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Strain-induced superconductivity in Sr2IrO4
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Multiorbital quantum materials with strong interactions can host a variety of novel phases. In this work
we study the possibility of interaction-driven superconductivity in the iridate compound Sr2IrO4 under strain
and doping. We find numerous regimes of strain-induced superconductivity in which the pairing structure
depends on model parameters. Spin-fluctuation mediated superconductivity is modeled by a Hubbard-Kanamori
model with an effective particle-particle interaction, calculated via the random phase approximation. Magnetic
orders are found using the Stoner criterion. The most likely superconducting order we find has d-wave pairing,
predominantly in the total angular momentum J = 1

2 states. Moreover, an s± order which mixes different bands
is found at high Hund’s coupling, and at high strain anisotropic s- and d-wave orders emerge. Finally, we show
that in a fine-tuned region of parameters a spin-triplet p-wave order exists. The combination of strong spin-orbit
coupling, interactions, and a sensitivity of the band structure to strain proves a fruitful avenue for engineering
new quantum phases.
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I. INTRODUCTION

The iridates display a rich phase diagram due to an in-
terplay between strong correlations, spin-orbit coupling, and
crystal-field effects, all acting on multiple d orbitals which in
some cases lead to multiple Fermi surfaces. Various iridates
show novel phenomena such as Kitaev and Weyl physics
[1–3]. The first compound in the family of Ruddlesden-Popper
perovskite strontium iridates, Sr2IrO4, consists of stacked
quasi-two-dimensional (quasi-2D) layers. In each layer, the
iridium atoms form a square lattice, and are surrounded by
octahedra of oxygen atoms. As shown in Fig. 1, every other
IrO6 octahedron is rotated by an angle of φ = ±φε=0 ≈ ±12◦
relative to the iridate lattice and we therefore use a two-site
basis [4]. In Sr2IrO4 the three t2g orbitals are located close
to the Fermi surface. However, due to a strong spin-orbit
coupling the resulting band structure is better characterized by
the onsite total angular momentum J eigenstates, with J = 1

2
states having Jz = ± 1

2 and J = 3
2 having the projections along

the z axis Jz = ± 1
2 ,± 3

2 . We refer to this basis as the j states.
For the undoped compound the electron filling is n = 5, out of
the six t2g bands per site, and an antiferromagnetic insulator is
found up to TN = 240 K [5]. For this state, the two bands of
mainly j = 1

2 character are half-filled and located close to the
Fermi surface while additional bands of j = 3

2 character are
further from the Fermi level [6].

Experimentally, Sr2IrO4 shows Fermi arcs and a pseudo-
gap under electron doping [7,8] as well as non-Fermi-liquid
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behavior under hole doping [8]. Superconductivity has been
predicted for both types of charge doping of Sr2IrO4 in mul-
tiple theoretical works [9–14]. At a first approximation the
band structure and the interactions suggest a direct paral-
lel to known high-Tc superconductors, the cuprates. Indeed,
projecting the Hamiltonian on the j = 1

2 states results in a
model similar to those used to describe the cuprates [15]
and a simplified one-band model therefore predicts d-wave
superconductivity for electron-doped Sr2IrO4 [9]. However,
theoretical studies of Sr2IrO4 found that d-wave superconduc-
tivity is likely to arise only in a limited range of interaction
parameters. At hole doping, additional pockets of j = 3

2 char-
acter appear at the Fermi level. In this region of the phase
diagram, previous studies have predicted Sr2IrO4 to have ei-
ther multiband s±-wave or a p-wave pairing. However, as of
yet no superconducting order has been experimentally con-
firmed for Sr2IrO4 when chemical doping is the only tunable
parameter [16–19]. The question then remains whether there
could be a tuning parameter that would make superconductiv-
ity more favorable.

The local staggered rotations of iridium sites introduce
an in-plane translation symmetry breaking accompanied by
additional hybridization of orbitals. These effects have been
previously ignored in multiorbital models of iridate supercon-
ductivity [20]. The rotations increase under compression and
as a result the hopping between orbitals at neighboring sites is
modified to reflect the new geometry [4,21–24]. Moreover, the
orbitals are modified by different amounts such that the bands
belonging to the j = 3

2 subspace move closer to the Fermi sur-
face [25]. Naturally, the number of Fermi pockets and their or-
bital composition are important factors for superconductivity.
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FIG. 1. Single plane of Sr2IrO4 where the iridium atoms (gray)
form a square lattice, and are surrounded by oxygen octahedra. There
are two sites in the unit cell s = A, B with staggered rotations φε of
the octahedra, resulting in a bond angle θε = 180◦ − 2φε . The stag-
gered rotation angle increases with compressive strain φε > φε=0,
with φε=0 ≈ 12◦.

As the undoped Sr2IrO4 is an antiferromagnetic insulator,
a prerequisite for any superconducting order is that it must
exist in a regime where the system is no longer magnetic.
Several experimental studies have shown that by growing
Sr2IrO4 on a substrate with mismatched lattice parameters,
the induced compressive epitaxial strain significantly sup-
presses the magnetic order [26–31]. In a variety of known
superconductors biaxial, either compressive or tensile, strain
has proven to increase the critical temperature [32–36] or
to induce a superconductivity or insulator phase transition
[37,38]. In this work compressive strain is suggested to induce
the same type of phase transition and could thus expand the
region of doping where superconductivity can be observed.
The purpose of our study is therefore to determine if su-
perconductivity is more likely when strain is applied. More
precisely, we aim to answer the following two questions. First,
are there regimes of applied strain where a superconducting
order is possible? Second, does the in-plane symmetry break-
ing due to the rotations result in different superconducting
orders?

Experiments in undoped Sr2IrO4 under high hydrostatic
pressure have been performed in recent years [39–41]. While
both hydrostatic pressure and epitaxial strain change the
interatomic distances, they do so in different ways. The ex-
periments approximate the pressure to strain conversion to
be (�a/a)/�P = −0.146%/GPa [39]. A transition into a
nonmagnetic insulating state occurs under a compression of
17 GPa. At sufficient pressure beyond that the resistivity
shows a rapid increase accompanied by a pressure-induced
structural phase transition [39,40]. However, it is important to
remember that while the effect on in-plane distances is similar,
hydrostatic pressure decreases the interlayer distance while
epitaxial strain increases it [31]. In the hydrostatic pressure,
the c-axis compression increases interactions between per-
ovskite layers while the epitaxial strain does not. A persistent

insulating state is thus not expected in the realistic regimes of
our phase diagrams. In addition, our region of interest is for
charge doping, where the insulating nature of the compound
is weaker.

Spin fluctuations are believed to be able to mediate
superconductivity in the iridates [12,14]. Multiorbital su-
perconductivity has successfully been modeled with spin
fluctuations in other families of materials such as ruthenates
[42–44] and iron-based superconductors [45,46]. In this work,
a linearized superconducting gap equation (in the static limit)
is solved to find regimes where superconductivity is possi-
ble. We consider a multiorbital Hubbard-Kanamori model of
Sr2IrO4 in a rotated two-site basis. The spin susceptibility is
calculated via the random phase approximation (RPA). The
spin fluctuations are thus dependent on the staggered sublat-
tice rotations. As the rotations increase with an increasing
strain and the RPA susceptibility is used to derive the effec-
tive particle-particle interaction, the interaction is dependent
on the strain. This in turn results in a strain-dependent lin-
earized gap equation for the superconducting order. Magnetic
orders can be identified via the RPA susceptibility. We find
a large region of strain-induced superconductivity, as well
as several possible magnetic orders. The different types of
superconducting order are either mediated by spin or pseu-
dospin fluctuations. We find that as the compressive strain is
increased, the fluctuations become more spinlike in charac-
ter. Although several types of fluctuations compete in parts
of the calculated phase diagrams, the most prevalent type is
antiferromagnetic fluctuations in the j = 1

2 state. These pseu-
dospin fluctuations can mediate a d-wave order. Longer-range
fluctuations in the spin basis instead mediate the s±-wave su-
perconductivity. For high compressive strain, intraorbital spin
fluctuations can become large enough to mediate anisotropic
superconducting orders. All superconductivity in the calcu-
lated phase diagrams is mediated by fluctuations of spins
oriented in plane. However, there exist regions where fer-
romagnetic out-of-plane fluctuations are of equal size. The
ferromagnetic fluctuations are found to mediate an odd-parity
p-wave order.

The paper is structured as follows. In Sec. II, we introduce
the underlying tight-binding Hamiltonian of Sr2IrO4 and how
the compressive strain is modeled. In Sec. II B, the model for
superconductivity mediated by spin fluctuations is introduced.
The resulting phase diagram is presented in Sec. III, for real-
istic values of model parameters. Additional phase diagrams
are shown for a wider variety of possible values for the Hund’s
and spin-orbit coupling. We then analyze the nature of the
magnetic fluctuations in Sec. IV. The types of superconduct-
ing orders, and the fluctuations believed to mediate them, are
detailed in Sec. V. Finally, in Sec. VI we discuss the exper-
imental possibilities of strain-induced superconductivity, and
signatures of the found orders.

II. MODEL AND METHODS

A. Kinetic Hamiltonian with rotations

The band structure of Sr2IrO4 can be modeled by a spin-
orbit-coupled tight-binding Hamiltonian:

H = Hkin + HSOC. (1)
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We consider a two-site orbital-spin basis: c =
(ck,A,yz,↑, ck,A,yz,↓, ck,A,xz,↑, ck,A,xz,↓, ck,A,xy,↑, ck,A,xy,↓,

ck,B,yz,↑, ck,B,yz,↓, ck,B,xz,↑, ck,B,xz,↓, ck,B,xy,↑, ck,B,xy,↓). For
each spin σ =↑,↓ the kinetic terms have intralattice and
intersublattice hopping:

Hkin =
(

HAA eikx HAB

e−ikx H†
AB HBB

)
, (2)

HAA =

⎛
⎜⎝

εd ε1d 0

ε1d εd 0

0 0 ε
xy
d

⎞
⎟⎠,

HAB =

⎛
⎜⎝

εyz −εrot 0

εrot εxz 0

0 0 εxy

⎞
⎟⎠, (3)

and HBB = HAA. The factor eikx arises from the choice of unit
cell, where the two sublattice sites are chosen as in Fig. 1 and
the lattice spacing a is set to 1. The hopping terms are

εxy = 2t (cos kx + cos ky),

εyz = 2(tδ cos kx + t1 cos ky),

εxz = 2(t1 cos kx + tδ cos ky),

εrot = 2t ′(cos kx + cos ky),

ε
xy
d = 4tn cos kx cos ky + μxy,

ε1d = 4t1d sin kx sin ky,

εd = 4tnd cos kx cos ky.

(4)

The hopping values are (t, t1, tδ, t ′, tn, t1d , tnd , μxy)
= −0.36(1, 0.882, 0.260, 0.199, 0.559, 0.019,−0.010, 0.7)
eV, when no strain is applied. The staggered rotations result
in the nonzero interorbital hopping, εrot and ε1d , between
the yz and xz orbitals. When the compressive strain ε < 0 is
increased, the hopping parameters change. We use a linear
strain dependence as in Ref. [25], following data by Ref. [31]:

t (ε) = t (1 + ρε), t1(ε) = t1(1 + ρ1ε),

t ′(ε) = t ′(1 + ρ ′ε), tn(ε) = tn(1 + ρnε),

tδ (ε) = tδ (1 + ρδε), t1d (ε) = t1d (1 + ρ1dε),

tnd (ε) = tnd (1 + ρndε), φε = φε=0(1 + ρφε) (5)

with (ρ, ρ1, ρ
′, ρn, ρδ, ρ1d , ρnd , ρφ ) = (0.014, −0.251,

−0.309, −0.048, 0, 0, −0.02, −0.085). φε is angle of the
staggered rotations. The approximation considers not only
rigid rotations of the oxygen octahedra but also changes in
bond lengths, as was recently proposed to be a more accurate
description of the strain effect in Ref. [47]. The strain,
and the associated rotations of the octahedra, increase the
interorbital t ′ and intraorbital t1. On the other hand hopping
within the xy orbital decreases. The effect of strain on the
tetragonal splitting μxy is not discussed here and is deferred
to Appendix C. It has been well established that the spin-orbit
coupling in Sr2IrO4 is large enough for each band to have a
clear character of either total angular momenta j = 1

2 or 3
2 .

The atomic SOC is

HSOC = λ

2

∑
αβ,σσ ′

∑
s=A,B

Lαβ · σσσ ′c†
ksασ

cksβσ ′ , (6)

where σ = (σ x, σ y, σ z ) are the Pauli matrices in the spin basis
σ =↑,↓ with respect to the z direction, and

L =
⎛
⎝
⎡
⎣0 0 0

0 0 −i
0 i 0

⎤
⎦,

⎡
⎣ 0 0 i

0 0 0
−i 0 0

⎤
⎦,

⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦
⎞
⎠.

(7)
The eigenstates of HSOC are the j states, with associated
annihilation operators am,τ = ∑

α,σ M(m,τ ),(α,σ )cα,σ , where

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
3

0 − i√
3

1√
3

0
1√
3

0 i√
3

0 0 − 1√
3

0 1√
6

0 − i√
6

−
√

2
3 0

− 1√
6

0 − i√
6

0 0 −
√

2
3

0 − 1√
2

0 − i√
2

0 0
1√
2

0 − i√
2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

with cα,σ = (cyz,↑, cyz,↓, cxz,↑, cxz,↓, cxy,↑, cxy,↓) and am,τ =
(a1,+, a1,−, a2,+, a2,−, a3,+, a3,−). In this basis each site has
the states am,τ , where m denotes the total angular momentum
and its z-axis projection ( j, jz ) such that 1 = ( 1

2 ,± 1
2 ), 2 =

( 3
2 ,± 1

2 ), 3 = ( 3
2 ,± 3

2 ) and the projections along the z axis
are labeled by τ = ±. The projections τ can be treated as
pseudospins, here not mixing sublattice and spin degrees of
freedom but orbital and spin [48]. The total of 12 bands
bk,n have eigenvalues ξk,n and are connected to the orbital
basis via ck, j = ∑

n Uk, jnbk,n. The only spin mixing in the
Hamiltonian comes from the atomic spin-orbit coupling and
all hopping terms are pseudospin conserving. The noninter-
acting Hamiltonian is therefore separable into pseudospin τ =
+,− sectors, containing the states {(yz,↓), (xz,↓), (xy,↑
)} and {(yz,↑), (xz,↑), (xy,↓)}, respectively. Therefore, the
12 bands can be described by 6 bands in each pseudospin
sector nτ .

As the strain modifies the hopping parameters, both the
shape and the number of pockets at the Fermi surface change.
Therefore, the Fermi surface is different at every point in the
phase diagrams. As can be seen in Fig. 2, there are pockets
belonging to the bands of ( j, jz ) = ( 1

2 ,± 1
2 ) present at every

point in the phase diagram. For fillings corresponding to hole
doping, n < 5, another pocket with ( j, jz ) = ( 3

2 ,± 3
2 ) appears

around (k1, k2) = (0, 0). The strain increases the bandwidth
and causes the ( 3

2 ,± 3
2 ) pocket to appear for all doping values.

As shown further in Appendix B the size of the j = 1
2 electron

pocket increases with strain.

B. Spin-fluctuation-mediated superconductivity

To analyze the possibility of spin-fluctuation-mediated su-
perconductivity, we solve a linearized gap equation in the
static limit and normal state. A similar calculation has been
performed previously for Sr2IrO4 in Ref. [14], for a model
without staggered rotations or strain. In general, the particle-
hole and particle-particle self-energies are defined by the
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FIG. 2. The Fermi surface (FS) or surfaces are shown as a func-
tion of strain and doping. There are one or two types of pockets
whose spin and orbital character is indicated by color. These are
found by diagonalizing the noninteracting model in Eq. (1). The
number of pockets and a few examples of the Fermi surface are
shown for λ = 0.6 eV. The pocket of j = 3

2 character is only present
at hole doping n � 4.9 at ε = 0. For increasing compressive strain
two types of pockets are present for all doping.

Dyson-Gorkov equation

G(k) = G(0)(k) + G(0)(k)�(k)G(k) (9)

with

G(k) =
[

G(k) F (k)
F̄ (k) Ḡ(k)

]
, �(k) =

[
�(k) �(k)
�̄(k) �̄(k)

]
,

(10)

G(0)(k) =
[

G(0)(k) 0
0 Ḡ(0)(k)

]
, (11)

where G(k) is the particle-hole and Ḡ(k) the hole-particle
Green’s functions

Gab(k) = −
∫ β

0
dτ eiωnτ 〈Tτ cka(τ )c†

kb(0)〉, (12)

Ḡab(k) = −
∫ β

0
dτ eiωnτ 〈Tτ c†

−ka(τ )c−kb(0)〉 (13)

for crystal momentum k and fermionic Matsubara frequencies
ωn = (2n + 1)π/β, with β = h̄/(kBT ). In the orbital-spin-
sublattice basis a = (α, σ, s) with orbital α, spin σ , and
sublattice s. The noninteracting Green’s functions are calcu-
lated with the operators cka for the Hamiltonian in Eq. (1). In
the band (n) and orbital-spin-sublattice basis, respectively,

G(0)
n (k, iωn) = [iωn − ξk,n]−1, (14)

G(0)
ab (k) =

∑
n

Uk,anG(0)
n (k)U †

k,nb (15)

for the noninteracting model G(0)
ab (k) = −Ḡ(0)

ba (−k). Under
the approximations of this work, only the particle-particle
self-energy is calculated. In a multiorbital system, the non-
interacting particle-hole susceptibility χ̂0(k) = χ̂

ph
0 (k) is a

tensor calculated from the noninteracting Green’s functions

in the Nk × Nk lattice we are considering:

χ
ph
0,abcd (q) = 1

N2
k β

∑
k

G(0)
ac (q + k)Ḡ(0)

bd (−k). (16)

Using the well-known summation for the Lindhard function
over all fermionic Matsubara frequencies ωn and the analytic
continuation

χ0,abcd (q, iωn → iδ)

= 1

N2
k

∑
k,n,n′

[Uk+q]an[U †
k+q]nc[Uk]dn′[U †

k ]n′b

× f (ξk+q,n, T ) − f (ξk,n′ , T )

iδ − (ξk+q,n − ξk,n′ )
, (17)

where δ is a small number, here set to 10−4 eV. f (ξk,n, T )
is the Fermi-Dirac distribution at temperature T . The tensor
χ̂0(q) can be written as a rank-4 tensor. The number of spins
Nσ = 2, orbitals No = 3, and sublattices Ns = 2, results in a
tensor of dimension 12 × 12 × 12 × 12. However, to separate
the spin degrees of freedom we can reshape the tensor to have
the dimension N2

σ × N2
σ × (NoNs)2 × (NoNs)2. In terms of spin

and orbital indices, the basis for the tensor on this form is
given as all combinations of two indices (σσ ′) × (αsβs′ ). The
spin combinations are (σσ ′) = {(↑↑), (↑↓), (↓↑), (↓↓)}, and
(αsβs′ ) are the 36 combinations of orbitals α = yz, xz, xy and
sublattices s = A, B.

Interactions are treated by calculating the irreducible
particle-particle vertex, which is modified by spin fluctuations
from the random phase approximation (RPA). The irreducible
vertex is given by the parquet equations [49], where here
the bare vertex is �̂0 = V̂ . The bare vertex is the Hubbard-
Kanamori interaction [50], which is defined in real space as

HI = U
∑
j,α

n jα↑n jα↓

+
∑

j,α �=β

JH[c†
jα↑c†

jβ↓c jα↓c jβ↑ + c†
jα↑c†

jα↓c jβ↓c jβ↑]

+
∑

j,α<β,σ

[U ′n jασ n jβσ̄ + (U ′ − JH)n jασ n jβσ ] (18)

with the intraorbital Hubbard interaction U , the Hund’s
coupling JH, and the interorbital repulsion U ′ = U − 2JH.
Following the notation of Ref. [14], we define the bare vertex
V̂ as

HI = 1

N2
k

∑
k,q

∑
a,b,c,d

Vabcd (q)c†
k,ac†

−k,cc−(k−q),bck−q,d (19)

for all orbit-spin-sublattice indices a = (α, σ, s). On the same
rank-4 tensor structure form as the susceptibility, the tensor V̂
can be divided into spin sectors

V̂ =

⎛
⎜⎜⎝

V̂ ↑↑↑↑ 0 0 V̂ ↑↑↓↓

0 V̂ ↑↓↑↓ 0 0
0 0 V̂ ↓↑↓↑ 0

V̂ ↓↓↑↑ 0 0 V̂ ↓↓↓↓

⎞
⎟⎟⎠ (20)
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with only onsite terms s = s′. Each matrix V̂ σ1σ2σ3σ4 in the
orbit-sublattice basis is defined as

V ↑↑↑↑
αsβsγsδs

= V ↓↓↓↓
αsβsγsδs

=

⎧⎪⎨
⎪⎩

U ′ − JH (α = γ �= β = δ),

−U ′ + JH (α = β �= γ = δ),

0 (otherwise),
(21)

V ↑↑↓↓
αsβsγsδs

= V ↓↓↑↑
αsβsγsδs

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−U (α = β = γ = δ),
−JH (α = γ �= β = δ),
−U ′ (α = β �= γ = δ),
−JH (α = δ �= β = γ ),
0 (otherwise),

(22)

V ↑↓↑↓
αsβsγsδs

= V ↓↑↓↑
αsβsγsδs

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U (α = β = γ = δ),
U ′ (α = γ �= β = δ),
JH (α = β �= γ = δ),
JH (α = δ �= β = γ ),
0 (otherwise)

(23)

for each sublattice s = A, B and for orbital indices α, β, γ , δ.
The effective particle-particle vertex [49] is

�̂pp(q = K − K ′) = − 1
2V̂ − V̂ χ̂ (K − K ′)V̂ . (24)

The susceptibility χ̂ (q) is approximated as the RPA suscepti-
bility:

χ̂ (q) = (1 − χ̂0(q)V̂ )−1χ̂0(q) (25)

which uses the same bare vertex V̂ and has the same tensor
structure as χ̂0(q). The tensor multiplication is defined as a
matrix multiplication in the spin and orbital-sublattice combi-
nations

[ÂB̂](σσ ′ )1(σσ ′ )2
(αsβs′ )1(αsβs′ )2

=
∑

α̃,β̃,σ̃ ,σ̃ ′

A(σσ ′ )1(σ̃ σ̃ ′ )
(αsβs′ )1(α̃β̃ )

B(σ̃ σ̃ ′ )(σσ ′ )2

(α̃β̃ )(αsβs′ )2
. (26)

The effective vertex is not further spin diagonalized into spin-
singlet and spin-triplet vertices as our regime of intermediate
to strong spin-orbit coupling inherently mixes the two sec-
tors. The linearized gap equation can be obtained from the
Luttinger-Ward functional [51,52], where the linearization of
the anomalous Green’s function is given by the Dyson-Gorkov
equations (9):

�ab(k) = 1

Nβ

∑
k′

∑
a′b′

�
pp
aa′b′b(k − k′)Fa′b′ (k′), (27)

Fa′b′ (k′) =
∑
μν

Ga′μ(k′)Ḡνb′ (k′)�μν (k′), (28)

where β is the inverse temperature and N = N2
k . Each in-

dex here runs over all orbit-spin-sublattice combinations
a = (α, σ, s). Further, we apply both the static [ωn → δ =
10−4 eV, �̂(k) → �̂(k), �pp(q) → �pp(q)] and normal-state
[Ĝ(k′) → Ĝ(0)(k′)] approximations. The linearized gap equa-
tion can be solved as an eigenvalue problem, as a version of
the Eliashberg equation:

λe�ab(k) = 1

N

∑
k′,a′b′,μν

�
pp
aa′b′b(k − k′)φk′

a′b′μν�μν (k′) (29)

with

φk′
a′b′μν = − 1

β

∑
ωn

G(0)
a′μ(k′)Ḡ(0)

νb′ (k′). (30)

A largest eigenvalue of unity or higher λe � 1 indicates a pos-
sible superconducting order. A nonexplicit summation over
Matsubara frequencies is performed, like in Eq. (17), and the
equation depends only on momentum k.

While this system is strongly interacting one might expect
a multitude of order parameters including magnetic orders.
We use the Stoner criterion to identify phases in the particle-
hole channel. Methods attempting to treat particle-hole and
particle-particle self-energies on equal footing are beyond the
scope of this work [53,54]. The RPA susceptibility, Eq. (25),
will pass a critical point and diverge, when the Hartree-Fock
term in the particle-hole channel has an eigenvalue above
unity at any k point which we name Q [53,54]:

max eig[χ̂0(Q)V̂ ] = 1. (31)

The particle-hole instability is given by the eigenvector to the
tensor χ̂0(Q)V̂ , which can be unfolded into a matrix. A rank-4
tensor Ci jkl of dimension N1 × N2 × N1 × N2 can be mapped
onto a matrix Cμν of dimension N1N2 × N1N2 via

μ = i + N1( j − 1), μ ∈ [1, . . . , N1N2]

i = 1 + mod(μ − 1, N1), i ∈ [1, . . . , N1]

j = 1 + div(μ − 1, N1), j ∈ [1, . . . , N2] (32)

where “mod” is the modulus operation and “div” is integer
division. The given mapping preserves the defined tensor
multiplication, in Eq. (26), as matrix multiplication in the
unfolded matrix. The type of instability can also be classified
by the magnetic channel it occurs in. The susceptibility can be
spin block diagonalized by rewriting it in the basis of magnetic
operators mz

α̃β̃
= 1√

2
(c†

α̃↑cβ̃↑ − c†
α̃↓cβ̃↓):

χ̂ z
α̃β̃γ̃ δ̃

(q) = 1

N2
k

∫ β

0
dτ eiωnτ

〈
Tτ mz

α̃β̃,q
(τ )mz

γ̃ δ̃,−q
(0)
〉
c (33)

with the indices α̃ = αs running over all orbital α = yz, xz, xy
and sublattice s = A, B combinations. The magnetic channels
are

χ̂ z(q) = 1

2
(χ̂↑↑↑↑(q) − χ̂↑↑↓↓(q)), (34)

χ̂+(q) = χ̂↑↓↑↓(q), χ̂−(q) = χ̂↓↑↓↑(q) (35)

with the out-of-plane spin χ̂ z(q) and in-plane spin χ̂±(q)
channels.1 As the j-state basis describes the bands better than

1The spin block diagonalization introduces an additional density
channel χ̂ d (q). No density-channel instability is found in this work
and the peaks are significantly smaller than in the magnetic channels.
This remains true for χ̂ d

J (q) in the j-state basis.
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U = 1.1eV, JH/U = 0.1, λ = 0.6eV
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FIG. 3. The phase diagram for charge doping and compressive
strain are shown at U = 1.1 eV ≈ 3|t | for realistic values of the spin
orbit λ and Hund’s couplings JH. Two types of regions are found in
the RPA calculations: the magnetic region where the Stoner criterion
has been met and a superconducting order with d-wave symmetry.
The nature of the magnetic transition is characterized in Fig. 6. In
the normal state the largest eigenvalue λe < 1, and the contours of
the values are shown up to ε = −3.5 %. The phase diagram extends
to the higher strain values as to be comparable to Fig. 4, in this regime
no superconducting order is possible.

the orbital-spin basis, the χ (q) terms can be transformed, via
Eq. (8), as

χJ,i jkl (q) =
∑
αβγ δ

MiαM†
γ kMlδM†

β jχαβγ δ (q), (36)

where M is the transformation from spin and orbit to the total
angular momentum basis. In this basis, the susceptibility is
similarly divided into different pseudospin channels χ̂ z

J (q) and
χ̂±

J (q).

C. Computational details

All RPA calculations, for the susceptibility (25) and su-
perconductivity (29) were performed on a Nk × Nk = 46 × 46
momentum lattice. The finite-momentum resolution limits the
lowest accessible temperature. Peaks in the susceptibility can-

not be narrower than the lattice spacing and we thus require
some thermal broadening to get reliable results. In this work
we use kBT = 0.001 eV (T ≈ 11 K). The temperature was
chosen such that less than a 10% change in largest eigen-
value was found when going from a lattice of size Nk = 32
to Nk = 46, at most points. In the data of Figs. 7(b) and 11
a larger change is observed, therefore, calculations for these
figures where done at Nk = 64. The specific temperature is of
interest for a potential d-wave superconducting order in the
electron-doped compound. The 2016 experiment in Ref. [16]
observed an order with this symmetry below T ≈ 30 K, with
a maximum at T ≈ 10 K. The largest value of the linearized
gap equation is found via the Arnoldi method, with a conver-
gence criterion of 10−7.

III. PHASE DIAGRAM: STRAIN AND DOPING

In the following sections we discuss the phase diagrams
obtained by varying the charge doping and applying an in-
creasing compressive strain. For the most realistic parameter
range one obtains Fig. 3. To explore additional effects from
chemical doping and to illustrate the richness of similar com-
pounds, additional phase diagrams are shown in Fig. 4. All
phase diagrams show strain-induced superconductivity for a
broad range of parameters. In addition, three main features
can be observed. First, the two types of superconductivity
found in earlier works [11,14], a pseudospin j = 1

2 d wave
and an orbital s± wave, are found. In addition, both types can
be found when varying only the doping, for a select set of
parameters. Second, at high enough strain an orbital selective
pairing which favors one of the in-plane directions can be
found. This type of order has a larger component originating
from the xz orbital than from yz, spontaneously breaking the
in-plane symmetry. And third, under compressive strain the
susceptibility goes from having the largest peaks in the pseu-
dospin states to peaks instead originating from the spin states.
This shift affects both the magnetic order and the possible
pairing symmetries.

Choosing a realistic regime for the phase diagram, there
are two criteria for the chosen interaction parameters. The
first criterion is that sufficient doping, either hole or electron,

0.90
0.80.7

0.6
λe =0.5

d-wave
s±-wave

−ε [%]

U = 1.1eV, JH/U = 0.25, λ = 0.5eV

4.7 4.8 4.9 5.0 5.1 5.2 5.3
n

4
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1

0

(a)

4.7 4.8 4.9 5.0 5.1 5.2 5.3
n

4
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1

0

U = 1.4eV, JH/U = 0.25, λ = 0.5eV

s±-wave

d-wave

λe =0.6

−ε [%]

s-wave

(b)
anisotropic

anisotropic 0.9 0.80.7

Mag.

FIG. 4. The phase diagrams for a lower SOC and a higher Hund’s, at (a) U = 1.1 eV ≈ 3|t | and (b) U = 1.4 eV ≈ 4|t |. In (a) there are
two types of superconducting orders: the d wave and another with s±-wave symmetry. In (b) there are two additional anisotropic types of
superconducting orders, an s wave and a d wave. The magnetic phase transitions are here of multiple types and are characterized in Figs. 6 and
7. The eigenvalues are only calculated up until to a strain value where superconductivity is no longer possible.
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FIG. 5. The in-plane (a) pseudospin χ
↑↓↑↓
J (q) and (b) spin susceptibility χ↑↓↑↓(q), Eqs. (37) and (38), for U = 1.1 eV, JH = 0.25U ,

λ = 0.5 eV, n = 4.8, ε = −1%. The largest peaks are around Q1 ≈ (π, π ) and Q2 ≈ ( π

2 , π

2 ), respectively. (c) Shown for the FS in the extended
BZ, Q1 connects FS1 to itself while Q2 connects FS1 and FS2. On the FS the orbital contributions are given as |〈α|FSn|α〉|, for α = yz, xz, xy.
In (d) and (e), the pseudospin susceptibility is split into each j-state contribution and the spin susceptibility into that of each orbital. Even
though the j = 1

2 states have the individually largest peaks, the total susceptibility originating from the yz and xz orbitals is larger. Peaks of the
type Q1d ≈ ( π

2 , π ) are present in the spin susceptibility as peaks belonging entirely to one of the orbitals yz or xz.

should in accordance to experiment, result in a transition out
of the magnetic order. The second criterion is that in undoped
Sr2IrO4 the magnetic order persists up to a strain value of
ε ≈ −2% [31,39]. For the most realistic values of the Hund’s
and spin-orbit coupling, JH = 0.1U and λ = 0.6 eV, the first
criterion is satisfied for U ≈ 2|t |, shown in Appendix A. The
realistic phase diagram is presented for U = 1.1 eV ≈ 3|t |.
Since the model overestimates the orders this choice only sat-
isfies the second criterion. In Appendix A the phase diagram
for U = 1.4 eV ≈ 4|t | results in the same phase transitions at
higher strain values. Complementary mean field calculations,
containing magnetic, superconducting, as well as other order
parameters, yields a qualitatively similar phase diagram, with
differences explained in Appendix B.

In Fig. 4, we also consider a higher Hund’s coupling of
JH = 0.25U , with a lower spin-orbit coupling of λ = 0.5 eV
for the following reason. Hole doping via the substitution
of iridium atoms for rhodium or ruthenium atoms could
modify the effective interaction parameters and spin-orbit
coupling. Some works estimate the spin-orbit coupling of irid-
ium, rhodium, and ruthenium as λIr ≈ 0.45 eV, λRh = λRu ≈
0.19 eV, respectively [55–57]. Moreover, ruthenium atoms
have a higher Hund’s coupling of JH ≈ 0.15U–0.2U [58]. The
full set of phase diagrams are presented in Figs. 3 and 4, with
identified superconducting and magnetic phases.

IV. MAGNETIC ORDER

In the RPA calculation, the particle-hole order is found us-
ing the Stoner criterion (31). An order can be characterized by
two features of χ̂ (q). First is the nesting vector Q = (qx, qy),
given in the extended Brillouin zone (BZ), at which the Stoner
criterion is met. The instabilities in the phase diagrams all

appear at the four points Q1 ≈ (π, π ), Q2 ≈ ( π
2 , π

2 ), Q0 ≈
(0, 0), and Q1d ≈ ( π

2 , π ). The exact location of the instabil-
ities is shifted a small distance from the ideal values, which
depends on doping as well as strain. Examples of the dominant
peaks are shown in Fig. 5. The most relevant components of
the susceptibility are shown in Figs. 6 and 7, along a few cuts
in the phase diagrams. For the lower Hund’s coupling in Fig. 3
the only instability is at Q1. An order described in real space
by a two-site unit cell in a square lattice will have a reduced
Brillouin zone with a unit vector Q = (π, π ). As antiferro-
magnetism is a two-site order expected in this compound, the
Q1 susceptibility peaks are expected to be antiferromagnetic.
In Fig. 4 the Q2 instability occurs at most doping values.
A real-space order corresponding to Q = ( π

2 , π
2 ) will have a

unit cell containing four sites. However, it should be noted
that the peak Q2 ≈ ( π

2 , π
2 ) is doping dependent and never

occurs exactly at this value. It is an incommensurate order
closer to (0.6π, 0.6π ) for hole doping and (0.4π, 0.4π ) for
electron doping. In Fig. 5 there is an additional copy of these
peaks that connects different copies of pockets in the extended
BZ. Another instability, at Q1d , only occurs at the highest
strains and electron dopings considered. This nesting vector
connects segments on the FS with either a clear xz character
to other segments belonging to the same orbital. The quasi-1D
dispersion of the xz orbital, with t1 
 tδ in Eq. (4), leads to the
susceptibility in the intra-xz channel having peaks connecting
point in momentum space mainly along the x direction. Fi-
nally, a ferromagnetic instability at Q0 is possible in Fig. 4(a)
at n = 4.7.

The second feature that characterizes a magnetic insta-
bility is the channel in which the instability occurs. In
Eqs. (34) and (35), the spin susceptibility χ̂ (q), as well as
the pseudospin susceptibility χ̂J (q), are divided into magnetic
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FIG. 6. Two out of the five types of magnetic instabilities found at the Stoner criterion and the components for the largest susceptibility
peaks Re[χ (Q)] × |t |, are shown along constant doping lines in (a) Fig. 3 and (b) Fig. 4(a). The most prevalent instability occurs in the j = 1

2

state, in plane, and with the nesting vector Q1 ≈ (π, π ): χ
↑↓↑↓
J,( 1

2 ,± 1
2 )

(Q1). (b) At JH = 0.25U and hole doping, the j = 1
2 Q1-nesting instability

has both in- and out-of-plane components. Close to these instabilities the Q1 peaks are the largest. As the strain increases the total in-plane
spin susceptibility, Eq. (37), decreases at a slower rate and eventually dominates instead.

channels. Most instabilities found in Figs. 3 and 4 are of
the type χ

↑↓↑↓
J,( 1

2 ,± 1
2 )

(Q1), an in-plane magnetic instability with

mainly j = 1
2 contributions. This can be interpreted as the

canted in-plane antiferromagnetic order (x-cAFM) observed
in each layer experimentally. As denoted in Fig. 6(b), the
higher Hund’s coupling, JH = 0.25U and U = 1.1 eV, results
in an additional out-of-plane component accompanying the
in-plane order, with χ z

J,( 1
2 ,± 1

2 )
(Q1).

At any point where the Q2 instability is present, it occurs
in channels of the spin susceptibility, rather than pseudospin.
The instability is in plane and has contributions mainly from
the yz and xz orbitals: χ↑↓↑↓

yz (Q2) and χ↑↓↑↓
xz (Q2). Even though

this instability is only present at U = 1.4 eV and JH = 0.25U ,
these susceptibility peaks remain large in the entire Fig. 4(a)
phase diagram. At high-hole doping in Fig. 4(a) a purely out-
of-plane ferromagnetic instability χ z(Q0) occurs for spins in
each of the orbitals yz, xz, and xy.

As the strain increases the peaks in the susceptibility at
different channels decrease at different rates. Moreover, we
will see below that superconductivity found directly adjacent
to a magnetic order is mediated by those magnetic fluctuations
while superconducting orders which are mediated by other
fluctuations can become more favorable as strain is increased
further. In Fig. 6(b), at JH = 0.25U , the spin susceptibility
peaks decrease significantly slower than those of the anti-

ferromagnetic pseudospin order. At strain ε = −0.5%, and
beyond, the peaks in spin susceptibility become dominant.
The effective particle-particle vertex, Eq. (24), develops peaks
at the same Q points as for the spin (or pseudospin) sus-
ceptibility. To track which magnetic fluctuation mediates the
superconducting orders, the strengths of spin and pseudospin
fluctuations are compared. The total susceptibilities in the two
bases are

χσσ ′σσ ′
(q) = 1

2

∑
s,s′

∑
α,β

eiqx (�s−�s′ )χ
(ασ )(ασ ′ )(βσ )(βσ ′ )
sss′s′ (q),

(37)

χττ ′ττ ′
J (q) = 1

2

∑
s,s′

∑
m,n

eiqx (�s−�s′ )χ
(mτ )(mτ ′ )(nτ )(nτ ′ )
J,sss′s′ (q), (38)

where �s, with s = A, B, chooses the sublattice such that
�A = 0 and �B = 1.

It should be noted that the pseudospin susceptibility nest-
ing vector Q1 can be related to the hidden spin density wave
(hSDW) orders found in other models for multi-band super-
conductors [59,60]. The j-state basis mixes spin and orbital
degrees of freedom and therefore the peaks found correspond
to a linear combination of channels that favors both SDW and
hSDW orders.

0.0 0.5 1.0 1.5 2.0
− [%]

0

20

40
d-wave

s±-wave
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FIG. 7. Additional magnetic instabilities are found for JH = 0.25U . In a small region around n = 4.7, in Fig. 4(a), an out-of-plane
ferromagnetic instability χ z(Q0) accompanies the in-plane order. Note that the competing sizes of different channels here could be an effect
of the momentum resolution. In Fig. 4(b), a spin instability with Q2 ≈ ( π

2 , π

2 ), is present for all hole doping. The superconducting s± wave is
found close to the instability, while the anisotropic s wave appears when the Q1d peak, in the xz orbital, becomes equal in size.
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V. SUPERCONDUCTIVITY

A. Symmetries

In single-orbital models, it is of highest importance to
determine whether the superconductivity is a spin-singlet or
a spin-triplet order. Topological superconductivity and Majo-
rana modes arise from superconductivity with p-wave pairing,
which requires spin-triplet pairing in those systems. Efforts
to induce superconductivity through the proximity effect are
thus often focused on finding spin-triplet orders. However,
once multiple orbitals and spin-orbit coupling are considered
the connection between spin triplets and p-wave symmetry
is no longer a strict requirement. Multiorbital models allow
for a large set of possible pairing symmetries. The pairing
matrix �̂(k) must be antisymmetric under the full SPOT
exchange [48,61]. Therefore, any pairing can be classified as
being either even or odd under spin exchange (S), relative
coordinate reflection (P), orbital exchange (O), and relative
time exchange (T ) as defined in Appendix D. As only the
static case is considered in this work the order parameter is
constant, and therefore even, under T . Note that the operators
P and T only exchange relative parameters, and are thus
different from the reflection and time-reversal operators.

For example, classifying symmetries for strong spin-orbit
coupling in the predicted j = 1

2 d wave will inherently result
in both spin-singlet and spin-triplet contributions. The pairing
is more accurately described by the total angular momentum
of the pair, which can take the values J = 0, 1, 2, 3 [62,63].
Only within the j1 ⊗ j2 = 1

2 ⊗ 1
2 sector do we still only get

pairs that are either a J = 0 singlet or triplets J = 1 with
M = −1, 0,+1. In Appendix D the symmetry operations in
the orbital basis are shown for the two types of pairing found
in Fig. 3.

The spatial symmetry can be considered for the noninter-
acting bands nτ by projecting the intraband pairing onto the
Fermi surface (FS). The FS may contain three types of pockets
belonging to two types of bands. The larger pockets, con-
sisting mainly of ( j, jz ) = ( 1

2 ,± 1
2 ) states, are located around

the points (k1, k2) = (π, π ), (π, 0) and have superconducting
gaps that can be described by the same spatial symmetry.
We therefore only look at one of these pockets, denoted FS1.
The smaller FS2, with mainly ( j, jz ) = ( 3

2 ,± 3
2 ), is centered

around (k1, k2) = (0, 0). The spatial symmetry is thus studied
for four intraband parameters: pseudospin singlets �s

FS1
(k),

�s
FS2

(k) and pseudospin triplets �t
FS1

(k), �t
FS2

(k). �
s/t
FSn

(k) is
the order parameter (29) projected onto the band at the Fermi
surface FSn. The number of points belonging to a pocket is
NFSn . For example the pseudospin singlet is

�s
FSn

(k) =
∑

k∈FSn

∑
αβ

∑
mm′

[U †
k ]nα[U †

−k]nβ

× 1√
2

(M†
α(m+)M

†
β(m′−)�(m+)(m′−)(k)

− M†
α(m−)M

†
β(m′+)�(m−)(m′+)(k)), (39)

where M is the matrix in Eq. (8) and the matrix Uk,αn

transforms the band basis into the orbital basis. In the nu-
merical calculations, there are small but nonzero interband
contributions that will not be considered further. The spatial

TABLE I. The lattice harmonics for each relevant symmetry on
the square lattice is given for different radii R, describing what
distance neighbors the symmetry is found on. R = 0 is onsite, R = 1
is nearest neighbors, and so on.

Symmetry η
μ
R (k) R = 0 R = 1 R = 2 R = 3

A1g, s 1 cos kx + cos ky 2 cos kx cos ky cos 2kx + cos 2ky

B1g, dx2−y2 cos kx − cos ky cos 2kx − cos 2ky

B2g, dxy 2 sin kx sin ky

Eu, p sin kx, sin ky sin(kx + ky ), sin 2kx, sin 2ky

sin(kx − ky )

symmetries can be quantified via the projection coefficients
Pμ,R

s/t,FSn
onto the basis functions for each parity irreducible

representation η
μ
R (k), as given in Table I:

�
s/t
FSn

(k) =
∑
μ,R

Pμ,R
s/t,FSn

η
μ
R (k). (40)

The projection coefficient for each irreducible representation
is thus found via

Pμ,R
s/t,FSn

= 1

NFSn

∑
k∈FSn

η
μ
R (k)�s/t

FSn
(k). (41)

Examples of the two leading types of pairings are shown in
Fig. 8. The most prominent d wave is a j = 1

2 pseudospin

singlet with a η
B1g

R=1 pairing. The found s±-wave order has

contributions from both η
A1g

R=0(k) and η
A1g

R=2(k), with opposite
sign for the two pockets. The main j-states components are
from ( 1

2 ,± 1
2 ) and ( 3

2 ,± 3
2 ). However, components mixing j

states is stronger than for the d wave. The symmetry in terms
of orbital origin is specified further in Appendix D.

B. Realistic strain-induced order

At low Hund’s coupling and high SOC, a d wave is
found for a wide range of doping values once there is no
longer a magnetic order present. The mean field calculations
in Appendix B corroborate the prediction of this order. The
magnetic region extends up to ε = −1.5% at the undoped
n = 5, while it persists at higher strains on the electron-doped
side. Because of the required compressive strain, two bands
are present at the FS at all points where superconductivity is
found. As seen in Fig. 8, the gap on FS1 is significantly larger
than on FS2. The d wave originates from the j = 1

2 states,
which are the states the band at FS1 also belongs to. Strain
has increased the size of the j = 1

2 electron pocket, FS1, in
the entire region where superconductivity is found. Even for
hole doping at ε = −2% the pocket FS1 is comparable in size
to FS1 at ε = 0 and electron doping, as further explained in
Appendix B.

C. Varying Hund’s coupling

There are several important factors that determine which
pairing symmetry is favored. Doping and strain change the
shape of the Fermi surface, and thus the nesting vectors Q, as
well as the orbital contributions in each pocket. Both compres-
sive strain and hole doping increase the presence of yz and xz
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FIG. 8. Both the dominant symmetry and the relative weight on the pockets change as the Hund’s coupling is varied. In (a) and (b) the
spin-orbit coupling λ is fixed and the spin-singlet order for each pocket at the Fermi surface is projected onto each spatial symmetry, as in
Eq. (41). The inserts show the largest eigenvalue λe of the linearized gap equation (29). (c), (d) Show �

s/t
FSn

(k) for two values of JH for the FS
belonging to (a). In the d-wave state, the weight on the FS1 is largest. For the s-wave state, the opposite is true and pockets have opposite signs,
identifying it as an s± wave.

orbitals. However, the type of fluctuations which dominate the
RPA interaction vertex depends on the interaction parameters.
In Fig. 8 the largest eigenvalue of Eq. (29), and the symmetry
of the pairing, are shown as the Hund’s coupling varies. We
observe a general trend in which the s± order becomes more
favorable than d-wave superconductivity at JH � 0.25U . For
the lower SOC, λ = 0.5 eV, the largest eigenvalue is above
unity for all values of Hund’s coupling considered. The s±
wave is only possible for low SOC and hole doping since that
places the Fermi level deeper in the band of ( j, jz ) = ( 3

2 ,± 3
2 )

character. By contrast, the d-wave order is present for a wider
range of parameters.

At all points there are two main types of competing fluctu-
ations: pseudospin fluctuations around Q1 ≈ (π, π ) and spin
fluctuations around Q2 ≈ ( π

2 , π
2 ). By studying the maximum

peak values in Fig. 9 one can determine which one of these
fluctuations best describes the system. As can be seen in
Figs. 6 and 7, dominating spin fluctuations promote an s±-
wave order. However, if both types of fluctuations are of
roughly equal size the j = 1

2 d wave is favored.

D. Multiband orders

For a higher Hund’s coupling superconducting orders are
favored which open large gaps on multiple pockets at the
Fermi surface. In Fig. 4(a), there are two distinct supercon-
ducting orders at U = 1.1 eV. The magnetic order disappears

for small strains and superconductivity is only possible up to
ε = −2%. Moreover, the symmetry of the superconducting
order is dependent on doping. At high-hole doping and some
strain the pairing is an s± wave, while remaining a d wave
for all other doping values. When we set the Hubbard U to
a higher value of U ≈ 4|t |, as seen in Fig. 4, and turn on a
high compressive strain the band structure changes. This can
lead to new pairing functions which were not seen earlier.
A drastic change occurs in Fig. 4(b) where some regions
have an anisotropic s- or d-wave pairing. For all values of
JH considered in Fig. 10, the anisotropic order, which is a mix
of s- and d-wave pairing, is found. The s-wave contribution
increases with Hund’s. The orbital components, as well as
a simple model for this state, are described in Appendix E.
This superconducting order is an orbital-selective state with
a stronger spin singlet in the xz orbital. One notable reason
for this new type of pairing is the increased spin nature of
the fluctuations as compressive strain is increased. As already
discussed, all regions with anisotropic pairing are mediated by
a large spin susceptibility peak in χ↑↓↑↓

xz (Q1d ). In Fig. 9, the
larger spin to pseudospin susceptibility ratio can be compared
for the increased strain, at all JH values.

E. Odd parity

In general, the out-of-plane χ z(Q0) susceptibility peaks
remain smaller than either the in-plane spin χ↑↓↑↓(Q) or
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FIG. 9. Maximum peaks in the spin and pseudospin susceptibil-
ity, Eqs. (37) and (38), for the same calculation as in Fig. 8 and for
U = 1.4 eV. Each value is the in-plane Re[χ↑↓↑↓(Q)] × |t |. For a
Hund’s coupling where a pseudospin d wave is favored χJ (Q1) >

χ (Q2). The location in the phase diagrams for the points chosen in
each plot is shown in the lower row.
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FIG. 10. For a higher U = 1.4 eV and high compressive strain
ε = −3% two new anisotropic orders are found. In Appendix E the
origin is identified as a higher contribution to the pairing from one of
the orbitals (xz). For the pairing at the Fermi surface this manifests as
both orders being a mix of s- and d-wave symmetries. As the Hund’s
coupling is increased the order goes from being predominantly a d-
wave order, with nodes, to a nodeless order with stronger s-wave
components. The insert shows the largest eigenvalue λe.

FIG. 11. (a) The total in- and out-of-plane susceptibility,
Eqs. (37) and (38), are shown for a higher JH = 0.3U , where χ z(Q0 )
is the largest component. Only for a small region close to the mag-
netic instability is an odd-parity p-wave pairing favored. (b), (c)
�↑↑

xz,xz(k) of the p-wave pairing is shown, revealing a dominating
p + ip structure. The equally large orbital component is �↑↑

yz,yz(k) =
−�↑↑

xz,xz(k).

pseudospin χ
↑↓↑↓
J (Q) peaks. This is the case for all values

calculated so far, except for the one small region in Fig. 7 with
large hole doping, high Hund’s coupling, and low compressive
strain. A high enough Hubbard interaction U � 1.1 eV is also
required. As several of these factors also increase the in-plane
spin susceptibility, the out-of-plane susceptibility only dom-
inates in a very small parameter range. In Fig. 11 one such
small patch can be found for a very high Hund’s coupling,
JH = 0.3U . Accompanying these fluctuations is an odd-parity
p-wave superconductivity. The main contribution, described
by the symmetry representation detailed in Appendix D, is

�p(k) ≈ (hx ⊗ σ z + ihy ⊗ I) ⊗ λ3, (42)

where λ j is the jth Gell-Mann matrix [64] acting in the
three-orbitals space. The p-wave pairing has several leading
terms, which are hx = − sin kx + sin kx cos ky + sin(2kx ) and
hy = − sin ky + sin ky cos kx + sin(2ky). Some smaller terms
are proportional to (hx ⊗ σ z + ihy ⊗ I) ⊗ λ1 and �↓↓

xy,xy(k) ∝
�↑↑

yz,yz(k). Up- and down-spin pairings have the opposite
chirality. This helical p wave thus preserves time-reversal
symmetry (TRS) since �

↓↓
αβ (k) = (�↑↑

αβ )∗(−k). The helical
nature is preserved for both Fermi surfaces, FS1 and FS2, with
a larger gap on FS2. A Z2 topological invariant can therefore
be determined. We can consider a Chern number for each
pseudospin sector, as outlined in Appendix F. The defining
features of the pairing are as follows:

(i) The helical p wave preserves time-reversal symmetry,
such that the total Chern number vanishes, Ctot = 0.

(ii) The pseudospin Chern number, ν = (C+ − C−)/2,
also vanishes such that in each pseudospin sector Cτ = 0.

(iii) In each pseudospin sector we define the pocket Chern
number Cn,τ for the band n. We find Cn,τ = ±1 such that for
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each band the pseudospin Chern number is νn = ±1. The
pocket contributions cancel such that ν = ∑

n νn = 0, as the
pocket of j = 3

2 character has the opposite chirality to the
j = 1

2 pocket.
(iv) Therefore, no topologically protected edge or vortex

modes are expected.
Even for chiral TRS-breaking superconductors the Fermi-

surface topology can result in a topologically trivial state,
when multiple pockets are present [65,66]. The possible
Chern numbers in multiband superconductors depend on the
pairing function, and the location in the Brillouin zone of the
resulting topological charges [67–69].

It might be possible to expand the p-wave regime by tun-
ing parameters such that ferromagnetism is favored. In our
model, increasing the Hubbard coupling U accomplishes this.
However, with a higher U , a higher strain required to reach
the superconducting regime but a higher U also increases
the in-plane fluctuations, as in Fig. 7. This is caused by
the other fluctuations being favored when the pocket with
j = 3

2 states becomes large. Only for a smaller pocket and
a large U would the p wave be favored. The odd-parity or-
der is thus a fine-tuned case which is found beyond realistic
parameters.

VI. DISCUSSION

While strong interactions, spin-orbit coupling, and the
proximity of multiple d bands to the Fermi level all point
to the possibility of unconventional superconductivity, ex-
perimental observation of superconductivity is still missing.
In this work we suggest that compressive strain may be a
possible knob that, together with doping, can turn the sys-
tem from magnetic to superconducting. We model the system
using the extended Hubbard-Kanamori Hamiltonian and map
out its phase diagram. Magnetic orders are found using the
Stoner criterion while superconductivity is studied using the
RPA linearized Eliashberg equation. For the range of param-
eters considered in this work, we find prominent regions of
strain-induced superconductivity, among them a large fraction
exhibits d-wave pairing.

The d- and s±-wave orders found are the same as in
previous studies of the unstrained compound. For the values
considered here the s± wave can arise adjacent to the antifer-
romagnetic (AFM) order, for a high enough Hund’s coupling.
For high strains and Hund’s coupling, new orbital-selective,
anisotropic s- or d-wave orders are found. In addition, we
find an out-of-plane ferromagnetic order. In a very fine-tuned
region, the out-of-plane susceptibility mediates an odd-parity
p-wave order. We note that the work of Ref. [12] finds a p-
wave order in hole-doped Sr2IrO4, albeit at an extremely large
Hubbard coupling, U = 12t , and a lower Hund’s coupling of
JH = 0.15U . The odd-parity order we find is favored by a high
Hubbard coupling U in the unstrained compound and could
be the dominant order at those values. At higher strains the
ferromagnetic fluctuations vanish. The p-wave order is found
to be helical and topologically trivial, as determined via the
Z2 invariant. However, other values of the Hund’s coupling
and different Fermi-surface geometry could potentially break
time-reversal symmetry and result in a chiral p wave [70].
As in the case of Sr2RuO4, the topological nature of such a

state in the iridates is highly dependent on the Fermi-surface
geometry and orbital composition.

It should be mentioned that the type of possible magnetic
instabilities is not altered by the compressive strain for the
realistic value of the Hund’s coupling JH = 0.1U . However,
with increasing compression the pseudospin j = 1

2 suscepti-
bility decreases faster than the spin susceptibility, bringing the
two leading fluctuation peaks to comparable sizes. At high
Hund’s coupling and lower SOC we find an antiferromagnetic
order that can have a mixed in- and out-of-plane structure.
Moreover, at higher strains a spinlike incommensurate mag-
netic order is possible. Further calculations of the particle-hole
self-energy are required to characterize this magnetic order.
The competition between two types of susceptibility peaks
mediating the d- and s-wave orders shares many similarities
with work done on iron-pnictide superconductors [71,72]. In
iron pnictides a different nesting vector Q = (π, 0) connects
pockets and mediates the s± wave. Reference [71] predicts
nearly degenerate multiband s- and d-wave orders where a
small change in the interaction parameters determines the
favorable order. However, in contrast to our work their model
does not contain spin-orbit coupling. In our work, the strong
SOC and the consequent pseudospin degrees of freedom are
partially responsible for the dominance of the d-wave order in
the realistic regime phase diagram.

The strain-induced superconducting regimes we find all
occur when the Fermi surface has multiple pockets. All super-
conducting orders are thus multigap orders [73,74]. However,
for a higher SOC or lower U that would not necessarily be
the case. The size of the second pocket FS2 and the value of
the Hund’s coupling determine the relative sizes of the gap
for the two pockets. In Fig. 8, the relative gaps are shown
projected onto the FS at low Hund’s coupling, and we find
that pocket 1 dominates: Max[�FS1 (k)] 
 Max[�FS2 (k)].
The smaller gap is expected to have a smaller effect on the
(shared) critical temperature. Methods to determine the rel-
ative size and pairing structures of two gap superconductors
have been explored in multiple compounds such as MgB2 [75]
and SrTiO3 [76]. Further proposals have been made to detect
any offset phases between pairing functions, especially for
the s±-wave order where signatures of the phase difference
between the two pockets could be detected via Josephson
tunneling [77–79].

Our results indicate that the doped and strained regime is of
interest for potential iridate superconductivity. Understanding
changes to magnetic fluctuations for any experiment com-
bining strain and doping would provide great insight to the
interplay of interactions and spin-orbit coupling in transition
metal oxides. An observation of the susceptibility peaks that
we identify as mediating superconductivity could hint at a
possible superconducting phase nearby. Further understand-
ing the signatures of the possible superconductivity, such as
the Knight shift in the magnetic susceptibility [42] could be a
direction for future work.
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APPENDIX A: PHASE DIAGRAMS AT OTHER U

In the model used in this paper there is a tradeoff be-
tween doping- and strain- dependent behavior for a given
strength of the Hubbard interaction U , as motivated in Sec. III.
The value for the calculated phase diagram, U ≈ 3|t |, finds
a magnetic phase transition for an expected range of strain
values. In Fig. 12 phase diagrams are calculated at a lower
U = 0.78 eV ≈ 2.2|t |. For the most realistic choice of Hund’s
(JH = 0.1U ) and spin orbit (λ = 0.6 eV), the magnetic region
at ε = 0 only extends up to n = 4.85 on the hole-doped side.
We note that for the chosen temperature and interaction pa-
rameters, a magnetic region extends beyond n = 5.3. Mean
field studies for the lattice with staggered rotations, such as

in Appendix B, reveal a possible canted ferromagnetic order
for this doping. The high electron-doping region is therefore
likely to be a canted ferromagnet, as it has nesting vector
Q = (π, π ). The phase diagram has a clear doping depen-
dence of the superconducting region, with a dome centered
at the electron-doped regime. However, the considered strain
values only extend up to ε = −1.5%.

For the choice JH = 0.25U and λ = 0.5 eV, neither a mag-
netic nor superconducting region is found for the temperature
T ≈ 11 K. Similarly to the result at U ≈ 3|t |, the leading
eigenvector corresponds to two different types of pairing,
depending on the considered doping regime. To explore the
robustness of the strain-induced d-wave superconductivity, an
additional phase diagram at U ≈ 4|t | is shown in Fig. 13.
Even though the magnetic order persists up to higher values
of the strain, the order is still a d wave with mainly j = 1

2 con-
tributions. At higher strains, the pocket FS2 is larger than in
Fig. 8 and the ratio Max[�FS2 (k)]/Max[�FS1 (k)] is increased.

APPENDIX B: MEAN FIELD CALCULATION

The phase diagrams presented in this work are limited
in the determination of competition between orders. Even

Mag.
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FIG. 13. (a) Phase diagram at U = 1.4 eV and additional parameters the same as in Fig. 3. The mainly j = 1
2 d-wave order is present for

a significant region in the higher strain regime. (b) As in Fig. 9 the maximum values of pseudospin χ
↑↓↑↓
J (Q) and spin χ↑↓↑↓(Q) susceptibility

peaks are compared as the Hund’s coupling is increased for one point in the phase diagram in (a).
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though all superconducting orders are treated equally, they
are calculated in the normal state. Therefore, any influence
of particle-hole self-energies is ignored. To compare phase
boundaries for the regions of interest a self-consistent mean
field calculation was performed. We have chosen to only com-
pare the RPA calculation for the most realistic phase diagram
in Fig. 3. For the j = 1

2 superconducting order we can make an
approximation of the effectively attractive interaction between
sites. However, the anisotropic s- and d-wave orders, as well
as for the p wave, require approximations of the effective
attractive interactions between both nearest- and next-nearest-
neighbor sites. As these multiorbital pairing functions affect
more than one j state, one must also approximate the strength
of the interaction in each of these channels. The mean field
calculation was chosen to include all possible onsite magnetic
order parameters, in a two-site unit cell, as well as for a
d-wave superconducting order parameter in the j = 1

2 state.
The onsite order parameters, at sublattice s = A, B, are

〈c†
s,acs,b〉MF,T = 1

N2
k

∑
n,k

f (ξk,n, T )[UMF,k](s,a)n[U †
MF,k]n(s,b)

(B1)
with the orbit-spin label a = (α, σ ), were calculated from a
mean field decoupling of the bare interactions in Eq. (20), as
described in Ref. [25].

The superconducting order parameter is introduced by
mean field decoupling of the Bogoliubov–de Gennes (BdG)
Hamiltonian. � j=1/2 is set to be a j = 1

2 d-wave singlet be-
tween the sublattices as

HMF,SC =
∑

k

V (ε)� j=1/2eikx (cos kx − cos ky)

× [
ak,A,( 1

2 ,+ 1
2 )a−k,B,( 1

2 ,− 1
2 )

− ak,A,( 1
2 ,− 1

2 )a−k,B,( 1
2 ,+ 1

2 ) + H.c.
]
, (B2)

where the operators a are in the j-state basis, as in Sec. II, and
V (ε) = − 3

4 Jeff(ε) is the effective interaction [80,81]. Due to
the structure of the hopping terms we approximate Jeff(ε) in
the j = 1

2 subspace as Jeff(ε) =
√

J2
1 + D2 [31], where

J1 = 4[teff(ε) − teff,z(ε)]2

Ueff
, D = 8teff(ε)teff,z(ε)

Ueff
. (B3)

Here the effective hopping parameters are teff(ε) = 1
3 (t1 +

t4 + t5) and teff,z(ε) = trot. The order parameter is calculated
via the self-consistency equation

� j=1/2 = 1

N2
k

∑
n,k

∑
α,β

e−ikx M(A,( 1
2 ,+ 1

2 )),αM(B,( 1
2 ,− 1

2 )),β

× [UMF,k]αn[UMF,k]βn f (ξk,n, T ), (B4)

where the matrix M is Eq. (8). This and Eq. (B1) are solved
simultaneously via iterations as a set of coupled equations.
Here we are treating only the interaction within the j = 1

2 as
if it was a one-band model, where the interaction projected
onto that subspace is Heff = (U − 4

3 JH)ni,( 1
2 ,+ 1

2 )ni,( 1
2 ,− 1

2 ) =
Ueffni,( 1

2 ,+ 1
2 )ni,( 1

2 ,− 1
2 ), so for the calculations Ueff = 13

15U . An

inclusion of d-wave pairing within the ( j, jz ) = ( 3
2 ,± 3

2 ) state
or between the j = 3

2 and 1
2 does not extend the supercon-
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FIG. 14. The mean field calculation for magnetic and supercon-
ducting order parameters, for the same model parameters as in Fig. 3
except λ = 0.45 eV. Here V = −0.25U ≈ − 3

4 Jeff(−2.5 %). As the
SOC is renormalized the resulting band structure is the same as for
the phase diagram in the main text.

ducting phase in the calculation. The interaction used here is
U ≈ teff, and not close to the strong coupling limit. However,
to compare the competition between the d-wave and magnetic
orders for for the RPA calculations results in an order of
roughly equal size.

Calculations were performed on a Nk × Nk lattice in
momentum space, with Nk = 100, and self-consistent so-
lutions were found iteratively with a convergence criterion
of 10−7. Due to the full set of order parameters con-
taining terms that renormalize the spin-orbit coupling,
the self-consistent mean field calculation predicts effects
not included in the RPA calculation. However, the in-
cluded mean field orders can only have nesting vectors
Q = (0, 0) or Q = (π, π ) as the two sites allow us to
study either net (〈c†

A,acA,b〉MF,T + 〈c†
B,acB,b〉MF,T )/2 or stag-

gered (〈c†
A,acA,b〉MF,T − 〈c†

B,acB,b〉MF,T )/2 values of the order
parameters.

In Fig. 14 there are two magnetic mean field orders. The
most common order is the canted in-plane antiferromagnet
(x-cAFM), with a staggered magnetic moment along the x
direction and a net magnetic moment along the y direction.
Similarly to previous works, the canting angle follows the
rotations of the octahedra in the lattice. When a compressive
strain increases the rotations, the magnetic canting angle thus
increases as well. For a high enough U the magnetic order
remains up to high electron number (n > 5.2) the in-plane
ferromagnetic component becomes dominant. A small AFM
component remains, identifying this order as y-cFM. The
canted orders consist mainly of j = 1

2 pseudospins. However,
as the SOC is lowered the AFM order in the hole-doped region
has small ( j, jz ) = ( 3

2 ,± 3
2 ) contributions. The order parame-

ters which renormalize the SOC depend on strain and doping.
However, if λ = 0.45 eV is chosen the effective spin-orbit
coupling λeff ≈ 0.6 eV.

A superconducting region is present in Fig. 14 and the
competition between superconductivity and magnetism there-
fore does not affect its existence. However, in contrast to
Fig. 3 superconductivity is only present for electron doping
n > 5.05. For the noninteracting band structure, used for the
RPA calculations in this paper, the j = 3

2 pocket is present
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in the full charge doping region around ε = −2.2%. As the
j = 3

2 hole pocket increases in size for a given charge doping,
the j = 1

2 electron pocket grows as well. The superconductiv-
ity in Fig. 3 is therefore present for a region where the j = 1

2
electron pocket is significantly larger than for ε = 0. There
the d wave is present for all considered n.

The discrepancy between the RPA and the mean field
result is due to several factors. Since these two approaches
make different approximations it is not possible to determine
which phase diagram is more realistic. Instead, we can gain
confidence in our results in parts of the phase diagram where
the two approaches agree. Each approach has its strength and
weaknesses. In mean field we must predetermine the possi-
ble channels of superconductivity and the effective attractive
interaction which does not change with strain and doping.
On the other hand, the self-consistency equation (B4) is not
linearized like the RPA gap equation in Eq. (27) and therefore
the mean field is better suited for determining the relative
strength of the order parameters considered. The comparison
between RPA and mean field theory therefore suggests that
the electron-doped region is more likely to host a d-wave
superconducting order.

APPENDIX C: TETRAGONAL SPLITTING

Compression has an additional effect relevant to the
iridates: an increased tetragonal distortion. The tetragonal
distortion of the oxygen octahedra encompassing the irid-
ium atoms has been measured to increase with compression,
becoming more elongated when the in-plane compression
increases. For unstrained Sr2IrO4 a small elongation is ob-
served, which theoretically should result in a tetragonal
splitting μxy > 0. However, early ab initio calculations found
that the band structure is best described by a shift μxy < 0
[6,82]. Later works have proposed that the sign could arise
from hybridization with ligand oxygen orbitals [83,84]. Due
to this sign difference, previous works modeling the tetragonal
splitting’s dependence on strain come to contradictory results,
where |μxy| either increases or decreases [21,30,82]. A fitting
of the change in energy splitting to RIXS measurements,
in Ref. [28], found an increasing |μxy| for low compressive
strain. A linearization of these results gives

μI
xy(ε) = −|μxy(0)|(1 − 0.2041ε), (C1)

where ε is given in units of %. In Fig. 15 the largest eigenvalue
for the linearized gap equation is compared for an approx-
imation of μxy(ε) as given by either Ref. [28] or [30]. The
second approximation is based on theoretical calculations and
the linearization is instead

μD
xy(ε) = −|μxy(0)|(1 + 0.357ε) (C2)

which results in a decreasing |μxy| under strain. We can note
that even though the experimentally approximated values are
only based on data points up to ε = −0.7%, the theoretical
approximation μD

xy(ε) is not compatible with the found trend.
The experimentally motivated μI

xy(ε) results in a slightly
lower eigenvalue than the constant μxy for the d-wave order,
at λ = 0.6 eV and JH = 0.1U . Any change to the tetragonal
splitting is thus expected to have a small impact on the strain-
induced superconducting regions with d-wave symmetry.

μI
xy μ0

xy μD
xy

0

2

4

λ
e

U = 1.4eV, JH/U = 0.1, λ = 0.6eV, n = 5.1

= -3.5%

= -4%

μI
xy μ0

xy μD
xy

0

2

4

λ
e

U = 1.4eV, JH/U = 0.25, λ = 0.5eV, n = 4.9

= -3%

= -3.5%

b)

(a)

(b)

FIG. 15. The largest eigenvalue λe is compared for the three
options for the strain dependence of μxy(ε), as given by Eqs. (C1) and
(C2). For JH = 0.1U and SOC λ = 0.6 eV we note the increasing
eigenvalue, for a d-wave order, as the absolute value of μxy decreases.
For a lower |μxy|, the bands of ( 3

2 , ± 3
2 ) character are pushed further

down and a larger fraction of bands at the Fermi surface has j = 1
2

character. For JH = 0.25U and lower SOC, the opposite trend is
observed and the order is the s± wave.

As a check of the magnetic phase boundaries, for different
values of the tetragonal splitting, the mean field calculation
in Appendix A was performed, for only the magnetic order
parameters, at Nk = 200. In Fig. 16, an additional out-of-plane
ferromagnetic order (z-FM) appears at the lower SOC and
higher Hund’s coupling. This order is only favored at high
enough U and has a clear spin character 〈Lz〉/〈Sz〉 ≈ 0.16.
Contributions from each orbital are of approximately equal
strength. In terms of j states the contributions are thus mainly
from the ( j, jz ) = ( 1

2 ,± 1
2 ) and ( j, jz ) = ( 3

2 ,± 3
2 ) states.

As seen in Figs. 16 and 17, a larger absolute value of
the splitting μI

xy(ε), does not result in major changes to the
magnetic phase boundaries. For the other option μD

xy(ε), the
behavior with doping changes as μD

xy(ε ≈ −2.8%) = 0. The
x-cAFM order remains up to higher strains for hole instead of
electron doping once the sign of μxy changes.

APPENDIX D: SYMMETRY CLASSIFICATION

In Sec. V A the SPOT formalism [48,61] of classifying
the symmetry of the superconducting pairing is introduced.
The pairing must be antisymmetric under the product of oper-
ators

SPOT �ab(k) = �ba(−k), (D1)

where each exchange operator is defined as

S�(s,α,σ )(s′,α′,σ ′ )(k, ω) = �(s,α,σ ′ )(s′,α′,σ )(k, ω),

P�(s,α,σ )(s′,α′,σ ′ )(k, ω) = �(s,α,σ )(s′,α′,σ ′ )(−k, ω),

O�(s,α,σ )(s′,α′,σ ′ )(k, ω) = �(s,α′,σ )(s′,α,σ ′ )(k, ω),

T �(s,α,σ )(s′,α′,σ ′ )(k, ω) = �(s,α,σ )(s′,α′,σ ′ )(k,−ω).

(D2)
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μI
xy(ε) = −|μxy(0)|(1 − 0.2041ε)
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FIG. 16. The magnetic mean field phase diagrams, Eq. (B1), for three different options for μxy(ε): μI
xy [absolute value increasing, Eq. (C1)],

μ0
xy (constant), μD

xy [absolute value decreasing, Eq. (C2)]. No significant shift of the amount of strain required for a phase transition is observed.
A larger absolute value of the splitting favors a magnetic order for electron doping. At the strain values required for the transition, μD

xy has
changed sign, μD

xy > 0, and the order instead favors hole doping. For JH = 0.25U a lower splitting favors the z-FM order while it suppresses
the y-cFM order.

In Fig. 18 the symmetries of a found j = 1
2 d-wave pairing are

shown. The maxima of each component of � are separated
under the present spin-singlet and spin-triplet operations. An
ideal pseudospin singlet will have both spin-singlet and spin-
triplet components of comparable size, in the orbital-spin
basis. As the transformation between bases is independent
of momentum, the spatial parity of the state is unchanged.
The spin-triplet components are therefore orbital singlets
S+P+O−T +. The found d wave in Fig. 18 has additional
small components from other j states. The compressive strain
decreases the contributions from the xy orbital at the Fermi
surface as well as increases the interorbital xz-yz hopping.
There are therefore more contributions from spin-singlet and
mz = 0 spin-triplet components, than from mz = 1 triplets. In

Fig. 19 the symmetries of an s± wave are shown. The s± wave
has strong components from several j states. As this order is
found to be mediated by spinlike fluctuations mainly in the
yz and xz orbitals, between bands of j = 1

2 and 3
2 character,

we can consider the main components of the pairing to come
from pairing within and between those orbitals.

The superconducting order can be expressed exactly via its
full symmetry representation. We consider the pairing for a
spin and orbital combination:

�
αβ

σσ ′ (k) = 1

2

∑
s,s′

eikx (�s−�s′ )�
(α,s)(β,s′ )
σσ ′ (k), (D3)

where �s is the same function as in Eq. (38) and gives us the
combined contribution from both sublattice sites. The symme-

μI
xy(ε) = −|μxy(0)|(1 − 0.2041ε)
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FIG. 17. The magnetic mean field phase diagrams at a lower U = 1.1 eV. Since the magnetic order does not remain up to as high strains,
the tetragonal splitting effects are less prominent. Only JH = 0.1U is shown here as the magnetic regions for JH = 0.25U are too small to see
any difference between the three models.
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FIG. 18. The calculated even-parity d-wave pairing (found eigenstate to the largest eigenvalue at the point U = 1.1 eV, JH = 0.1U , λ =
0.6 eV, n = 5.1, ε = −2%), where the maximum value of each component is shown both in (a) the orbital �

σ1σ2
αβ and in the (b) j-state bases

�τ1τ2
mn . The largest value of the order parameter is normalized to Max|�̂(k)| = 1. In the orbital basis, the pairing has many intersublattice

components of equal size. As shown in (c)–(e), considering the pairing with even or odd spin symmetries results in both large spin-singlet and
spin-triplet components. In j-state components the pairing is clearly dominated by a j = 1

2 pseudospin singlet.
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FIG. 19. The calculated even-parity s±-wave pairing (at U = 1.1 eV, JH = 0.3U , λ = 0.5 eV, n = 4.8, ε = −1%). This order is a
combination of several components both in (a) the orbital and (b) j-state bases, which are normalized by the largest value of the order
parameter Max|�̂(k)|. The pairing consists mainly of intrasublattice pseudospin singlets. The strongest components at this point in the phase
diagram in the ( j, jz ) = ( 3

2 , ± 3
2 ) state, with a ( j, jz ) = ( 1

2 , ± 1
2 ) pseudospin singlet following in size.
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FIG. 20. (a)–(c) The intraband pairing for the anisotropic superconducting orders is shown on the FS as the Hund’s coupling JH is increased,
for the same values as in Fig. 10. All orders are a mix of s- and d-wave symmetries, with only the one at JH = 0.3U being nodeless. (d)–(f) The
maximum of pairing components in the orbital basis for the same Hund’s coupling as the plot above, shown as Max[|�σσ ′

αβ (k)|]/Max[|�̂(k)|].
For all values the order exists mainly in the yz and xz orbitals, with barely any contributions from xy. However, the order is stronger in xz. At
JH = 0.2U the pairing originates almost entirely from the xz orbital.

try representation for the spatial symmetry ημ(k) is specified
in Table I. The pairing can be decomposed into symmetry
representations for the spin and orbital structure. If Cμνρ is
the projection constant for a chosen representation, then any
superconducting order can be written as

�
αβ

σσ ′ (k) =
∑
μ,ν,ρ

Cμνρη
μ(k)Sν

σσ ′Oρ

αβ. (D4)

For the spin degree of freedom, Sν
σσ ′ are the generators for

the SU(2) algebra, the Pauli matrices σ i with i = 0, x, y, z.
For the orbital degree of freedom, Oρ

αβ are the generators
for the SU(3) algebra, the Gell-Mann matrices [64] λi with
i = 0, 1, . . . , 8. The Pauli matrices act in spin (↑,↓) space
and can form spin triplets (σ 0, σ x, σ z ) and spin singlets (σ y).
The Gell-Mann matrices act in orbital (dyz, dxz, dxy) space
and can form intraorbital pairings (λ0, λ3, λ8), and interorbital
pairings that can be either even (λ1, λ4, λ6) or odd (λ2, λ5, λ7)
under orbital exchange.

The found d wave is a pseudospin singlet, which within the
j = 1

2 subspace is

�d (k) ≈ η
B1g

R=1(k) ⊗ (iσ̃ y), (D5)

where σ̃ y acts on the pseudospins τ = +,−. The s± wave can
be expressed approximately as intraorbital spin singlets and
interorbital spin triplets in the yz and xz orbitals:

�s± (k) ≈
(
CA1g

R=0η
A1g

R=0(k) + η
A1g

R=2(k)
)

⊗ [(iσ y) ⊗ (λ11 + λ22) − iσ x ⊗ (iλ2)] (D6)

with λ11 = ( 1
3λ0 + 1

2λ3 + 1
2
√

3
λ8) and λ22 = ( 1

3λ0 − 1
2λ3 +

1
2
√

3
λ8) representing intraorbital pairing. The A1g spatial sym-

metry has two contributions with a relative weight specified
by CA1g

R=0 ≈ 0.7. This pairing has additional smaller contribu-
tions involving the xy orbital: ∝ (iσ y) ⊗ λ33 = (iσ y) ⊗ (λ0 −√

3λ8), ∝ (−i)σ 0 ⊗ (iλ5), and ∝ (−i)σ z ⊗ (iλ7).

APPENDIX E: ANISOTROPIC PAIRING

The anisotropic orders found at high compressive strain,
in Sec. V C, appear when fluctuations with Q vectors which
connect states of the same orbitals become large enough. In
Fig. 20 the found anisotropic orders, for three values of the
Hund’s coupling, are characterized by projecting the pairing
on the Fermi surface as well as the maximal value of each
orbital-spin component of the pairing. At the Fermi surface
the weight is stronger along the x direction, on all pockets. The
xz orbital has the largest contribution. The other notable dif-
ference, from the d- and s±-wave orders, is that the anisotropic
orders have equal size intrasublattice and intersublattice com-
ponents of the xz orbital.

The anisotropic orders and s± order are mediated mainly
by spin fluctuations. However, the pockets at the Fermi surface
have a strong character of the ( j, jz ) = ( 1

2 ,± 1
2 ) or ( j, jz ) =

( 3
2 ,± 3

2 ) state. The orders originate mostly from the yz and xz
orbitals, and the pairing can be transformed into the j states,
via Eq. (8), as

�ττ ′
mn (k) =

∑
αβσσ ′

c(ττ ′ )(σσ ′ )
(mn)(αβ ) �σσ ′

αβ (k)

=
∑

αβσσ ′
M(m,τ ),(α,σ )M(n,τ ′ ),(β,σ ′ )�

σσ ′
αβ (k), (E1)
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where m = ( 1
2 ,± 1

2 ), ( 3
2 ,± 1

2 ), ( 3
2 ,± 3

2 ), τ = +,−, α =
yz, xz, xy, and σ =↑,↓. We can identify c(+−)(↑↓)

( 3
2 ,± 3

2 )(yz,yz)
=

c(+−)(↑↓)
( 3

2 ,± 3
2 )(xz,xz)

= − 1
2 and c(+−)(↑↓)

( 1
2 ,± 1

2 )(yz,yz)
= c(+−)(↑↓)

( 1
2 ,± 1

2 )(xz,xz)
= 1

3 . As

can be seen in Fig. 5, sections of the hole-doped Fermi surface
are mainly of either yz or xz character. This is a result of the
quasi-1D dispersion in each of these orbitals in Eq. (4). A
simplified model for the two Fermi surfaces is to introduce
orbitals with a spatial dependence along the parameter θ

around a circular FS:

|yz〉θ = | cos θ ||yz〉, |xz〉θ = | sin θ ||xz〉,
|xy〉θ = (| cos θ | + | sin θ |)|xy〉. (E2)

Here only one site and the full Brillouin zone (BZ) are con-
sidered for simplicity. So in a BZ where FS1 is purely ( 1

2 ,± 1
2 )

and FS2 is ( 3
2 ,± 3

2 ) (with an energy shift ξ of the xy-orbital)

|FS1,↑〉θ =
∣∣∣∣12 ,+1

2

〉
θ

− ξ |xy,↑〉θ

= 1

N1
(|yz,↓〉θ − i|xz,↓〉θ + (1 −

√
3ξ )|xy,↑〉θ )

(E3)

and

|FS2,↑〉θ =
∣∣∣∣32 ,+3

2

〉
θ

= 1

N2
(−|yz,↓〉θ − i|xz,↓〉θ ), (E4)

where N1,N2 are normalization factors. For a simplified con-
stant order only within each orbital, �↑↓

yz,yz(k) = � the pairing
on each FS becomes

�
↓↑
FS1

= cos2 θ

N 2
1

�, �
↓↑
FS2

= −cos2 θ

N 2
2

�. (E5)

If instead �↑↓
xz,xz = �,

�
↓↑
FS1

= sin2 θ

N 2
1

�, �
↓↑
FS2

= − sin2 θ

N 2
2

�. (E6)

Each orbital thus results in a quasi-1D pairing on both Fermi
surfaces. If one of the orbitals dominates �↑↓

xz,xz > �↑↓
yz,yz the

order is an anisotropic s wave, with some d-wave components.
To study the full s± wave, it can be modeled as equal parts

from both orbitals �↑↓
yz,yz = �↑↓

xz,xz = �:

�
↓↑
FS1

= cos2 θ + sin2 θ

N 2
1

� = 1

N 2
1

�,

�
↓↑
FS2

= −cos2 θ + sin2 θ

N 2
2

� = − 1

N 2
2

�,

(E7)

where in the ideal j-state case N 2
1 = 3 and N 2

2 = 2. This is
one of the primary reasons for the s-wave symmetry resulting
in an s± wave with a larger weight on FS2. However, the

found s± wave does not have purely S−P+O+T + intraor-
bital components but also interorbital S+P+O−T + terms
(see Fig. 19). As these terms all have the same magnitude
�↑↓

yz,xz = −�↑↓
xz,yz = i�. Projected onto the Fermi surface

�
↓↑
FS1

= 2| cos θ || sin θ |
N 2

1

�, �
↓↑
FS2

= 2| cos θ || sin θ |
N 2

2

�.

(E8)
They contribute to both bands with the same sign and to the
same sections. The pairing used for these examples so far
has been a uniform s wave, �(k) = �. In Eq. (D6) we can
note that the found s± wave has a dependence on momentum,
with a large contribution from the η

A1g

R=2(k) = 2 cos kx cos ky

symmetry. The placement of FS1 and FS2 in the BZ therefore
affects the sign of the gaps. As a result, both intraorbital and
interorbital terms play a role in the origin of the s±-wave
pairing.

APPENDIX F: TOPOLOGICAL INVARIANT

To determine the topological properties of the found odd-
parity order we consider the pairing in the Bogoliubov–de

2π

2π

−0.04

−0.02

0.00

0.02

0.04

(a)

2π

2π
(b)

FIG. 21. The (a) Berry curvature and (b) intraband phase wind-
ing are calculated for bands in the pseudospin down sector, for the
pairing in Fig. 11. For the folded BZ we can consider four pock-
ets, centered around (k1, k2) = (0, 0), (0, π ), (π, 0), (π, π ). Each
pocket has Cn,− = ±1, such that the total Chern number cancels out
to C− = 0. For each pocket the phase φk can be seen to wind in
opposite directions for the different pockets.
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Gennes (BdG) Hamiltonian

HBdG =
∑

k

(c†
k, c−k)

(
H (k) �(k)

�†(k) −HT(−k)

)(
ck

c†
−k

)
(F1)

with the noninteracting Hamiltonian H (k) from Eq. (1). �(k)
is the eigenstate of the largest eigenvalue for Eq. (29), scaled
to set the minimal gap at the Fermi surface to 0.02 eV. As
the specific odd-parity pairing found in Sec. V E is block
diagonal in pseudospin up and down, the full Hamiltonian can

be rearranged into a block-diagonal form

HBdG =
∑

k

�†
k

(
H+

BdG(k) 0

0 H−
BdG(k)

)
�k, (F2)

where �k = (�+,k, �−,k )T is divided into the pseudospin sec-
tors {(yz,↓), (xz,↓), (xy,↑)} and {(yz,↑), (xz,↑), (xy,↓)}.
The eigenstates and eigenvalues are given as HBdG|n〉 = En|n〉
and for each pseudospin sector H τ

BdG|n〉 = En,τ |n, τ 〉. We cal-
culate the Berry curvature for all filled bands via [85]

�(n)
z (k) = − Im

∑
n′ �=n

f (En) f (1 − En′ )
〈n|∂xHBdG|n′〉〈n′|∂yHBdG|n〉 − 〈n|∂yHBdG|n′〉〈n′|∂xHBdG|n〉

(En − En′ )2
, (F3)

�(n)
z (k) = − Im

∑
n′ �=n

∑
a,b,c,d

∑
i, j∈{x,y}

f (En) f (1 − En′ )[U †
k ]na[Uk]bn′ [U †

k ]n′c[Uk]dnεi j
〈a|∂iHBdG|b〉〈c|∂ jHBdG|d〉

(En − En′ )2
, (F4)

where εxy = −εyx = 1 and εii = 0. |a〉 is the spin-orbital basis
a = (α, σ, s) with orbital α, spin σ , and sublattice s. However,
since all 〈a,+|∂iHBdG|b,−〉 = 0 the Berry curvature can be
calculated separately for each pseudospin sector

�(n)
z (k) = �(n,+)

z (k) + �(n,−)
z (k) (F5)

and the Chern number per pseudospin is

Cτ = 1

2π

∫
BZ

∑
n

�(n,τ )(k)dkxdky. (F6)

In Fig. 21 the Berry curvature for all filled bands is shown for
the pseudospin down sector. In addition, the phase φk of the
intraband pairing, where �

↓↓
FSn

(k) = |�↓↓
FSn

(k)|eiφk , is plotted
along the Fermi surface. The winding of the phase can be seen
to be opposite for the bands. If the pockets are fully separated,
the Chern number for each pocket can also be given by the
winding of the phase [86]

Cn = 1

2π

∮
FSn

∇φk · dk. (F7)
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