducting monolayer WTe2. Using a Ginzburg-Landau
theory, we study the effect of in-plane magnetic fields on
Tc. We find an enhancement to Tc at small field strengths.
Interestingly, this enhancement is dependent on the direction
of the in-plane field. In particular, a field in the b direction
yields a bigger enhancement as compared to a field of the
same strength but oriented in the a direction. This discrepancy
can be used as an experimental tool to confirm the nature of
the order parameter in WTe2.
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APPENDIX A: SCREW SYMMETRY C2x IN THE
SIMPLIFIED HAMILTONIAN

Special care is needed when writing the simplified Hamil-
tonian in Eq. (7) in order to make sure it respects all
symmetries of WTe2. We rewrite the Hamiltonian here for
convenience,

H±
n (δk) = −(±vxδkxσ̃

±
x + vyδkyσ̃

±
y ± Vsoszσz ) − μ. (A1)

The screw symmetry C2x maps one Fermi surface to itself, and
(δkx, δky ) → (δkx,−δky ). For the Hamiltonian to be invariant
σ̃±

α , α = x, y should be defined such that

C†
2xσ̃

±
x C2x = σ̃±

x ,

C†
2xσ̃

±
y C2x = −σ̃±

y . (A2)

Being a screw symmetry, the matrix representation of C2x

depends on momentum, and we rewrite it in the following
form:

C2x = sx(1 + eikx )[σx + σy tan(kx/2)]. (A3)

This symmetry is effectively a reflection about the axis
[1, tan(kx/2)] in the xy plane. This line makes an angle θ

with the x axis, such that tan(θ ) = tan(kx/2), or θ = kx/2. To
maintain the symmetry, σ̃x needs to be parallel to this line and
σ̃y needs to be perpendicular to it.

To maintain the simple form of the Dirac Hamiltonian, we
approximate C2x to be constant on each Fermi surface and
evaluated at the centers ±K . It is straightforward to check
that the following form for σ̃α , α = x, y, preserves the screw
symmetry:

σ̃+
α = eiKσz/2σαe−iKσz/2,

σ̃−
α = e−iKσz/2σαeiKσz/2. (A4)

APPENDIX B: CANCELLATION OF FIRST THREE
SECOND-ORDER DIAGRAMS

There are four second-order terms contributing to the scat-
tering vertex. However, three of them cancel each other out.
Using

(B1)

we can evaluate the following diagrams:

(B2)
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(B3)

Here, q = k′ − k and the −2 factor for the bubble diagram is due to the fermionic loop and the spin degeneracy. We thus see that
these three diagrams cancel each other out.
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