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Recent theoretical and experimental studies suggest that van der Waals heterostructures with n- and p-doped
bilayers of transition metal dichalcogenides are promising facilitators of exciton superfluidity. Exciton super-
fluidity in these bilayer systems is often modelled by solving a mean-field gap equation defined for only the
conduction and valence band of the electron and hole material, respectively. A key quantity entering the gap
equation is the effective Coulomb potential acting as the bare interaction in the subspace of the model. Since the
model only includes a few bands around the Fermi energy, the effective model interaction is partially screened.
Although the screening is a material-dependent quantity it has, in previous studies, been accounted for in an ad
hoc manner, by assuming a static dielectric constant of 2 for a wide range of different materials. In this paper we
show that the effective model interaction can be derived from first principles using open source code frameworks.
We show that the material dependent screening, accounted for by this ab initio downfolding procedure, has a
large influence on the exciton binding energies and superfluid properties. By applying the method to 336 different
heterostructures comprised of transition metal dichalcogenides and transition metal oxides we show that the
proposed downfolding method yields qualitatively different trends of the exciton binding energies and superfluid
properties compared to the standard assumptions with a single dielectric constant. Additionally, we propose
material platforms of both transition metal oxides and dichalcogenides with superior properties compared to
conventional devices with two transition metal dichalcogenide layers.
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I. INTRODUCTION

Excitons are quasiparticle (QP) excitations of electron-
hole pairs bound by their Coulomb attraction [1]. Since
these bound electron-hole pairs are approximately bosonic
quasiparticles, they may, under special circumstances, form a
highly correlated condensate state with exotic properties such
as superfluidity [2]. In this paper we consider spatially indirect
excitons in van der Waals heterostructures (vdWHs). vdWHs
is a class of materials consisting of stacked monolayers of
two-dimensional (2D) atomic crystals [3]. The individual lay-
ers in the vdWH may act as quasi-2D quantum wells and
by doping, the structures can be engineered to carry elec-
trons in one layer and holes in a separate layer. Since the
electrons and holes are spatially separated, the exciton con-
densation can give rise to counter-flowing superconductivity
[4], although the concept of superconductivity here is delicate,
since no net charge transport is achieved [5]. From a theoret-
ical perspective, these bilayer architectures are interesting as
potential tunable model systems of the BCS-BEC (Bardeen–
Cooper–Schrieffer Bose–Einstein condensate) crossover. The
iron pnictides are believed to be located at the verge of
the BCS-BEC crossover [6], and an increased understand-
ing of this regime could yield important new clues to the
mechanism behind the unconventional superconductivity in
these compounds. Along with the rapid development in the
synthesis of 2D materials, different elements and structures
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have been considered as facilitators of the phenomenon: from
GaAs heterostructures [7–9], to double mono- and bilayer
graphene [2,10–15], and most recently bilayers of transition
metal dichalcogenides (TMDs) [16–24].

Experimentally, spectroscopic indications of exciton con-
densation has been seen in both bulk materials, such as
1T-TiSe2 [25,26] and Ta2NiSe5 [27] and in InAs/GaSb bi-
layers [28]. Two-dimensional heterostructures consisting of
two semiconducting sheets separated by a dielectric barrier
has shown to be a particularly convenient, tunable plat-
form to study exciton condensation and exciton superfluidity
[14,17,20,29,30]. The recent experimental indications of in-
terlayer exciton condensation at strikingly high temperatures
(up to 100 K) in TMD bilayer structures [17,20] is of particu-
lar interest to this paper.

Exciton superfluidity in bilayer systems is often modelled
by solving a mean-field gap equation defined for only the
conduction and valence band of the electron and hole material
respectively. From a theoretical point of view the screen-
ing within this low-energy subspace has been identified as
a key quantity that will reduce the electron-hole interaction
and thus severely reduce the superfluid transition temperature
[15,21,31]. The quenching of the screening in the condensate
state is manifested by the partial cancellation between the real
and anomalous screening channels. Over the years accurate
methods to account for these competing screening channels
have been developed [12,15,32,33] and used to describe and
predict the superfluid properties of many different systems
[12,13,15,18,19,21,32,34–40].
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However, real materials have many screening channels
that are not explicitly accounted for when solving such low-
energy models. From a model perspective all such additional
screening channels are accounted for by the reduction (screen-
ing) of the interaction parameters of the model Hamiltonian.
This screening is in fact a material-dependent quantity but
has in previous studies [12,13,15,18,19,21,23,35–40] been
accounted for in an ad hoc manner by assuming a single
static dielectric constant, often chosen as εi

M = 2 for a wide
range of different materials [12,15,18,21]. Recently a novel ab
initio method to compute the effective model parameters was
suggested and applied to investigate exciton condensation in
Janus bilayer materials [34]. In this paper we give a detailed
derivation of this method and show that the effective model
interaction can be derived from first principles using open
source frameworks. Through a systematic investigation of
TMD and transition metal oxide (TMO) bilayers we show that
the material dependent screening is essential to predict both
magnitude and trends of exciton binding energies and super-
fluid properties. Using this method we suggest new material
platforms with superior properties compared to the standard
devices. The objective of this study is thus twofold:

(i) In the quest for better material candidates, this study
offers a computational high-throughput investigation of bi-
layer structures. As 2D layer materials we consider both the
previously explored TMDs, but we also expand the search to
include new TMDs as well as TMOs.

(ii) We give a detailed derivation of the ab initio method
suggested in Ref. [34] and make a systematic study for a large
number of TMD and TMO platforms.

The article is organized as follows: In Sec. II we introduce
the specific material platforms (vdW heterostructures) that we
consider in this paper and give a detailed account for the the-
oretical methods we use to model them. We start by providing
an overview of the workflow for the material screening in
Secs. II B and II C. Then we provide an intuitive derivation of
the gap equation used to model the superfluid state in Sec. II D
and the downfolding approach used to compute the effective
parameters of the gap equation in Secs. II E and II H. Finally
we present the results in Sec. III and in Sec. IV we summarize
the most important conclusions.

II. METHODS

A. Material platform

An example of the bilayer structures we consider is shown
in Fig. 1. This is a vdWH, where we have an n-doped and a p-
doped TMD monolayer, spatially separated by a boron-nitride
(hBN) layer. The bilayer combination in Fig. 1 is just one ex-
ample of the 336 possible combinations for 27 different TMDs
and TMOs, which we consider in this paper. Besides the
structure itself, Fig. 1 also indicates (schematically) part of the
band structure close to the partially occupied conduction and
valence band (denoted “dopant band”) for the n- and p-doped
layer respectively. The construction allows electrons (mainly
from the conduction band) of the n-layer to interact through
the (screened) Coulomb interaction with holes (mainly from
the valence band) of the p-layer, thereby forming spatially in-
direct excitons. Similar to the experimental setup in Ref. [20]

FIG. 1. Example sketch of a TMD bilayer structure with an n-
doped MoS2 layer and a p-doped WS2-layer. An indirect exciton
(electron-hole pair) is shown schematically. We have indicated the
partitioning of the band structures of each of the layers into the
dopant (valence/conduction) band and remaining intrinsic bands as
explained in Sec. II F.

the individual electron and hole concentrations can be tuned
using external gates.

B. Methodology/workflow

In Fig. 2 we show an overview of the workflow used in
this computational study. In the first step we selected stable
2D monolayers to use as the individual layers of the vdWHs
(see Sec. II C). In the second step, the monolayers are com-
bined in vdWHs and we calculated the dielectric function,
polarization and screened interaction of the undoped vdWHs
using ab initio methods (see Sec. II G). In the final step we
used the ab initio results as input for solving a mean-field gap
equation defined only for the conduction and valence band of
n- and p-doped materials respectively (see Sec. II D).

C. Selecting materials

Our computational study is based on the quantum-
electrostatic heterostructure (QEH) 2D Material Database,
Refs. [41,42], which contains precalculated dielectric proper-
ties (response functions and induced densities) for 51 TMDs
and TMOs. We imposed a number of requirements for inclu-
sion in the study:

(1) Thermodynamic stability: We only considered dy-
namically and thermodynamically stable materials with a
maximum energy of 0.2 eV above the convex Hull, as given
in the computational 2D material database (C2DB) [43,44].

(2) Band structure requirements: In order for hBN to func-
tion as a barrier we only considered the n-doped materials
with the conduction band minimum (cbm) in the hBN band
gap. Correspondingly we required the valence band maxi-
mum (vbm) of the p-doped materials to be above the vbm of
hBN. These requirements were verified from the GW band
structures in the C2DB. For computational simplicity we
only considered isotropic materials, i.e., materials for which
the effective masses within two directions around the band
extremum are equal within a 2% tolerance. For p-doped ma-
terials we required isotropy in the valence band. For n-doped
materials we required isotropy in the conduction band.

The requirements above left us with 27 unique materials of
which 24 were suitable for n-doping and 14 were suitable for
p-doping yielding a total of 24 × 14 = 336 possible bilayer
combinations to investigate.
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FIG. 2. Overview of the employed workflow. First we screen the QEH 2D material database for materials that fulfill the stability and band
structure criteria (according to the data extracted from the Computational 2D Material Database (C2DB)). In the second step the monolayers
are combined to heterostructures and the intra and interlayer Coulomb interactions are computed. These are used to calculate the exciton
binding energies using a Wannier Mott model and as ab initio inputs to the gap equation in step 3.

After the material selection we estimated the “thickness” of
each layer in the vdWH using density functional theory (DFT)
calculations in a z-scan approach [45]. The z-scan approach
evaluates the interlayer distance and binding energy of a ho-
mobilayer by calculating the total energy of the bilayer while
varying the distance between two monolayers for a given
lateral stacking configuration. In the present study the total
energy is evaluated using the PBE-D3 xc-functional. We con-
sider all possible stacking configurations and determine the
interlayer distance from the most stable stacking. For a het-
erostructure we approximate the interlayer distance between
layer A and layer B by the average of the interlayer dis-
tance calculated for homobilayers AA and BB, respectively. It
should be noted that in our calculations the interlayer distance
is the only stacking dependent quantity since we determine
the single-particle dispersion from the effective mass of the
monolayers and the interaction parameters using the QEH
model (see Secs. II D and II H).

D. The gap equation

Exciton superfluidity in bilayer systems is often modeled
within mean-field BCS theory derived from a Hamiltonian
spanned by a few relevant bands, typically chosen as the
conduction and valence band of the electron and hole material
respectively [2,12,15,18]. As indicated in Fig. 1 we therefore
consider a model of two bands: the conduction band of the
n-doped material (n = 1) and the valence band of the p-doped
material (n = 2). For the materials with non-negligible spin-
orbit coupling (SOC) we consider both spin-orbit split bands
in the low-energy model. The momentum dependence of the
spin-orbit splitting for the materials in our study is weak.
Therefore, the SOC is parameterized by a single number,
similar to Refs. [18,19,35]. Within a parabolic approximation
the bare dispersion of the electron and hole bands are then
given by (in atomic units)

ε
(n)
kγ

= k2

2m(n)
+ γ

λSOC

2
(1)

where n is the layer index, λSOC is the spin-orbit splitting of
the conduction (valence) band in the electron (hole) layers,
γ = ±1 labels the two spin-orbit split bands, and the effec-
tive masses m(n) are taken from the C2DB. To simplify the
notation we will in the remainder of this section restrict the
discussion to the case where λSOC = 0 and drop the index γ ,
noting that the generalization to finite SOC is straightforward.

The resulting many-body Hamiltonian is

H = H0 + 1

2

∑
σ,σ ′, n,n′,

k,k′, q

U (nn′ )
qkk′ c(n)†

k+qσ
c(n′ )†

k′−qσ ′c
(n′ )
k′σ ′c

(n)
kσ

,

(2a)

where H0 =
∑
σ,n,k

ξ
(n)
k c(n)†

kσ c(n)
kσ . (2b)

Here c(n)†
kσ

is the creation operator for an electron with spin
σ in layer n, ξ

(n)
k = ε

(n)
k − μ

(n)
k is the corresponding kinetic

energy adjusted by the chemical potential μ
(n)
k , and U (nn′ )

q
is a Coulomb interaction. An important point is that we
distinguish between the “bare” Coulomb interaction V , the
“effective” interaction of the subspace of our superfluidity
model U , and the “fully screened” interaction W . As we shall
see, the fully screened interaction, W is what enters our final
gap equation. U is a partially screened interaction, which is
screened by all screening channels not explicitly accounted
for in the low-energy model in Eq. (2). U can be implicitly
defined by enforcing the fully screened interaction calculated
from the model Hamiltonian in Eq. (2) to be equivalent to
the fully screened interaction computed for the full many-
body Hamiltonian defined in the complete Hilbert space. In
principle U is a frequency-dependent quantity, but we only
consider the static limit of U in this paper. We will return to
the calculation of U and W in Secs. II E and II G.

1. BCS mean-field model

To focus on the most important dynamics of exciton super-
fluidity, we will begin by considering a simpler Hamiltonian
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containing only the electron-hole interaction between the n-
doped layer (layer 1) and p-doped layer (layer 2),

H = H0 +
∑
k,k′

U (12)
k′−k c(1)†

k′↑ c(2)
k′↓c(2)†

k↓ c(1)
k↑, (3)

Note that c(1)†
k′↑ creates an electron with momentum k′ in

layer 1, whereas c(2)
k′↓ creates a hole with momentum −k′ in

layer 2. In this simpler Hamiltonian, we assume that electron-
hole pairs form with opposite spin and momentum (singlet
phase-coherent coupling). Under this assumption, spin will
be dropped from the equations for brevity. In BCS theory
it is assumed that electron-hole pairs will form a coherent
ground state and therefore the pair mean-field 〈c(1)†

k c(2)
k 〉 is

assumed to be nonzero. By assuming the deviation from the
mean field, c(1)†

k c(2)
k − 〈c(1)†

k c(2)
k 〉, to be small, we can simplify

the Hamiltonian (constant terms are absorbed by the chemical
potential in H0) as

H = H0 −
∑

k

(
�kc(1)†

k c(2)
k + �∗

kc(2)†
k c(1)

k

)
, (4)

where we have introduced the order parameter

�k = −
∑

k′
U (12)

k′−k

〈
c(1)

k′ c(2)†
k′

〉
. (5)

The Hamiltonian can be written on matrix form by introducing
the Nambu spinors,

ψk =
(

c(1)
k

c(2)
k

)
, ψ

†
k = (

c(1)†
k c(2)†

k

)
, {ψki, ψ

†
k′ j} = δi, jδk,k′ ,

where {·, ·} is the anticommutator. These Nambu spinors be-
have like conventional electron spinor fields, but describe
electron-hole pairs [46]. With this, the Hamiltonian in matrix
form becomes

H =
∑

k

ψ
†
khkψk

where hk = h0
k + �k

=
(

ξ
(1)
k 0
0 ξ

(2)
k

)
+

(
0 −�k

−�∗
k 0

)
.

Note how we divided the Hamiltonian into its noninteracting
and self-energy part. As in Eq. (4), the normal (diagonal) part
of the self-energy � has been absorbed by H0, such that there
only is an anomalous (off-diagonal) part.

2. Bogoliubov transformation

Diagonalising the Hamiltonian hk is known as a Bogoli-
ubov transformation, see e.g., Refs. [5,46,47]. Letting φk
denote the order parameter phase, i.e., �k = |�k|eiφk , the
resulting eigenspinors γ

†
k = (α(1)†

k α
(2)†
k ) are(

c(1)
k

c(2)
k

)
=ψk =Ukγk =

(
uk v∗

k

−vk u∗
k

)(
α

(1)
k

α
(2)
k

)
, (6a)

uk =
√

1

2

(
1 + ξk

Ek

)
eiφk/2, vk =

√
1

2

(
1 − ξk

Ek

)
e−iφk/2,

(6b)

ukvk = |�k|
2Ek

, ukv
∗
k = �k

2Ek
(6c)

Ek =
√

ξ 2
k + |�k|2, (6d)

ξk = ξ e
k + ξ h

k

2
, ηk = ξ e

k − ξ h
k

2
. (6e)

Here, an electron-hole transformation gives the electron, and
hole dispersions: ξ e

k = ξ
(1)
k , ξ h

k = −ξ
(2)
−k . In addition, when

diagonalizing the Hamiltonian the following relations were
used:

|uk|2 + |vk|2 = 1, |uk|2 − |vk|2 = ξk

Ek
,

ξ e
k = ξk + ηk, ξ h

k = ξk − ηk.

The operators α
(1)†
k , α

(2)†
k represent the creation of fermionic

(Bogoliubov) quasiparticles (QPs) above the condensate BCS
ground state consisting of electron-hole pairs. The diagonal-
ized Hamiltonian is

H =
∑

k

γ
†
k (U†

khkUk )γk

=
∑

k

(
α

(1)†
k α

(2)†
k

)(Ek + ηk 0
0 −(Ek − ηk )

)

×
(

α
(1)
k

α
(2)
k

)
.

And the resulting QP energies are thus

EQP
k = Ek ± ηk =

√(
ξ e

k + ξ h
k

2

)2

+ |�k|2 ± ξ e
k − ξ h

k

2
. (7)

The eigenenergies for exciton superfluidity are slightly
different from the eigenenergies obtained in traditional super-
conductors, since both the electron ξ e

k and hole dispersion ξ h
k

occurs in the expression. However, in the simpler case where
ξ e

k = ξ h
k it is easy to see from (7) that it is not possible to excite

Bogoliubov QPs from the BCS ground state with energies Ek
less than �k. This is also evident as a gap of order �k in the
density of states for the QPs. For a superfluid ground state
to exist, we must have the gap �k > 0. A difference in the
electron and hole dispersions may therefore have severe con-
sequences for the possibility of the formation of a superfluid
state [5].

uk, vk give information on the Bogoliubov QP amplitudes,
and they can be used to calculate the condensate fraction [15],

c =
∑

k |uk|2|vk|2∑
k |vk|2

. (8)

The size of the gap can be found in a self-consistent manner
by using the definition (5) together with (6a),

�k = −
∑

k′
U (12)

k′−kuk′v∗
k′
〈
1 − α

(1)†
k′ α

(1)
k′ − α

(2)†
k′ α

(2)
k′

〉
.

By using (6c) and the fact that the Bogoliubov quasiparticles
are fermions, we arrive at the mean-field BCS gap equation,

�k = −
∑

k′
U (12)

k′−k′
�k′

2Ek′
(1 − f (Ek′ + ηk′ ) − f (Ek′ − ηk′ )).
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3. Matsubara Green’s functions

Following Ref. [2], we now define the following Matsubara
Green’s functions:

G(nn′ )(k, τ ) = −
〈
Tτ c(n)

k (τ )c(n′ )†
k (0)

〉
, (9)

where n, n′ still denotes the band index (or layer index, since
we have a single-band model), Tτ is the imaginary time or-
dering operator, and 〈·〉 is the thermal average. Thus, G(11)

is the electron propagator for layer 1, G(12) is the anomalous
electron-hole Green function and G(22)∗ is the hole propagator.
The equation of motion technique (see e.g., [47, p. 198])
immediately gives

−∂τ G(nn′ )(k, τ ) −
∑

n′′
h(nn′′ )

k G(n′′n)(k, τ ) = δ(τ )δn,n′ ,

∑
n′′

[(
G(nn′′ )

0 (k, τ )
)−1 − �

(nn′′ )
k

]
G(n′′n′ )(k, τ ) = δ(τ )δn,n′ ,

where we defined the noninteracting Green’s function

G(nn′ )
0 (k, τ ) = (−∂τ − ξ

(n)
k

)−1
δn,n′ .

The equation of motion thereby becomes the familiar Dyson
equation when evaluated along the imaginary frequency axis
for Matsubara frequencies iνm,

G(nn′ )(k, iνm) = G(nn′ )
0 (k, iνm)

+
∑

n′′
G(nn)

0 (k, iνm) �(nn′′ )

× (k, iνm) G(n′′n′ )(k, iνm).

Or, alternatively in a Feynman diagram representation

= + Σ

(10)

By definition, the gap in the mean-field approximation,
Eq. (5), is given by the self-consistent equation

�k =
∑

k

U (12)
k′−kG(12)(k′, τ = 0+), (11)

which in Feynman diagram notation is given by

Σ =

k

k − k

(12)

4. Generalized gap equation with screening

So far, we have considered the simplified BCS Hamilto-
nian, Eq. (4), which has a “Fock” mean-field approximation to
the pair interaction. The results, Eqs. (10) and (12), easily gen-
eralize to the full Hamiltonian, Eq. (2). The self-consistency
equation, Eq. (12), shows that the BCS mean-field approxima-
tion is equivalent to a simple exchange approximation to the
self-energy. To treat the screening within the subspace of the
model, we have instead used a statically screened exchange
approximation to the self-energy in this paper. The self-energy

is within this approximation equivalent to the GW approxima-
tion, calculated with the static limit of W ,

�
(nn′ )
k = −

∑
k′,σ

W (nn′ )
k′−k,ω=0G(nn′ )(k′, τ = 0+), (13)

where Wω=0 is the static limit of the fully screened interaction.
In a Feynman diagram this reads

Σ = (14)

Similar to the derivation in the previous section the gap re-
duces to (minus) the anomalous part of the self-energy. As is
shown in Sec. II F, Eq. (28), the fully screened interaction W
of the model can be determined from the effective interaction
U and polarizability χd

0 of the model subspace of “dopant”
bands,

W(ω) = (
1 − U(ω)χ0

d (ω)
)−1

U(ω). (15)

While this is a general equation that holds for the frequency-
dependent quantities we only consider the static limit of the
interactions in this paper. W, U, and χ0

d are 2x2 matrices with
the normal components on the diagonal and anomalous com-
ponents on the off-diagonal. We will henceforth denote the
interactions by the charge carriers of each layer, U (ee)

k,k′ = U (11)
k,k′ ,

U (he)
k′,k = U (eh)

k,k′ = U (12)
k,−k′ , U (hh)

k,k′ = U (22)
−k,−k′ .

In previous studies [12,13,15,18,21,35–37,39] the intrin-
sic screening was accounted for by a simple analytical 2D
Coulomb potential for the interactions,

U (eh)(r‖) = − 1

εi
M

1√
d2 + r2

‖
, U (ee)(r) = 1

εi
M

1

r‖
, (16a)

U (eh)(q‖) = −U (ee)(q‖)e−d‖q‖ , U (ee)(q‖) = 2π

εi
M

1

q‖
, (16b)

where εi
M has simply been set to a constant, (εi

M = 2 in
Refs. [15,18,21] due to Ref. [48]). This approximation com-
pletely neglects the momentum and material dependence of
the intrinsic screening. In this paper we show that the effec-
tive interactions can be calculated from the ab initio band
structures using the QEH framework. We will return to this
in Sec. II G.

In Ref. [15], the gap equation, Eq. (13), with a static ex-
change approximation to the self-energy was derived within
a DFT framework and an implementation of a self-consistent
solver was presented (the BiEx code package). It is this code
package that we have used in this paper. Similar to Ref. [18],
the effect of equivalent valleys was accounted for by a sim-
ple valley degeneracy factor gv . Therefore we also restrict
ourselves to materials, which have “direct” band gaps in the
sense that the conduction band minimum and valence band
maximum are located at the same high-symmetry point. Here
it should be noted that since the reciprocal lattices of the two
bilayers are in general different, the QP band gaps are only
approximately direct. Further details on the implementation
can be found in Ref. [15].

014506-5



RUNE HØJLUND et al. PHYSICAL REVIEW B 108, 014506 (2023)

E. Screening and the random phase approximation

The Coulomb interaction between electrons and holes in
the doped bilayer system is suppressed by the polarization
and the resulting screened interaction of the doped system W
is a key component of the gap equation. In this section we
provide an overview of linear response theory and the random
phase approximation (RPA) before we derive the downfolding
approximation used to compute the effective interaction U in
the model Hamiltonian (2) in Sec. II F.

To determine W consider the charge-charge correlation
function χ . In linear response theory, χ gives the density
induced by an external potential φext(ω) varying harmonically
in time with frequency ω,

ρind(r, ω) =
∫

dr′χ (r, r′, ω)φext(r′, ω), (17)

or alternatively in matrix notation in an arbitrary basis,

ρind(ω) = χ(ω)φext(ω). (18)

As external field we take the instantaneous Coulomb potential
from a point charge located at a position r′,

φext(r, ω) = V (r, r′) ≡ |r − r′|−1
, (19)

where we use atomic units in the last step. We insert Eq. (19)
into Eq. (18) and introduce the dielectric function ε and the
noninteracting polarizability χ0 through the defining relations,

ρind(ω) = χ(ω)V, (20a)

ρind(ω) = χ0(ω)W(ω), (20b)

W(ω) = ε−1(ω)V, (20c)

W(ω) = V + Vρind(ω). (20d)

From the definitions in Eq. (20) follows the Dyson equations

W(ω) = V + V χ0(ω) W(ω), (21a)

χ(ω) = χ0(ω) + χ0(ω)Vχ(ω). (21b)

The lowest order polarization process is indicated on Fig. 1
by the Feynman pair bubble, which first creates and later
annihilates an electron-hole pair somewhere on the bands.
In the random phase approximation (RPA), χ0 is calculated
as the noninteracting polarizability by summing up all such
transitions between occupied and unoccupied states of the
doped bilayer system [49–51],

χ0(r, r′, ω) =
∑
n,n′

BZ∑
k,q

( fnk − fn′k+q)αnk,n′k+q(r, r′), (22)

αnk,n′k+q(r, r′)

≡ φ∗
nk(r)φn′k+q(r)φnk(r′)φ∗

n′k+q(r′)

ω + εnk − εn′k+q + i0+sgn(εnk − εn′k+q)
. (23)

Here fnk, φnk, εnk are respectively the occupation number (in
the doped system), eigenfunction and eigenenergy of band n
with wavevector k lying within the first Brillouin zone. In
the superfluid phase the normal polarization in Eq. (23) is
supplemented by a corresponding anomalous component that
reflects the quenching of screening in the superfluid phase. In

this paper we compute the real and anomalous model polar-
ization within the RPA, following Refs. [12,21,33] using the
implementation from Ref. [15] (see discussion below).

F. Downfolding of screening

The screening in the superfluid phase is determined
self-consistently by solving the gap equation (13)–(15). As
discussed in Sec. II D the gap equation is restricted to the
subspace spanned by the dopant bands (Fig. 1). A crucial
parameter for the gap equation is the effective interaction
U of the model Hamiltonian [Eq. (2)]. U can be defined
by requiring that the fully screened interaction of the model
Hamiltonian in Eq. (2) coincides with the fully screened in-
teraction of the full Hamiltonian. As we will see below this
implies that U is partially screened by all screening channels
not explicitly included in the low-energy model. In this sec-
tion we show that U for the doped system can be identified as
the fully screened interaction of the undoped system.

We will determine the polarization χ0 using the downfold-
ing strategy of the constrained Random Phase Approximation
(cRPA) [51,52]. As indicated in Fig. 1, the core idea is to
divide the bands into the dopant bands D, i.e., the partially
occupied conduction and valence band for the n- and p-doped
layer respectively, and the remaining intrinsic bands. Hereby
we can distinguish between intraband (metallic) screening
processes such as the orange pair bubble in Fig. 1 and inter-
band (intrinsic) processes such as the black pair bubble. At
low temperatures for intrinsic (i.e., undoped) layers there are
no electrons or holes in the dopant bands. Thus, the intrinsic
system has no metallic screening. We therefore decompose
the polarization χ0 into a metallic χd

0 (d for doped), and an
intrinsic χ i

0, polarization,

χ0(ω) ≈ χ0
d (ω) + χ0

i(ω), (24)

χ i
0 includes all intrinsic transitions (between occupied and

unoccupied bands of the undoped system),

χ i
0(r, r′, ω) =

∑
n,n′

BZ∑
k,q

(
f i
nk − f i

n′k+q

)
αnk,n′k+q(r, r′).

Here we let f i
nk denote the intrinsic occupation number, which

at zero temperature is simply 0 for energies below the in-
trinsic Fermi level and 1 for energies above. Meanwhile in
our downfolding approximation χd

0 is restricted to states in
the subspace of the dopant bands (n, n′ ∈ D). The normal
(diagonal) components of the polarization is given by

χd
0 (r, r′, ω) =

∑
n,n′∈D

BZ∑
k,q

( fnk − fn′k+q)αnk,n′k+q(r, r′). (25)

In the superfluid state χd
0 is supplemented by the anomalous

polarization, which comes in as off-diagonal components in
the 2x2 representation in Eq. (15). χd

0 is calculated self-
consistently together with the anomalous polarization when
solving the gap equation, Eq. (13), for the downfolded
Hamiltonian of Eq. (2) (spanned only by dopant bands). By
comparison of χ0, χ

i
0, χ

d
0 we see that the downfolding approx-

imation, Eq. (24), neglects the screening channel χdi
0 coming

from transitions between the dopant bands and higher order
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intrinsic bands. Since we assume low doping concentrations
this simplification should be justifiable.

Isolating W in the Dyson equation (21a) gives

W(ω) = (1 − Vχ0(ω))−1V. (26)

This motivates us to define the intrinsic screened interaction
U , which only takes into account the intrinsic polarizability
χ i

0,

U(ω) ≡ (
1 − Vχ0

i(ω)
)−1

V. (27)

It is no coincidence that we name the intrinsic screened in-
teraction U . As we shall soon see, it acts as the effective
interaction of the downfolded model, Eq. (2). Isolation of χ0

and χ i
0 in (21a) and (27) gives

χ0(ω) = (V)−1 − (W(ω))−1

χ0
i(ω) = (V)−1 − (U(ω))−1

}
⇒

W(ω) = U(ω) + U(ω)χ0
d (ω)Wd (ω). (28)

This is yet another Dyson equation and by comparison with
Eq. (21a) it shows the intrinsic screened interaction U , which
is the fully screened interaction of the undoped system, acts
as the “effective bare Coulomb interaction” in the subspace of
the dopant bands. We will henceforth stick to the following
terminology:

W = “The doped screened interaction” [Eq. (26)],

U = “The intrinsic screened interaction” [Eq. (27)],

V = “The bare Coulomb interaction” [Eq. (19)].

Since the intrinsic screened interaction U includes all polar-
ization processes for the undoped bilayer structure it is simply
calculated from the dielectric response χ i of the intrinsic
heterostructure [Eq. (21a)],

U(ω) = (1 + Vχi(ω))V. (29)

As explained in Sec. II G, we determine the intrinsic response
χ i through the QEH framework.

G. The QEH framework

The intrinsic screened interaction U of the entire vdWH
is calculated from first principles using the QEH model
[41,53,54]. An open-source Python implementation of the
QEH model interfaced with the GPAW electronic structure
code [55,56] is found at Ref. [57]. The QEH model neglects
hybridization between layers. This approximation is justified
by the weakness of the interaction between the layers. In other
words it is assumed that the electron states are well localized
in the 2D layers such that there is little overlap of wavefunc-
tions between layers. The properties of the entire vdWH is
then obtained by combining DFT-calculations of individual
layers via electrostatic interactions [41]. The general objective
is to calculate the dielectric function εi of the undoped vdWH.
From this, we obtain the effective screened potential for the
undoped system using an equation similar to (20c), but for the
intrinsic screened interaction U . Summarized, the approach of
QEH is

(1) For each layer: From DFT, calculate in plane-averaged
response function and induced density (χi

‖, ρind).

(2) Then calculate the density response χ i of the entire
vdWH by solving a Dyson equation that couples (χi

‖, ρind)
together via Coulomb interaction.

For a detailed discussion of the QEH framework see
Refs. [41,53].

H. Mott-Wannier model

A simple model of the electron-hole pairs is provided by
the Mott-Wannier model [58], which reduces the full many-
body problem to a simplified hydrogenic model where the
electron and hole interact via a screened Coulomb interaction.
A generalization to 2D systems is derived in Refs. [53] (also
see Ref. [41]) and gives the hydrogenic eigenvalue problem,(

−∇2
2D

2mex
+ U (eh)(r‖)

)
Fn(r‖) = EnFn(r‖), (30)

where En is the nth eigenvalue, Fn(r) is the nth exciton wave-
function, mex ≡ (1/me + 1/mh)−1 is the effective mass, and
U (eh) is the intrinsic screened interaction between the spatially
separated electrons and holes. The exciton binding energy is
defined from the ground-state energy as Eb = −E1. “Clas-
sically”, we recognize that for Eb = −E1 to be large such
that we have strong binding, we want a small kinetic energy
(and therefore a big exciton mass) and a strong interaction
U (eh)(r) (i.e., as negative in position space as possible). On
physical grounds one would expect that the exciton conden-
sation is correlated to how strongly the excitons are bound
in the hydrogenic Mott-Wannier orbitals. It is clear that in
the limit Eb → 0, superfluidity vanishes and it can be shown
that high exciton binding energy is a requirement for mul-
ticomponent superfluidity (multicomponent due to spin-orbit
coupling) [18]. Therefore it is of interest to investigate the Eb

values. However, as is discussed in Ref. [15], the correlation
between Eb and the superfluid gap � is not strict and the full
gap equation, Eq. (13) is needed to properly characterise the
superfluid properties of the vdWHs.

III. RESULTS

A comparison between the ab initio screened interaction
computed using the QEH framework (see Secs. II F and
II G) with the commonly used fixed-εi

M model interaction
[Eq. (16)] is shown in Fig. 3 for the 336 TMD/TMO bi-
layer combinations. In Fig. 3(a) we show the static dielectric
function εi

M (q‖, ω = 0) in (in-plane) momentum space while
Fig. 3(b) displays the static screened potential U (eh)(r‖, ω =
0) between electrons and holes in (in-plane) position space.
Note that when computing U using the QEH we consider
the complete dielectric function in the monopole/dipole basis
[and not just the macroscopic dielectric function shown in
Fig. 3(a)]. The color of each line in both Figs. 3(a) and 3(b)
reflects the interlayer exciton binding energy, which was cal-
culated using the QEH framework through the Mott-Wannier
model, Eq. (30) (see Ref. [41] for details). As expected,
the q-independent permittivity εi

M = 2, which is also used in
Refs. [15,18,48] clearly underestimates the intrinsic screen-
ing and completely neglects the variation in screening across
the different heterostructures. The maximum values of the
momentum-dependent dielectric functions range from ∼4 to
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FIG. 3. Intrinsically screened macroscopic dielectric function εi
M as a function of the in-plane momentum transfer (left) and intrinsic static

screened electron-hole interaction strength U (eh) as a function of the in-plane distance (right) calculated through the ab initio QEH method
for all 336 TMD/TMO bilayer combinations. For comparison the analytic result with fixed εi

M = 2 as used in [15,18] is also shown in black
on both plots. As indicated on the color bar, the line colors of the colored graphs correspond to the exciton binding energies Eb given by the
Mott-Wannier model, Eq. (30).

∼12. The differences in screening is also reflected in the
electron-hole potentials in Fig. 3(b), where we have included
the analytic model interaction from Eq. (16) calculated with
fixed εi

M = 2. The potential well of the analytic interaction is
clearly deeper and more narrow than the ab initio potential
wells. This again underlines that screening in 2D is not well
described by a single q-independent dielectric constant. Again
we find significant material dependent variation in the inter-
action strength, which is ignored in the analytical model. As
such the only material-dependent parameter in the analytical
Coulomb interaction [Eq. (16)] is the interlayer distance d .

The screened interaction U is calculated from the full di-
electric tensor, but nevertheless, we expect the macroscopic
dielectric function to be an indicator of the amount of screen-
ing. From Eq. (30) we would expect that a stronger interaction
(from less screening) gives a stronger exciton binding energy.
A look at the coloring on both Figs. 3(a) and 3(b) shows
that this is indeed the general trend: Weaker interaction gives
weaker binding while stronger interaction gives stronger bind-
ing. However, since the effective mass also comes into play as
a material-dependent parameter in Eq. (30), the trend is not
strictly satisfied. Some materials have large exciton binding
energies even though they are not the least screened. A fi-
nal point, which is illustrated in Ref. [41], but not evident
from Fig. 3 is that the band gaps of the TMDs and TMOs
constituting the vdWH are also correlated with the screening
since larger intralayer band gaps reduce the screening [41].
Therefore a larger band gap should also mean higher exciton
binding energies and potentially higher cut-off densities and
transition temperatures to the superfluid state [18].

A. Exciton binding energy

We now continue to discuss the exciton binding energy.
In Fig. 4 we show three heatmaps of the binding energies
for the 336 TMD/TMO bilayer combinations using three
different methods of calculations. All plots have the same
scale on the color bar and ordering of monolayer labels so
that patterns between the plots can be compared. The first

heatmap, Fig. 4(a), shows the results obtained using the ana-
lytical Coulomb interaction from Eq. (16) with a fixed εi

M = 2
and fixed interlayer distance d0 = 9.1 Å. This distance was
chosen as the average interlayer distance for all material
combinations. The next heatmap, Fig. 4(b), shows the same
results but now with variable interlayer distance (calculated
by relaxation of the homobilayers as explained in Sect. II C).
Finally, the large heatmap in 4(c) shows the exciton binding
energies obtained using the screened interactions U (q‖, ω =
0) (from Fig. 3) calculated using the ab initio QEH method.
As our first observation we notice that the exciton binding in
the ab initio model is significantly weaker than in the model
using the analytic screened Coulomb interaction from Eq. (16)
with fixed permittivity. The binding energy range lies between
about 350 meV and 540 meV for the analytical models, but
between 140 meV and 410 meV for the ab initio model. This
aligns well with the results in Fig. 3 where we showed that the
ab initio model had significantly more screening, thus giving a
weaker electron-hole interaction resulting in lower Eb values.

The next immediate observation from comparing the
heatmaps in Figs. 4(a)–4(c) is that the patterns in the variation
of Eb between materials are different in the different approxi-
mation schemes. The ab initio results in 4(c) suggest that the
materials in the top right corner, all including TMOs in the
n-doped layer, have the highest exciton binding energies. The
reason for this is the large band gaps of these materials, which
give a much smaller screening and thus larger electron-hole
interactions and exciton binding energies. This trend is clearly
not captured by the analytic model interaction with fixed εi

M
in Figs. 4(a)–4(b), since the material-dependent screening is
ignored in these calculations.

In Fig. 4(a) it is only the effective exciton mass, which
determines the variation in Eb since εi

M, d are fixed. In other
words, Fig. 4(a) is essentially a way of showing which vdWHs
have the largest effective masses. In Fig. 4(b) the interlayer
distance is also allowed to vary and this changes the pattern
slightly, but it still does not capture the ab initio trend of
bilayers with n-doped oxides having larger exciton binding
energies. Thus to accurately describe the effect of screening
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FIG. 4. Heatmaps of interlayer exciton binding energies Eb for the 336 different TMD/TMO bilayer combinations using three different
methods of calculation. All plots share the same Eb scale and ordering of monolayers so that colors and patterns herein can be compared. The
sorting is determined by the ab initio calculations such that the lower left corner has the weakest Eb values, while the upper right corner has
the strongest. The minimal and maximal Eb values for each heatmap are indicated by the respectively black and white lines on the colorbars.
TMOs are written in dark red and TMDs are written in black.

on the exciton binding and evaluate trends across different
materials we need the more accurate ab initio methods.

B. Superfluid gap and condensate fraction

Although the exciton binding energies give some infor-
mation on the superfluid properties we need to consider the
results from the full gap equation, Eq. (13), to also see the
effect of the like-particle interactions U (ee),U (hh) and the com-
petition between the normal metallic intraband screening from
χd

0 and the anomalous counterpart.
In Fig. 5 we present the gap equation results with a fixed

intrinsic permittivity εi
M = 2 and in Fig. 6 the same results

with ab initio intrinsic screening. As explained in Sec. II D,
we have only considered materials with direct interlayer band
gaps in our superfluidity calculations, which means that only
136 out of the 336 different bilayer combinations are included
in this final part of the study.

Figures 5(a) and 6(a) show the maximum values of the
k-dependent superfluid gap in Eq. (13) [� = max(�k )] for
different particle densities while Figs. 5(b) and 6(b) show
the condensate fractions, Eq. (8). The in-plane densities are
the number of electrons/holes per area and they are assumed
equal for the two layers. We measure the “superfluidity per-
formance” of the bilayers with the cut-off density ncutoff,
which is the maximal density for which � is positive. In
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FIG. 5. Results from solving the gap equation for the bilayer system while accounting for the static screening by assuming a fixed εi
M = 2.

The bilayers have been sorted by their cut-off densities and the top 10 structures are highlighted in the legend together with their cut-off
densities in units of 1012 cm−2 (written in parentheses). Similar to Figs. 3 and 4 the lines are colored by their exciton-binding energy values
[i.e., Eb values from ab initio method as seen on Fig. 4(c)].

other words, the cut-off density is the density beyond which
superfluidity is killed [15]. In 2D the superfluid transition is
of Berezinskii-Kosterlitz-Thouless type [59], and the corre-
sponding transition temperature (T BKT) can be estimated from
the cut-off density [60] ncutoff as

T BKT = πncutoffh̄
2

2gsgv (m∗
e + m∗

h )
, (31)

where gs and gv are the spin and valley degeneracy factors.
Thus, high cut-off densities also imply high transition tem-
peratures. It should be noted that we neglect the frequency
dependence of the dynamical screening in all calculations. A
suggestion for treating the dynamical screening in a consistent
manner is found in Ref. [15], where the authors show that

neglecting the frequency dependence yields a systematic un-
derestimation of the cut-off densities. However, this treatment
is not feasible for our large-scale calculations and therefore
our calculations give lower limits to the cut-off densities.

In the legends of both Figs. 5 and 6 we have only labeled
the top 10 performers in terms of their ncutoff values. Therefore
the materials labeled in Fig. 5 are not the same as those labeled
in Fig. 6. In fact there is little overlap between the top perform-
ers in the two figures, which shows that the ab initio model
gives different results compared to the fixed-εi

M model. This
point is further emphasized by the fact that the top-performing
structures of the ab initio results, Fig. 6, have significantly
lower cut-off densities (15–20 × 1012 cm−2) compared to the
fixed-εi

M densities (31–36 × 1012 cm−2) on Fig. 5. This is

FIG. 6. Results from solving the gap equation for the bilayer system using ab initio calculations to account for the static screening. The
bilayers have been sorted by their cut-off densities and the top 10 structures are highlighted in the legend together with their cut-off densities
in units of 1012 cm−2 (written in parentheses). Similar to Figs. 3 and 4 the lines are colored by their exciton-binding energy values [i.e., Eb

values from ab initio method as seen on Fig. 4(c)].
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in accordance with our previous analysis on screening and
binding energies, which showed that the analytical fixed-εi

M
model underestimates the detrimental effect of screen-
ing and thereby overestimates the electron-hole interaction
strength.

Both with fixed εi
M and ab initio interaction, the conden-

sate does not reach the BCS regime. Instead we see both
in the density and condensate fraction an abrupt decline at
the cut-off. This is a characteristic feature for static mean-
field treatments [15,18]. In Ref. [15], this discrete jump was
found to disappear when accounting for dynamic screen-
ing in double bilayer graphene, and it was shown that the
condensate can actually be tuned to the BCS regime for
these platforms. One can speculate that a full treatment of
the frequency dependence could yield similar conclusions
for our compounds. However, the effective treatment of the
frequency dependence suggested in Ref. [15] is relatively
involved and not feasible for high-throughput studies like this
one.

Finally, we present in Figs. 7(a) and 7(b) heatmaps for the
cut-off densities (corresponding to Figs. 5 and 6, respectively),
obtained by solving the gap equation, Eq. (13), with εi

M = 2
and ab initio input parameters, respectively. The blank spaces
in the heatmaps indicate the 200 materials with indirect band
gaps, which have been omitted from the gap equation calcu-
lations as explained in Sec. II D. The materials in Fig. 7 are
listed in the same order as in the previous figures (Fig. 4) so
that we can compare patterns between the figures. In other
words the upper right corner in Fig. 7 are the materials with
the highest exciton binding energies using the ab initio inter-
action. Figures 7(a) and 7(b) naturally emphasize the points
made from Figs. 5 and 6: that there are different top perform-
ers in the two methods, and that the ab initio top performers
have much lower cut-off densities than the fixed-εi

M top per-
formers. In Fig. 7(a), one might notice a reminiscence of the
patterns in the fixed-εi

M heatmaps in Figs. 4(a) and 4(b) (show-
ing the binding energies using constant interlayer distance
d and variable d , respectively). From a physical perspective
this indicates that the pattern in Fig. 7(a) follows the exciton
masses of each bilayer. This is illustrated by the very clear
(linear) correlation between the fixed-εi

M cut-off density (on
the second axis) and exciton mass (on the first axis) displayed
in the scatterplot of Fig. 8(a). We observe that in going from
Fig. 7(a) to 7(b), some “heat” is lost, signified by the lighter
and more yellow colors, and some “heat” is redistributed from
the lower left quadrant of the heatmap to the upper right corner
of the heatmap, thus illustrating the importance of material
dependent screening. This change in cutoff density trends
from Fig. 7(a) to 7(b) is similar to the change in exciton
binding energy trends we saw when going from Fig. 4(b)
to 4(c). The effect of material dependent screening can also
be seen in Fig. 8 where the strong correlation between the
effective masses and cut-off densities observed in Fig. 8(a) is
reduced substantially by the material-dependent screening in
the ab initio results in Fig. 8(b). However, there is still a weak
correlation between the effective mass and cut-off densities
also in the ab initio results, as will be discussed further below.

It is interesting to compare the heat map for exciton binding
energies in 4(c) with the corresponding heatmap for superfluid
cut-off density in Fig. 7(b). The three materials with highest

superfluid cut-off densities in Fig. 7(b) are found in the upper
right 3 by 8 rectangle (where screening is generally smaller),
but in this rectangle there is a large variation between its
columns. The reason for this is that, contrary to the exciton
binding energy, which is mainly determined by the screening,
the superfluid cut-off density depends both on the screening
but is also heavily influenced by variations in the effective
mass. This can also be observed in Fig. 8(b). Thus the reason
for the low cut-off densities for bilayers with p-doped ZrS2 or
HfS2 is the small effective hole mass of these materials.

C. Identifying the top performers

Finally, we now put our attention towards pointing out the
most promising facilitators of exciton superfluidity. From our
investigation of bilayers with direct band gaps the three bilay-
ers, which are the best facilitators of exciton superfluidity are
n-doped PbO2 combined with p-doped PtSe2, PdS2, or CrO2

with cut-off densities of 20 × 1012 cm−2, 19 × 1012 cm−2,
and 18 × 1012 cm−2, respectively. This aligns with the sugges-
tion from the Eb results that TMOs are promising platforms
for exciton condensation. Out of bilayers exclusively with
TMDs the chromium based compounds with heterostructures
combining CrS2, CrSe2 and CrTe2 have generally the highest
cut-off densities with n-CrS2,p-CrS2 and n-CrSe2,p-CrS2 be-
ing the top performers at a cut-off density of 15 × 1012 cm−2.
It should be noted that many of the identified top performers,
especially the TMOs, can be challenging to grow in mono-
layer form. However, single to few monolayer samples of
the chromium dichalcogenides [61–65] as well as PtSe2 [66]
have been reported in literature. Furthermore, many of the Cr
compounds are reported to exhibit ferro- or antiferromagnetic
ordering in the T and T ′ structures. We have therefore focused
on the 2H phase in this paper, which is less prone to magnetic
ordering [67].

Due to the large influence of the effective mass on the su-
perfluid cut-off density one could speculate that some material
combinations in the lower right column of Fig. 7(b) that were
excluded in our study, such as n-doped CrO2 and p-doped
PtSe2, could have even higher cut-off densities. However,
these materials have indirect band gaps and therefore different
valley degeneracy factors for the n- and p-doped layers, which
likely reduce their performance. Nevertheless, it would be
interesting to extend the formalism to include also materials
with indirect band gaps.

IV. CONCLUSIONS

In this paper we have calculated the exciton binding en-
ergies and superfluid properties of 336 TMO/TMD bilayer
structures. First the equilibrium interlayer distance was eval-
uated using a z-scan approach. Then the exciton binding
energies were computed using a Wannier Mott model and
the superfluid properties (specifically maximal gap and con-
densate fraction) were investigated by solving a mean-field
gap equation while accounting for screening using first prin-
ciples. Because the screening is highly material dependent, we
found that ab initio treatments are needed to accurately predict
magnitudes and trends in exciton binding energies and super-
fluid properties. Furthermore we outlined how the effective
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FIG. 7. Heatmaps of cut-off densities (i.e., maximal carrier density where the gap disappears, see also Figs. 5 and 6) as calculated by
solving the gap equation for the bilayer systems using two different methods for calculating the effective model interaction. The sorting of
materials is the same as in Fig. 4 and is determined from the values of the exciton binding energies from the ab initio calculations (upper right
corner bilayers had the highest Eb values). TMOs are written in dark red and TMDs are written in black. The top performer bilayers for each
calculation method are highlighted with white labels. Since we required the interlayer band gap to be direct for the gap equation calculation,
200 out of 336 bilayer combinations are blank in the heatmap.
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FIG. 8. Cut-off densities versus effective exciton masses with two different methods. See also caption to Fig. 7.

parameters for the superfluid gap equation, including the rele-
vant screening channels, can be computed from first principles
using the open source codes QEH (Refs. [41,57]) and GPAW
(Refs. [55,56]). Our study suggest that vdWHs with TMOs,
explicitly n-doped PbO2 combined with p-doped PtSe2, PdS2,
or CrO2 have the highest superfluid cut-off densities. How-
ever, we also found pure TMD heterostructures combining
CrS2, CrSe2, and CrTe2 to be superior facilitators of super-
fluidity compared to the TMD bilayer structures, which have
previously been highlighted in experiments [17,20].

All code for reproducing the results of this article can be
found at the GitHub Repository in Ref. [68]. At the reposi-
tory we have also included further computational details and
documentation covering the workflow steps outlined in Fig. 2

in the main text. The BiEx code package used to solve the
gap equation is available from the authors upon reasonable
request.
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