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Generalized Josephson plasmons in bilayer superconductors
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Layered superconductors like high-Tc cuprates display out-of-plane plasma oscillations between layers sus-
tained by the weak Josephson coupling among the superconducting sheets, the so-called Josephson plasmons.
Bilayer cuprates hosts two of such modes. However, due to the anisotropy of the electronic response, their
description at generic wavevector cannot be separated from that of the in-plane oscillations. In this paper, we
provide an analytical theoretical framework to describe the dispersions and the polarizations of the generalized
plasma modes of such systems, an aspect partly addressed in previous literature. We employ this framework to
explain the peculiar characteristics of their linear optical response, by providing a fully microscopic explanation
for the appearance of a finite-frequency peak in the real part of the optical conductivity. From a wider perspective,
the complete characterization of the Josephson plasma modes provided by our approach represents a groundwork
to address open issues raised by recent experiments with strong THz pulses, able to drive them beyond the
linear-response regime.
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I. INTRODUCTION

Among the various unconventional properties reported for
high-temperature superconducting (SC) cuprates, the emer-
gence of a soft plasma edge in the reflectivity measurements
has attracted considerable attention, in particular when an
electromagnetic field is applied with polarization perpendic-
ular to the CuO2 planes (say, in the z direction). Indeed,
while in the metallic state the weak hopping between planes,
along with the strong correlations at play in these systems,
make the plasma edge completely damped, below Tc the
gap opening removes most of the quasiparticle continuum in
the THz range, giving rise to a well-defined z-axis reflec-
tivity edge. This feature has been accurately measured by
continuous-wave reflectivity measurements long ago in sev-
eral families of cuprates, hosting one or two layers per unit cell
[1–6]. As usual, the long-wavelength limit of the transverse
plasma polariton, that coincides with the frequency of the
plasma edge in reflectivity, identifies also the frequency scale
of the longitudinal plasmon, showing that also this mode,
connected to fluctuations of the electronic density, becomes
undamped below Tc. The advent of time-resolved spectro-
scopies with short light pulses triggered considerable interest
on the fate of these soft plasma modes emerging below Tc.
This is due to the fact that plasma modes, as connected to
the fluctuations of the density, appear also in the spectrum
of the SC phase of the complex order parameter, which is its
quantum-mechanical conjugate variable [7,8]. A simple way
to understand this effect is to recall that the interaction among
the phase variables θn in neighboring planes is described by a
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Josephson-like model

HJ = −J
∑

n

cos(θn − θn+1), (1)

where n is the layer index. Here the coupling constant J
sets the scale of the out-of-plane stiffness, and then of the
SC plasma mode below Tc. Since in turn the discrete SC phase
gradient θn − θn+1 is coupled to the electromagnetic (e.m.)
gauge field by the minimal-coupling scheme, one can use
an intense light pulse to drive SC phase modes beyond the
linear regime. Such a possibility has been not only investi-
gated theoretically [9–13], but has been clearly demonstrated
experimentally in recent years [14–21].

One of the interesting aspects in the description of these
soft plasma modes in layered superconductors is that, un-
less propagation occurs along z or purely in plane, for the
frequency and momenta of the THz light one cannot com-
pletely separate longitudinal plasmons from transverse plasma
polaritons, as it usually happens for isotropic systems at all
momenta. This effect, that is already encoded at the level
of Maxwell’s equations [9,22–25], leads to the definition of
so-called “generalized plasma modes” with mixed longitudi-
nal and transverse character, as it has been highlighted in a
recent paper devoted to single-layer superconductors [26]. As
discussed in previous papers [9,13,22–26], the origin of such
a mixing fully relies on the anisotropy of the conduction in a
layered system, which makes the current response in general
not parallel to the applied electric field. This has, e.g., the
consequence that one can have an induced transverse current
even in response to a longitudinal electric field and vice versa,
then making it impossible to completely separate longitudi-
nal and transverse e.m. modes for arbitrary direction of the
propagating wavevector. Since a transverse current in turn acts
as a source of magnetic field, which generates a transverse
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FIG. 1. Schematic representation of two subsequent primitive
cells of the bilayer lattice. The nth unit cell contains two conduct-
ing planes, labeled “1” (light gray) or “2” (dark gray). Subsequent
planes have a Josephson-like interaction with constants J1 in the
intrabilayer and J2 in the interbilayer spacing.

electric field by Faraday’s law, an alternative but yet equiv-
alent way to state the problem is that one must include
retardation effects of the magnetic field in the response to a
longitudinal excitation. Nonetheless, since retardation effects
scale as the inverse light velocity (so that they are some-
times also named in this context “relativistic” [11,18,26]) for
momenta outside the light cone the quantitative effects are
negligible, and a longitudinal-transverse decoupling is recov-
ered [26].

In this paper we analyze the fate of the generalized plasma
modes in the case of cuprates systems with two planes per
unit cell, as e.g., YBa2Cu3O6+x (YBCO). From the technical
point of view, we will adopt an effective-action formalism
to deal with the SC phase and the e.m. degrees of freedom
on the same footing, as discussed recently in Ref. [26] in
the case of systems with one plane per unit cell. By intro-
ducing suitable variables proportional to the physical currents
one can indeed generalize the Josephson model (1), with the
twofold advantage to account on the same footing for both
retardation effects on the dispersion of the e.m. modes, and
nonlinear coupling of the SC phase to light. The latter as-
pect is particularly interesting for future investigation of the
nonlinear optical response in YBCO, that has been recently
explored experimentally by several groups [18,21,27,28]. In
this case two plasma edges appear below Tc in the z-axis
reflectivity, corresponding to the existence of two different
interlayer couplings between planes belonging to the same
or to two consecutive unit cells [2–5], as sketched in Fig. 1.
As a consequence, in the limit of zero momentum one has
three relevant energy scales, a large in-plane plasma fre-
quency ωxy, of the order of 1 eV, and two soft out-of-plane
modes ωz1,z2, ranging from few to tens of THz, depending
on the doping level [27,29]. As we shall see, these energy
scales define two crossover momenta, |kc1| ∼

√
ω2

z1 − ω2
z2/c

and |kc2| ∼
√

ω2
xy − (ω2

z1d1 + ω2
z2d2)/d/c, which account for

different manifestations of the mixing among longitudinal
and transverse degrees of freedom in the system. Our re-
sults not only generalize previous derivations obtained in
specific conditions [5,30], but they also clarify the nature
of the modes, shedding light on the possibility to observe
them with different probes. As a direct application, we also

derive a general expression for the optical conductivity and we
explain the appearance of a well-defined peak at a frequency
ω2

T = (ω2
z1d2 + ω2

z2d1)/d , that has been indeed reported ex-
perimentally [2,27,31–35]. It is worth noting that usually a
plasma edge, corresponding to zeros of the dielectric function,
does not give rise to a peak in the real part σ1(ω) of the optical
conductivity. A strong absorption peak in σ1 arises instead
from a resonance in the dielectric function that is usually
unexpected for plasma modes at zero momentum. In previous
literature the existence of this peak has been explained by
means of a simple but yet very powerful model of capacitive
coupling among neighboring layers [5]. Here we derive a sim-
ilar result within a more formal many-body formalism, which
has the advantage to take into account finite-compressibility
corrections and to clarify why phase fluctuations should lead
to a peak at finite frequency, as opposed to the ordinary
single-layer case. Indeed, in the bilayer system the out-of-
plane conductivity keeps trace not only of homogeneous phase
fluctuations among layers, but also of phase fluctuations with
opposite signs in neighboring layers, that is to some extent
the counterpart of the Leggett phase mode [36] in multiband
superconductors. As we discuss below, the opposite-phase
fluctuations give rise to a response at finite frequency, which
peaks in the limit for vanishing momentum at the frequency
scale ωT .

The organization of the paper is the following. In
Sec. II we introduce the effective-action formalism for the
gauge-invariant variables and its connection to the study of
SC plasma modes in different contexts. In the introductory
Sec. II A we overview the theoretical approach used in the
paper and we apply it to isotropic superconductors to ob-
tain the well-known dispersion relations of the plasmon and
the plasma polariton. In Sec. II B we employ this structure
to anisotropic single-layer superconductors, showing that in
anisotropic systems the standard-RPA approach is not suf-
ficient for a complete description of the plasma modes, as
already discussed in Ref. [26]. The remainder of the section
focuses on bilayer superconductors: in Sec. II C we derive the
exact effective action that describes the generalized plasma
modes of the system, and use it to compute numerically
their dispersions; in Sec. II D we describe their polariza-
tions for different values of the momentum, emphasizing the
longitudinal-transverse mixing mechanism and the presence
of a purely out-of-plane mode with opposite-phase oscilla-
tions; in Sec. II E we evaluate the corrections to the Josephson
plasma frequencies given by a finite compressibility in the
system. In Sec. III we study the linear response of a bilayer
superconductor to an external electromagnetic field by eval-
uating the dielectric function and the optical conductivity of
the system with finite-compressibility corrections. Section IV
contains the final discussion and conclusions. Further tech-
nical details are provided in the Appendices: Appendix A
reviews the main steps leading to the Gaussian effective
action for a superconductor within the path-integral formal-
ism. Appendix B shows how the Gaussian action for the SC
phase and the free e.m. action in a bilayer system follow
from a correct discretization of the fields dictated by the
Maxwell’s equations. In Appendix C we analyze the disper-
sions of the generalized plasma modes in the nonrelativistic
regime.
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II. EFFECTIVE-ACTION FORMALISM
FOR PLASMA MODES

A. Description of the plasma oscillations via the SC
phase in isotropic crystals

Before giving technical details on the derivation of the
generalized plasma modes in bilayer superconductors, it can
be instructive to briefly outline the strategy for isotropic
and single-layer anisotropic systems. As mentioned in the
introduction, the complex order parameter acquires nonzero
average value in the SC state below the critical tempera-
ture Tc, breaking the continuous gauge symmetry. Because
of this, a Goldstone mode that is directly linked to the
phase fluctuations of the order parameter is expected [7]. A
powerful technique to understand this on a quantum mechan-
ical level relies on the construction of a quantum analogous
of the Ginzburg-Landau model: Starting from a fermionic
model with a BCS-like interaction term one can introduce
two effective bosonic fields that play the role of the am-
plitude and phase of the SC order parameter and apply the
Hubbard-Stratonovich procedure to decouple the interaction
[7,8,37,38]. By integrating out the fermions one is left with an
effective model that can be expanded up to arbitrary powers in
the bosonic fields [7,39–47]. By retaining only Gaussian terms
in the fluctuations one defines the spectrum of the collective
excitations of the system, equivalent to RPA evaluation of the
vertex function in the standard diagrammatic language [48].
This procedure is discussed in detail in Appendix A. In this
framework, the phase fluctuations θ at long wavelengths are
described by the following imaginary-time action:

S(iso)
G [θ ] = 1

8

∫
dτdx[κ0(∂τ θ )2 + Ds(∇θ )2]

= 1

8

∑
q

[
κ0�

2
m + Ds|k|2]|θ (q)|2, (2)

where κ0 is the bare compressibility, Ds = ns/m∗ is the
isotropic superfluid stiffness expressed as the ratio between
the superfluid electron density and the effective electron mass,
τ = it is the imaginary time variable and q = (i�m, k) is the
imaginary-time 4-momentum, with �m = 2πmT the bosonic
Matsubara frequencies. Even though we will focus here on the
T = 0 case, we will retain the Matsubara formalism that is ap-
propriate for a generalization at finite temperature and allows
us for a straightforward derivation of the response function
in Sec. III. In the effective-action formalism employed in the
present paper the energy-momentum dispersions appear as the
zeros of the Gaussian action, once the analytical continuation
i�m → ω + i0+ has been performed. For neutral superfluid
systems, Eq. (2) identifies the so-called Anderson-Bogoliubov
sound mode [49] with dispersion relation ω2 = (Ds/κ0)|k|2.

In a charged superconductor the sound mode is pro-
moted to a plasma mode by adding the effects of the
long-range Coulomb interactions V (k) among electrons [49].
Within the effective-action formalism this result is usually
achieved [7,40–47] by adding a further interaction term
in the Hamiltonian describing density-density interactions
mediated by V (k), and decoupling it via an additional
Hubbard-Stratonovich field ρ representing the density. Since
phase and density are conjugate variables [7,39,40] one

obtains a direct phase-density coupling in the action, and by
integrating out the additional ρ field one recovers the dressing
of the compressibility κ0 → κ0/(1 + V (k)κ0). As a result the
fluctuations of the phase that reflect density fluctuations iden-
tify a plasma mode as their spectrum acquires a gap [7,40–
47,49]. However, it is instructive for the purpose of this paper
to employ an alternative derivation for the plasma oscillations
of the isotropic superconductors [26] as it will turn out to be
the convenient strategy to be used for anisotropic systems.

Starting from Eq. (2) we introduce an internal e.m. field by
means of the minimal coupling substitution [7,40,41,43],

∂tθ → ∂tθ − 2eφ,

∇θ → ∇θ + 2e

c
A, (3)

which in Matsubara space read

�mθ (q) → �mθ (q) − 2eφ(q),

ikθ (q) → ikθ (q) + 2e

c
A(q), (4)

and by including the free e.m. action [7],

Se.m.[φ, A]

= εB

8π

∫
dτdx

[
1

εB
(∇ × A)2 −

(
i∂τ A

c
+ ∇φ

)2]

= εB

8π

∑
q

[
�2

m

c2
|A(q)|2 − |k|2|φ(q)|2 + 1

εB
|k × A(q)|2

+ i�m

c
k · (φ(q)A(−q) + φ(−q)A(q))

]
. (5)

Here φ and A are the scalar and the vector potential respec-
tively, −e is the charge of the electron, c is the light velocity,
and εB is the background dielectric constant. Notice that while
Eq. (4) holds for the coupling with both an internal and an
external e.m. field, here we only introduce the contribution of
the internal fields, which we relate to the charge and density
fluctuations of the system according to Maxwell’s equations.
In the total action obtained summing the contributions (2)
and (5) after performing the substitution (4), we fix the Weyl
gauge, i.e., φ = 0, and we then perform the following change
of variables:

ψ = ∇θ + 2e

c
A, (6)

or equivalently in momentum space,

ψ(q) = ikθ (q) + 2e

c
A(q). (7)

By definition these quantities are invariant under the simulta-
neous gauge transformation [7,8] of the vector potential and
of the SC phase by a generic function 
(q),

θ (q) → θ (q) − 2e

c

(q),

A(q) → A(q) + ik
(q). (8)

In contrast to the SC phase alone that does not represent a
physically observable quantity, the gauge-invariant variables
in Eq. (7) are instead proportional to physical currents. Indeed,
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analyzing their spectrum is completely equivalent to solving
the problem of the electromagnetic wave propagation in the
material [26]. The action then reads

S(iso)[θ,ψ] = εB

32πe2

∑
q

[(
�2

m + 4πe2

εB
Ds

)
|ψ(q)|2

+ c2

εB
|k × ψ(q)|2 + �2

m

α
(1 + α|k|2)|θ (q)|2

+ i�2
mk · (ψ(q)θ (−q) − ψ(−q)θ (q))

]
, (9)

where

α = εB

4πe2

1

κ0
= λ2

D, (10)

with λD the Debye screening length. Notice that in the
isotropic case here considered only the longitudinal compo-
nent ψL = (k̂ · ψ)k̂ of the gauge-invariant variables couple to
the SC phase, while the action of its transverse component
ψT = (k̂ × ψ) × k̂ is independent. By integrating out the SC
phase one is then left with an effective action of the physical
fields,

S(iso)[ψ] = εB

32πe2

∑
q

[(
�2

m

1 + α|k|2 + ω2
P

)
|ψL(q)|2

+
(

�2
m + ω2

P + c2

εB
|k|2

)
|ψT (q)|2

]

= 1

32πe2

∑
q

[
�2

m

1 + α|k|2 εL(�m, k)|ψL(q)|2

+
(

�2
mεT (�m) + c2

εB
|k|2

)
|ψT (q)|2

]
, (11)

where ω2
P = 4πe2Ds/εB is the isotropic plasma frequency and

εL(ω, k) = εB

(
1 − ω2

P(1 + α|k|2)

ω2

)
, (12)

εT (ω) = εB

(
1 − ω2

P

ω2

)
, (13)

represent the longitudinal and transverse dielectric functions
respectively, after the analytical continuation.

From Eq. (11) one immediately sees that the three compo-
nents of ψ describe all the e.m. modes in the system [50] given
by the poles of the longitudinal and transverse propagators,

ω2
L(k) = ω2

P(1 + α|k|2),

ω2
T (k) = ω2

P + c2

εB
|k|2. (14)

These results are formally identical to the ones widely known
and discussed in literature [7,40–44,49]. Nonetheless, a de-
scription in terms of the gauge-invariant variables is more
convenient in an anisotropic system, in which longitudinal and
transverse components are mixed [26].

B. Description of the plasma oscillations in single-layer
superconductors

A layered superconductor is an example of an anisotropic
system in which subsequent SC planes of in-plane lattice
constant a and with interlayer distance d interact with a weak
Josephson-like coupling [9,14,51–55] controlled by a constant
J , see Eq. (1) that we report here for convenience,

HJ = −J
∑

n

cos(θn − θn+1), (15)

where n is the primitive cell index. In the following, both
for single-layer and for bilayer crystals, we will use the con-
vention by which the SC sheets are parallel to the xy plane
and stacked along the z axis. The SC phase action in Eq. (2)
can be straightforwardly generalized to the anisotropic single-
layer case by expanding Eq. (15) to the Gaussian order. This
procedure is by all means equivalent to rewriting Eq. (2)
taking into account the anisotropy of the superfluid stiffness
[41,42,44]. The Fourier transform is here defined differently
from the isotropic case, in such a way that the interlayer
distance becomes explicit in the action. Such a convention will
be useful for the generalization to the bilayer case. Denoting
the in-plane stiffness by Dxy and defining the out-of-plane
one as Dz = 4Jd2, where J = J /(Sd ) is the density of the
Josephson coupling constant J along the SC plane of surface
S, one then obtains for a single-layer superconductor,

S(SL)
G [θ ] = d

8

∑
q

[
κ0�

2
m + Dxyk2

xy + Dzq
2
z

]|θ (q)|2 (16)

where k2
xy = k2

x + k2
y and

qz = 2

d
sin

(
kzd

2

)
(17)

accounts for the discrete periodicity along z. One can notice
that Eq. (17) can be recast as the more familiar q2

z = 2(1 −
cos(kzd ))/d2. The anisotropy of the stiffness is mirrored in
the presence of two different plasma frequencies, the in-plane
plasma frequency ω2

xy = 4πe2Dxy/εB that is typically of the
order of the eV, and the Josephson plasma frequency ω2

z =
4πe2Dz/εB in the range of THz [1–5].

The procedure making use of the gauge-invariant fields
outlined in the isotropic case is useful to treat an anisotropic
crystal, as it immediately takes into account all the electro-
magnetic interactions of the system, not exhausted by the
sole Coulomb interaction [26]. Thus, by repeating the same
procedure, one can write the analogous of Eq. (11) in terms of
the Cartesian components of the gauge-invariant variables,

S(SL)[ψ] = εBd

32πe2

∑
q

[(
ψx(q) ψz(q)

)
PSL

xz

(
ψx(−q)

ψz(−q)

)

+ ψy(q)

(
�2

m + ω2
xy + c2

εB

(
k2

x + q2
z

))
ψy(−q)

]
.

(18)

Here we chose, without loss of generality, to take the in-plane
momentum along the x direction (ky = 0). The dynamical
matrix associated with the x and z components of the physical
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FIG. 2. Energy-momentum dispersions of the single-layer super-
conductor plasma modes ω+ (green solid lines) and ω− (red solid
lines) given in Eq. (20) as functions of kz for fixed values of kx . The
dispersions are compared with the standard-RPA ones in Eq. (21),
represented as dashed lines with corresponding colors. Gray dashed
lines denote the in-plane and out-of-plane plasma frequencies. Here
εB = 1, ωxy = 1 eV, ωz = 10 meV, and h̄c = 0.187 eV µm.

variables is

PSL
xz =

⎛
⎝�2

m + ω2
xy + c2

εB
q2

z − c2

εB
kxqz

− c2

εB
kxqz �2

m + ω2
z + c2

εB
k2

x

⎞
⎠. (19)

In typical cuprate superconductors one usually finds that α/d2

is small [25,56]. As such, in writing Eq. (19) we made the
approximation of α → 0, that is equivalent to considering
infinite compressibility in the system, although adding correc-
tions due to finite compressibility would be straightforward. In
the single-layer superconductors a total of three e.m. modes
appear: a decoupled transverse plasma polariton described
by the coefficient of |ψy|2, corresponding to an electric field
along the y direction and commonly called [57] transverse
electric (TE), and two mixed plasma modes, corresponding
to a magnetic field along the y direction and called transverse
magnetic (TM), whose dispersions are given by zeros of the
determinant of PSL

xz ,

ω2
±(k) = 1

2

(
ω2

xy + ω2
z + c2

εB

(
k2

x + q2
z

) ±
[(

ω2
xy − ω2

z

)2

+ c4

ε2
B

(
k2

x + q2
z

)2 − 2
c2

εB

(
k2

x − q2
z

)(
ω2

xy − ω2
z

)]1/2)
.

(20)

As shown in Ref. [26], where the case qz → kz has been
considered, the two modes of Eq. (19) become either purely
longitudinal or purely transverse only in the limiting cases
kx = 0 or kz = 2π l/d , with l an integer number, while for
any generic direction of k they display a mixture of lon-
gitudinal and transverse character. The dispersions (20) are
shown in Fig. 2 as functions of kx for fixed values of kz, in
the usual way the plasmon dispersion corresponding to ω− is
usually acquired, e.g., by RIXS measurements [58–60]. For
the sake of completeness we also show the comparison with
the plasmon dispersion ω−,RPA of the layered superconductor

obtained in the literature within the standard-RPA approach.
This consists in including only the RPA dressing of the com-
pressibility by the long-range Coulomb potential, which is
equivalent in the present language to add only the coupling to
the scalar potential. For the longitudinal plasmon ω−,RPA this
is obtained [5,41–47] by replacing κ0 with κ0/(1 + V (kx, qz ))
into Eq. (16). By doing the analogous approximation for
the transverse polariton ω+,RPA [26] one gets in the long-
wavelength limit the anisotropic generalizations of Eq. (14)
above,

ω2
+,RPA(k) = ω2

z k2
x(

k2
x + q2

z

) + ω2
xyq2

z(
k2

x + q2
z

) + c2

εB

(
k2

x + q2
z

)
,

ω2
−,RPA(k) = ω2

xy

k2
x(

k2
x + q2

z

) + ω2
z

q2
z(

k2
x + q2

z

) . (21)

As shown in Fig. 2 the standard-RPA approach fails at small
momenta in describing the correct dispersions, with the veloc-
ity of the so-called [58–60] acoustic plasmon ω−RPA diverging
as |k| → 0. Moreover, the crossing among the two ω±,RPA

solutions at finite kx for intermediate kz value is an indi-
rect consequence of the fact that the expressions (21) are
nonanalytic functions as |k| → 0. Nonetheless, at momenta
larger than a scale of the order of 10 µm−1 the generalized
modes (20) approach the RPA results; indeed, in this regime
the coupling to the vector potential becomes subleading and
accounting only for the effect of Coulomb interactions (i.e.,
of the scalar potential in the present language) is sufficient
for a correct description of the plasma modes, and one indeed
recovers the results (21) usually quoted in the literature in the
context, e.g., of RIXS measurements [58–60]. A more detailed
discussion of the generalized plasma modes for a single-layer
anisotropic superconductor in the small kz limit, in which
qz � kz, can be found in Ref. [26].

C. Generalization to the bilayer case

In this section we generalize the strategy outlined in the
previous two subsections to the case of a bilayer supercon-
ductor. The conventions used to describe the out-of-plane
layered structure are shown in Fig. 1 for two primitive cells,
or “bilayer units”. Two SC planes in the same unit cell have an
intrabilayer distance d1, while two subsequent layers belong-
ing to adjacent unit cells have interbilayer distance d2, such
that d = d1 + d2 identifies the lattice periodicity along the
z direction.

To correctly describe the phase and the electromag-
netic fields some careful steps must be taken. First, we
need a discrete notation for all fields along z, to account
for their different values on the two sheets of a bilayer
unit. Secondly, the site of definition of each field and
of its derivatives on the bilayer crystal should be chosen
coherently with the Maxwell’s equations. The problem is not
completely trivial, and it is discussed in detail in Appendix B.

In order to account for the different nature of the in-
sulating layers in the intra- or in the interbilayer spacings,
we introduce in the system two different Josephson-like
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interactions [5,30,55],

HJ 1 = −J1

∑
n

cos(θ1,n − θ2,n),

HJ 2 = −J2

∑
n

cos(θ2,n − θ1,n+1), (22)

where the intrabilayer and the interbilayer couplings are
respectively controlled by the constants J1 and J2. The dou-
bling of planes per unit cell has an effect analogous to the
folding of the modes that one would observe in a single-layer
system described with the “wrong” periodicity. In this last
case the modes located at the Brillouin zone boundary would
be observed at kz = 0 and would be degenerate because J1 =
J2. In the bilayer case, however, these modes split due to
the anisotropy of the Josephson couplings, leading to distinct
branches. Such an analogy will be useful in the following to
understand the physical origin of some effects.

By expanding the cosines and retaining only the second-
order terms one can write the Gaussian action of the SC phase,
that in real space reads

S(BL)
G [θ ] = 1

8

∫
d2xdτ

∑
n

[
κ0

d

2
[(∂τ θ1,n)2 + (∂τ θ2,n)2]

+ Dxy
d

2
[(∇xyθ1,n)2 + (∇xyθ2,n)2]

+ 4J1d1(θ1,n − θ2,n)2 + 4J2d2(θ2,n − θ1,n+1)2

]

(23)

where d2x is short for dx dy and J1 = J1/(Sd1) and J2 =
J2/(Sd2) are the densities of the Josephson coupling constants
along the SC plane of surface S. The internal electromagnetic
field is instead described by the free e.m. action as a general-
ization of Eq. (5) to the bilayer case,

S(BL)
e.m. [φ, A]

= εB

8π

∫
dτd2x

∑
n

∑
λ=1,2

[
d

2εB
B2

zλ,n + dλ

εB

(
B2

xλ,n + B2
yλ,n

)

− d

2

(
E2

xλ,n + E2
yλ,n

) − dλE2
zλ,n

]
. (24)

The electric and magnetic fields are defined as

Eλ,n = − i∂τ Aλ,n

c
− ∇λφλ,n, Bλ,n = ∇λ × Aλ,n, (25)

where we define ∇λ = (∂x, ∂y,�zλ) as the gradient operator,
with the discrete derivative along the z direction for a generic
field fλ that lives on the λth plane given by

�zλ fλ,n =
{

f2,n− f1,n

d1
, if λ = 1

f1,n+1− f2,n

d2
, if λ = 2.

(26)

The e.m. field is introduced in the SC system described by
Eq. (23) by the addition of Eq. (24) and by performing
the minimal coupling substitution [7] via the discretization
of Eq. (3), which allows one to immediately define the
gauge-invariant fields for a bilayer crystal; in real space,

these read

∇xyθλ,n → ψxyλ,n = ∇xyθλ,n + 2e

c
Axyλ,n,

�zλθλ,n → ψzλ,n = �zλθλ,n + 2e

c
Azλ,n. (27)

It should be underlined that to keep the gauge-invariant fields
consistent with the discretization of the phase and the e.m.
fields as discussed in Appendix B, the in-plane components
ψxyλ must be defined on the λth plane while the out-of-plane
components ψzλ must be defined on the link between the λth
plane and its subsequent, consistent with the physical fact that
these quantities are proportional to out-of-plane currents.

Once the Weyl gauge (φλ,n = 0) is chosen, the system is
described by an action S(BL)[θ,ψ], which generalizes Eq. (9)
to the bilayer case. To characterize the plasma modes the SC
phase should be integrated out. This calculation is lengthy
but straightforward in Fourier space, and the conventions used
to define the Fourier transform in the bilayer crystal are dis-
cussed in Appendix B. As in the previous subsection, we set
the in-plane momentum along the x direction (ky = 0) and
we here make the approximation of infinite compressibility
(α → 0). In Fourier space, the action of the gauge-invariant
fields once the integration of the SC phases has been carried
out can then be written as

S(BL)[ψ] = d

2

εB

32πe2

∑
q

[
ψxz(q)PBL

xz ψT
xz(−q)

+ ψy(q)PBL
y ψT

y (−q)
]
, (28)

where ψxz = (ψx1, ψx2,
√

2d1/d ψz1,
√

2d2/d ψz2) and ψy =
(ψy1, ψy2). In this basis the coefficient matrix for the xz com-
ponents of the gauge-invariant fields is

PBL
xz =

(
�2

m1 + �2
xy + c2

εB
Q†

zQz − c2

εB
kxQ†

z

− c2

εB
kxQz �2

m1 + �2
z + 1 c2

εB
k2

x

)
,

(29)

while the coefficient matrix for the y components is

PBL
y =

(
�2

m1 + �2
xy + 1

c2

εB
k2

x + c2

εB
Q†

zQz

)
. (30)

Where 1 is the 2 × 2 identity matrix. The in-plane plasma
frequency appears in the matrix �2

xy = 1ω2
xy while the

out-of-plane Josephson plasma frequencies [5,11,30,57],
defined as

ωzλ =
√

16πe2Jλd2
λ

εB
, (31)

are inside �2
z = (ω

2
z1 0
0 ω2

z2
). The matrix Qz is defined as

Qz = −i

√
2

d

⎛
⎝ eikzd1/2√

d1
− e−ikzd1/2√

d1

− e−ikzd2/2√
d2

eikzd2/2√
d2

⎞
⎠, (32)

while Q†
z is its Hermitian conjugate. These two matrices rep-

resent the generalization of the out-of-plane momentum qz in
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FIG. 3. (a) Energy-momentum dispersions of the three lower-in-energy mixed modes ωpl (green), ωJ1 (red), and ωJ2 (blue) for selected
angles η between k and the z axis. (b) Zoom on the gray-shaded region of panel (a) in which the Josephson modes mix. The transverse plasma
frequency ωT as defined in Eq. (36) is shown as an horizontal black dashed line. The inset shows the asymptotic value of ωJ2 as a function of
the angle η.

Eq. (17) to the bilayer structure, and their product is

Q†
zQz = 2

d

(
1
d1

+ 1
d2

− e−ikzd1

d1
− eikzd2

d2

− eikzd1

d1
− e−ikzd2

d2

1
d1

+ 1
d2

)
. (33)

The action in Eq. (28) is the first central result of this paper,
as it describes the e.m. modes of the bilayer superconductor.
Formally it is equivalent to the single-layer one in Eq. (18),
but now it displays a 2 × 2 structure in the y component and a
4 × 4 structure in the xz components. In addition, even though
formally Qz plays in Eq. (28) the analogous role of qz in
Eq. (18) for the single-layer case, the analogy is not complete.
Indeed, as we will discuss below, Qz does not vanish as kz =
0, leading to observable and relevant physical consequences in
the bilayer system. In general, the (4 × 4) + (2 × 2) structure
of the action in Eq. (28) implies that in the bilayer supercon-
ductor there are a total of six modes: two decoupled transverse
plasma polaritons (TE) described by PBL

y and four mixed
modes (TM) encoded into PBL

xz .
The remainder of this section will focus on the be-

havior of the energy-momentum dispersions of the mixed
TM modes, found numerically as solutions of the charac-
teristic equation obtained by setting the determinant of PBL

xz
to zero once the analytical continuation has been performed.
The dispersions of the three lower-in-energy mixed modes,
which we label ωpl , ωJ1, and ωJ2 are shown in Fig. 3 for
various propagation angles η formed by k and the z axis. In the
plots we set ωxy = 1 eV and εB = 1 for numerical simplicity,
while we choose d1 = 3.2 Å, d2 = 8.2 Å and the Josephson
plasma frequencies as ωz1 = 14.2 THz = 5.9 × 10−2 eV and
ωz2 = 0.9 THz = 3.7 × 10−3 eV to be compatible with those
measured in the YBCO cuprate superconductor at doping
x = 0.5 (Tc = 50 K) [18,61].

The limits for k → 0 of the dispersions are regular and
equal to their corresponding plasma frequencies; using ωxy >

ωz1 > ωz2, one immediately sees that

ωpl (k → 0) = ωxy,

ωJ1(k → 0) = ωz1,

ωJ2(k → 0) = ωz2, (34)

regardless of the direction along which such limit is taken. The
fourth mode is much higher in energy, with plasma frequency√

ω2
xy + c2

εB

4
d1d2

� ωxy. As anticipated above, and as it will be
discussed further in Sec. II D, this mode can be thought as
a folding at kz = 0 of the single-layer mode ω+ at the zone
boundary. Since it falls outside the range of frequencies where
the model itself can be reasonably applied, it will not be dis-
cussed in detail in the following. One should note that Eq. (34)
are only valid in the approximation of infinite compressibility.
While this is appropriate for typical cuprate superconductors,
in Sec. II E we will discuss corrections to the k → 0 limits of
the Josephson modes given by a finite compressibility.

In the limiting case η = 0 (kx = 0) the Josephson modes
are nondispersive at finite k, while ωpl disperses with the light
velocity in the medium c/

√
εB as expected for a light mode,

see Figs. 3(a) and 3(b). In this particular case, the in-plane and
out-of-plane modes are decoupled.

In any other case the three modes are coupled for finite
k and three different regimes are identified in Fig. 3, separated
by two crossover momenta kc1 and kc2. Remarkably, as η =
π/2 (kz = 0) the upper-right and lower-left blocks of Eq. (29)
do not vanish, as the generalized out-of-plane momentum Qz

in Eq. (32) does not become the zero matrix, as we antici-
pated before. This means that the in-plane and out-of-plane
components are still coupled even when the momentum is
completely along the planes, as opposed to the single-layer
case, see Eq. (19) and the discussion below it.

For low momenta and for any angle η �= 0, the lower
Josephson solution ωJ2 grows with light velocity, see
Fig. 3(b).

After the first crossover momentum,

|kc1| =
√

εB

c

√
ω2

z1 − ω2
z2, (35)

it goes towards an asymptotic frequency that depends on the
angle η, see inset of Fig. 3(b). Its maximum value is taken for
η = π/2, where it coincides with a frequency scale named
in the previous literature—for reasons that we will clarify
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FIG. 4. (a) Energy-momentum dispersions of the bilayer superconductor plasma modes ωpl (green), ωJ1 (red), and ωJ2 (blue) as functions
of kx for fixed values of kz. Gray dashed lines denote the in-plane plasma frequency and the upper Josephson plasma frequency. (b) Zoom
on the gray-shaded region of panel (a) in which the Josephson plasma modes mix. Gray dashed lines denote the upper and lower Josephson
plasma frequencies, while the black dashed line denotes the transverse plasma frequency ωT as defined in Eq. (36).

below—the “transverse” plasma frequency [5,30]

ωT =
√(

ω2
z1d2 + ω2

z2d1
)
/d. (36)

On the contrary, the upper Josephson solution ωJ1 grows
weakly for small momenta, while it starts dispersing with
light velocity above kc1. This behavior is kept until the second
crossover momentum,

|kc2| =
√

εB

c

√
ω2

xy − (
ω2

z1d1 + ω2
z2d2

)
/d, (37)

above which the solution goes towards an asymptotic fre-
quency that again depends on the angle η, see Fig. 3(a). As
η = π/2, the asymptotic value coincides with the in-plane
plasma frequency ωxy. The third solution ωpl grows weakly
below kc2 and starts dispersing with light velocity above it. In
this regime, ωJ1 and ωpl follow the analogous behavior of the
single-layer modes ω− and ω+ of Eq. (20).

To have an idea of the orders of magnitude of the crossover
momenta, one can set the light velocity in the medium to
h̄c � 0.187 eV µm. The lower crossover momentum depends
on the difference between the two Josephson plasma fre-
quencies, giving |kc1| ∼ 0.05 − 0.5 µm−1 depending on the
bilayer system considered. The upper crossover momentum
can be estimated by considering that in most layered super-
conductors, as, e.g., cuprates, it is usually ωxy � ωz1,z2, so that
with ωxy = 1 eV one has |kc2| � 5 µm−1.

In Fig. 4 we show the same dispersions as a function of
kx only, for fixed values of kz. In Fig. 4(a) one immediately
recognizes the close resemblance between the two dispersions
ωJ1 and ωpl and their single-layer counterparts ω− and ω+
shown in Fig. 2, while the behavior of the two Josephson
modes around the first crossover kc1 shown in Fig. 4(b) is
analogous to the one discussed before.

The formalism employed in this paper allows one to study
the modes also in the nonrelativistic regime, where the ωJ2

mode changes its behavior. This is discussed in detail in
Appendix C.

D. Polarizations of the mixed plasma modes

To gain further insight into the nature of the mixed plasma
oscillations in a bilayer superconductor it is instructive to have
a closer look at their polarizations as functions of k in the
limit of infinite compressibility. These come as normalized
eigenvectors to the eigenproblem set by the coefficient matrix
PBL

xz in Eq. (29) where one interprets the components ψxλ as
the in-plane oscillations on the λth layer and the components
ψz1 and ψz2 as the out-of-plane oscillations in the intrabilayer
and in the interbilayer respectively.

The polarizations of the three lower-in-energy mixed
modes are sketched in Fig. 5 as vectors representing the
components of the modes. In the limiting case η = 0, see
Fig. 5(a), the Josephson modes with constant frequencies ωz1

and ωz2 correspond to oscillations oriented purely along the
z direction. In addition, the former describes oscillations liv-
ing exclusively between the two layers of a same unit cell,
while the latter describes oscillations confined to intercell
layers. The higher-in-energy ωpl mode corresponds instead to
in-plane oscillations that are in phase with respect to the two
layers of the unit cell. These “pure” behaviors are respected
for any value of the out-of-plane momentum kz. It is worth
noting that we are discussing here polarization eigenvectors in
momentum space; as a consequence, while for kz 	 π/d they
also represent the oscillation patterns in real space, as kz →
π/d the real-space pattern in neighboring planes can change
with respect to the representation given in Fig. 5. This is,
however, a trivial effect, and we restrict here for simplicity the
discussion to the low-momentum region, in order to visualize
in a simple way the distinctive features of the eigenvectors.

For any other possible angle η, shown in Fig. 5(b), the
modes are pure only for k → 0 as they reproduce the scheme
of Fig. 5(a). For k ∼ kc1 the two Josephson plasma modes
mix, the one with frequency ωJ1 acquiring an in-phase inter-
bilayer component and the one with frequency ωJ2 acquiring
an opposite-phase intrabilayer component. Remarkably, the
lower Josephson plasma mode holds its opposite-phase oscil-
lations along the z direction as long as its dispersion maintains
its saturating behavior, up to momenta |k| ∼ 1/d , regardless

014503-8



GENERALIZED JOSEPHSON PLASMONS IN BILAYER … PHYSICAL REVIEW B 108, 014503 (2023)

FIG. 5. Sketch of the polarizations of the three mixed modes for η = 0 (a) and for η = π/4 [(b) for different momentum regimes] depicted
on two bilayer units. The colors are chosen to resemble those of the corresponding dispersions in Fig. 3: the mode with frequency ωpl

corresponds to the green arrows, the mode with frequency ωJ1 to the red arrows and the mode with frequency ωJ2 to the blue arrows. The
direction of an arrow denotes the direction of the plasma oscillations while the relative orientation of arrows with same color in neighboring
cells denotes whether the oscillations are in-phase or out-of-phase. The width of an arrow is proportional to the magnitude of the corresponding
eigenvector component, while their length does not have a physical meaning. For a simple graphical representation we centered the arrows
in the spacing between two subsequent layers, although one should always keep in mind that the x components of the eigenvectors always
represent oscillations that take place along the SC planes.

of the angle η. Instead, the upper Josephson plasma mode
mixes with the ωpl mode for k ∼ kc2, the former becoming
purely longitudinal and the latter becoming purely transverse.
This mechanism of longitudinal-transverse mixing between
these two in-phase modes happens exactly as it would in a
single-layer superconductor as described in Ref. [26]. The
fourth higher-in-energy mixed mode displays in-plane oscil-
lations that are in opposite-phase with respect to the two
layers of the unit cell for momenta up to |k| ∼ 1/d . The latter
and the low-energy Josephson mode are thus both connected
to out-of-phase oscillations in neighboring layers within the
same unit cell. In the limit where J1 = J2 and d1 = d2 they
would then correspond to the modes of the single-layer crystal
occurring at the boundaries of the Brillouin zone. As we dis-
cussed above, in such picture one can think of these modes as
the folded images of the single-layer modes due to the broken
symmetry J1 �= J2.

E. Josephson plasma frequencies corrections with finite
compressibility

In the previous subsections we made the approximation
of α → 0, which by Eq. (10) means taking an infinite com-
pressibility or, equivalently, vanishing screening length. This
approximation is well justified in cuprates as the thick-
ness of the SC layers is much larger than the screening
length [25,56], and a theory of stacked junctions adopting
this approximation [5] appears to describe well experimental
results on bilayer superconductors [2,27,31–35]. Nonethe-
less, a consistent interaction between electrons given by
a finite compressibility should be considered to estimate
the relevance of the corrections to the various physi-
cal quantities. This was carried out in Ref. [30]; in this
subsection we recover the same results using the formal-
ism developed above, to have a better understanding of
the physical phenomenon that affects the energy of the

Josephson modes for vanishing momentum in bilayer su-
perconductors. Indeed, this case yields some interesting
insights that distinguish the bilayer from the single-layer
case.

By taking a finite value for α one finds that the action of
the x and z components of the gauge-invariant variables in
Eq. (28) gets corrected as

S(BL)
α �=0 [ψx, ψz] = d

2

εB

32πe2

∑
q

[
ψxz(q)PBL

xz ψT
xz(−q)

− α�2
m(ψx(q)kx + ψz(q)Qz )

× (
1 + 1αk2

x + αQ†
zQz

)−1

× (
kxψ

T
x (−q) + Q†

zψ
T
z (−q)

)]
, (38)

where PBL
xz is defined as in Eq. (29), ψx = (ψx1, ψx2) and

ψz = (
√

2d1/d ψz1,
√

2d2/d ψz2) in agreement with the defi-
nitions given above.

Although formally this is the same result one would find
in the single-layer case [26], there is a substantial difference;
while in the single-layer crystal the α corrections are purely
longitudinal and vanish in the k → 0 limit, in the bilayer
system the corrections have both a longitudinal and a massive
component due to the fact that the Qz matrix and its com-
plex conjugate are finite for kz → 0. This implies that the
limits for vanishing momentum of the dispersions, i.e., the
Josephson plasma frequencies ωz1 and ωz2 defined in Eq. (31),
are corrected with terms of order α.

To explicitly derive these corrections we here focus only on
the z components of the gauge-invariant variables in the limit
for k → 0. As the in-plane and out-of-plane components of
the oscillations are decoupled when the in-plane momentum
is set to zero due to the vanishing of the off-diagonal elements
in the action (38), the Josephson plasmons in this limit are
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described by the 2 × 2 action

S(BL)
α �=0 [ψz] = εB

32πe2

d

2

∑
i�m

[
ψz(i�m)PBL

z ψT
z (−i�m)

]
, (39)

where the coefficient matrix reads

PBL
z = [

�2
z + �2

m1
] − 4

d
�2

mC. (40)

Here, C is a matrix with the dimensions of a capacitance
defined as

C = 1

1 + 4α/(d1d2)

(
α/d1 −α/

√
d1d2

−α/
√

d1d2 α/d2

)
. (41)

Notice that due to the presence of off-diagonal components in
the matrix in Eq. (41), the z components of the gauge-invariant
variables are coupled by terms of order α. Indeed, performing
the analytical continuation i�m → ω and by solving the char-
acteristic equation of PBL

z one finds the corrected Josephson
plasma frequencies, previously reported in Ref. [30],

ω̃z1,z2 =
{(

1

2
+ 2α

d2

d

d1

)
ω2

z1 +
(

1

2
+ 2α

d2

d

d2

)
ω2

z2

±
[[(

1

2
+ 2α

d2

d

d1

)
ω2

z1 −
(

1

2
+ 2α

d2

d

d2

)
ω2

z2

]2

+ 16α2

d4

d2

d1d2
ω2

z1ω
2
z2

]1/2}1/2

. (42)

To understand the physical phenomenon behind these slight
frequency shifts with respect to the original ωz1,z2 one should
notice that in Eq. (40) all the α-dependent terms are in C,
which means that the corrections to the plasma frequencies
for k → 0 come from a capacitive coupling between two
subsequent layers as expected when a finite compressibility
in the planes is taken into account.

As we mentioned above, there is no frequency shift for
the single-layer Josephson plasma mode if one considered a
finite compressibility. The physical reason is that as kz → 0
the charge distribution is the same in each plane, and then
no capacitive coupling between neighboring planes emerges,
even if a finite compressibility is considered. This is not the
case in the bilayer superconductor; indeed, in this case a
charge gradient is possible among two layers of the same
unit cell even for kz → 0, as the potentials φ1 and φ2 are
generically different. Such a mechanism is also evidenced by
studying the eigenvalues and eigenvectors of the capacitance
matrix C; the eigenvector having ψz2 = ψz1 corresponds to
an eigenvalue equal to zero, while the eigenvector having
ψz2 = −ψz1 corresponds to a nonzero eigenvalue. Since in
the single-layer limit in which J1 = J2 and d1 = d2 the only
possible solution of Eq. (40) at kz = 0 requires ψz2 = ψz1, one
understands why in the single-layer superconductor capacitive
effects are irrelevant for vanishing momentum. The solution
ψz2 = −ψz1 is only acceptable at the Brillouin zone bound-
ary, where the dispersion ω− of the single-layer Josephson
mode grows linearly [26] with sound velocity vs ∝ √

α. In
this framework one can also understand the compressibility
corrections to the Josephson frequencies in the bilayer system

in Eq. (42) as given by the folding at kz = 0 of the single-layer
dispersion once the J1 = J2 symmetry is broken.

The effects of a finite compressibility for finite momenta
and in the nonrelativistic regime are discussed in Appendix C.

III. LINEAR RESPONSE TO AN EXTERNAL E.M. FIELD

A. Experimental observations

In this section we focus on the nontrivial z-axis linear
optical properties of a bilayer superconductor. As mentioned
in the introduction, several experimental papers reported the
appearance in the SC state of YBCO of a rather well-defined
peak in the real part of the optical conductivity [2,27,31–35] at
the transverse plasma frequency ωT defined in Eq. (36). Such
an experimental observation has been successfully explained
by the so-called multilayer model [5,30] (MLM), which gives
a precise recipe on how to reconstruct the dielectric function
of the layered system as a series of capacitors represented by
each layer. The aim of this section is to derive the results
of the MLM within our formalism and discuss its physical
implications in light of the characterization of the e.m. modes
provided in the previous section.

Before giving the technical details, it is worth stressing
why the experimental observation of a peak in the real part
of the optical conductivity at a “plasma” frequency appears at
first sight rather puzzling. As the discussion in the previous
sections highlighted, plasmons are strictly speaking zeros of
the dielectric function ε(ω), see Eq. (11), which is related to
the complex conductivity by the standard relation

ε(ω) = εB + 4π iσ (ω)

ω
. (43)

In the case of the superconductors the optical conductivity
σ (ω), computed via a current-current correlation function,
can be indeed expressed via the correlation function for the
SC phase fluctuations. However, since σ is the response to
the local electric field E, one should consider the irreducible
response with respect to the Coulomb interaction [62–64].
In other words, σ should be related to the phase fluctua-
tions computed without including [65] the RPA dressing of
the action via V (k). Considering again the simple isotropic
case one then finds from Eq. (2) that σ (ω) = −Ds/(iω), that
substituted into Eq. (43) leads again to the result in Eq. (12)
in the long-wavelength limit. However, the conductivity itself
has no features at the plasma frequency ωP, and its real part is
exactly zero in a clean isotropic superconductor. The results
in bilayer cuprates show, on the contrary, that σ1(ω) displays
a peak at the frequency ωT of Eq. (36). As we have seen
above, this frequency is not connected to an electromagnetic
mode at zero momentum, but it is instead connected to the
large-momentum limit of the lower ωJ2 Josephson plasmon.
As we shall see below, the reason behind its appearance in the
optical conductivity lies on the fact that the optical response
is irreducible with respect to the k → 0 Coulomb interaction,
but it can be nonetheless affected by the large momentum
electromagnetic interactions, leading to the rather interesting
physical effects observed in YBCO.
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B. Optical conductivity

In linear-response theory the current density J(ω) induced
by an external monochromatic e.m. field Aext(ω) with vanish-
ing momentum can be written as

Ji(ω) = −1

c
Ki j (ω)Aext

j (ω) (44)

where Ki j (ω) is the current-current linear-response kernel,
which in the effective-action formalism in Matsubara space
can be evaluated as [7,8]

Ki j (i�m) = c2

d

∂2S[Aext]

∂Aext
i (i�m) ∂Aext

j (−i�m)
, (45)

where S[Aext] is the effective action obtained after the inte-
gration of the internal degrees of freedom of the system. More
specifically, within the effective-action scheme employed here
we need to integrate out the degrees of freedom of the matter,
represented by the SC phase, which is linearly coupled to the
gauge field. The out-of-plane lattice constant d appearing in
Eq. (45) is consistent with our choice for the normalization of
the Fourier transforms. In the following we will consider an
external uniform electric field polarized along the z direction
and incidence parallel to the SC sheets along the xy plane
(kz = 0), as it is the case for measurements of the c-axis
response in Refs. [2,21,27,28,31–35].

Our starting point is thus the Gaussian action for the
SC phases in Eq. (23) in which we introduce an external
vector potential along the z direction by means of the minimal
coupling substitution equivalent to Eq. (27) above,

�zλθλ,n → �zλθλ,n + 2e

c
Aext

z,n. (46)

Let us at first suppose that, as in the isotropic case, one should
not dress the internal degrees of freedom with the Coulomb
interaction, i.e., in the language of the internal e.m. fields used
in the previous section one should not consider an internal
scalar potential coupled to the SC phase. In this case, the
optical conductivity could be easily derived by shifting to
Fourier space according to the rules discussed in Appendix B
and defining the variables

θ+(q) = θ2(q) + θ1(q),

θ−(q) = θ2(q) − θ1(q), (47)

so that the total action reads

S[θ±, Aext
z ]

= 1

8

∑
q

[
d

4

(
κ0�

2
m + Dxyk2

xy

)|θ+(q)|2)

+
(

d

4
κ0�

2
m + d

4
Dxyk2

xy + 4J1d1 + 4J2d2

)
|θ−(q)|2

]

+ εB

8πc2

∑
q

[(
ω2

z1d1 + ω2
z2d2

)∣∣Aext
z (q)

∣∣2
]

+ εB

16πec

∑
q

[(
ω2

z1 − ω2
z2

)(
θ−(q)Aext

z (−q) + H.c.
)]

.

(48)

Notice that because the external field is polarized along z it
only couples to the phase gradient in the z direction, that is
represented, in the present discrete notation, by the θ− vari-
able. It is then straightforward to show, after the integration
of the internal degree of freedom θ− and taking the limit for
kxy → 0, that one is left with

S
[
Aext

z

] = d

2c2

∑
i�m

Aext
z (i�m)Kzz(i�m)Aext

z (−i�m), (49)

where the current-current linear-response kernel is

Kzz(i�m)

= εB

4πd

[(
ω2

z1d1 + ω2
z2d2

)

− εB

32πe2

(
ω2

z1 − ω2
z2

)2〈θ−(i�m)θ−(−i�m)〉
]

= εB

4πd

[(
ω2

z1d1 + ω2
z2d2

) − 4α

d

(
ω2

z1 − ω2
z2

)2(
4α

d1d2
ω2

T − (i�m)2
)]

.

(50)

Consequently one is able to write the conductivity after the
analytical continuation i�m → ω + i0+ as

σ (ω) = σ1(ω) + iσ2(ω) = i

ω + i0+ Kzz(ω + i0+)

=
[
πKzz1(ω)δ(ω) − Kzz2(ω)

ω

]
+ iKzz1(ω)

ω
. (51)

As one can see in the square brackets, in the bilayer system the
real part of the conductivity at kz = 0 is given by two terms.
The first one is a delta-like response at ω = 0 given by the real
part Kzz1 of the response kernel. The second term of Eq. (51)
given by the imaginary part Kzz2 represents instead a delta-
like response at finite frequency, absent in the single-layer
case, controlled by the relative intracell phase fluctuations de-
scribed by the variable θ−. However, even though this second
contribution admits a peak, it is not at ωT . More importantly,
such a correction vanishes in the limit of infinite compressibil-
ity, that is the appropriate one for cuprates, as we discussed
above.

So far we did not include any long-range effect, with
the idea that for isotropic and anisotropic single-layer su-
perconductors one should not consider the internal Coulomb
interactions, as doing so in these systems would mean taking
into account reducible diagrams [62–65], as we discussed
in the previous subsection. However, in bilayer supercon-
ductors one finds that an internal scalar potential does not
only describe the long-range Coulomb interactions but also
an intrabilayer interaction at |k| = 0 that should be taken into
account.

We thus introduce again the internal scalar potential by
means of the first minimal coupling substitution in Eq. (4).
One sees that, in analogy with the definitions (47) of the phase
variables, there are two possible combinations of the scalar
potentials,

φ+(q) = φ2(q) + φ1(q),

φ−(q) = φ2(q) − φ1(q). (52)
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We also introduce the free e.m. action in a bilayer system as
in Eq. (24) expressing it by means of the φ± variables,

S(BL)
e.m. [φ±] = − εB

8π

∑
q

[
d

4
k2

xy|φ+(q)|2

+
(

d

d1d2
+ d

4
k2

xy

)
|φ−(q)|2

]
. (53)

From Eq. (53) one immediately understands that the
φ− combination describes an intracell potential gradient that
corresponds to short-range Coulomb interactions. As such its
fluctuations must be included, in full analogy with the usual
procedure in the case of ab initio DFT calculations [63]. One
can better understand the picture behind this procedure by
looking at a single-layer superconductor with broken trans-
lation symmetry because of different Josephson couplings
between the planes, J1 �= J2. In this system, the phase θ− can
be interpreted as a fold of θ+ at the Brillouin zone boundary,
i.e., θ−(kz = 0) plays a role analogous to θ+(kz = π/(d/2)),
that corresponds indeed to oscillations with opposite phases in
neighboring planes, similarly to what we discussed in the pre-
vious sections for the gauge-invariant variables. The bilayer
structure has then the effect to couple phase fluctuations at the
zone boundary to the kz = 0 response.

Thus the relevant action for computing the average value
of the phase modes is built by adding to Eq. (48) the free e.m.
action for φ−(q) and the action resulting from the minimal
coupling substitution,

S
[
θ±, φ−, Aext

z

] = S
[
θ±, Aext

z

]
− εB

8π

∑
q

[(
d

d1d2
+ πe2d

εB
κ0 + d

4
k2

xy

)
|φ−(q)|2

]

+ e

4

∑
q

[
d

4
κ0�m(θ−(q)φ−(−q) − H.c.)

]
, (54)

while φ+ fluctuations should not be included as they describe
the long-range Coulomb interaction. Notice that the scalar
potential φ− only couples to the θ− combination, so that only
this degree of freedom is dressed by the finite-range Coulomb
interaction. It may be argued that the procedure employed here
does not consider an internal vector potential, which is instead
crucial in order to correctly characterize the plasma modes as
discussed in the previous section. Nevertheless, one can check
that all the short-range interactions described by couplings
between θ− and the components of the vector potential can
be set to zero by a convenient gauge choice.

By integrating out the short-range Coulomb interactions
φ− and then the internal degree of freedom θ− one finds that
the second term of Eq. (50) gets corrected, and the linear-
response kernel reads

Kzz(i�m) = εB

4πd

[(
ω2

z1d1 + ω2
z2d2

)

−
(

1 + 4α

d1d2

)
d1d2

d

(
ω2

z1 − ω2
z2

)2(
ω̃2

T − (i�m)2
)]

, (55)

where ω̃2
T generalizes the transverse plasma frequency in

Eq. (36) to a finite compressibility,

ω̃2
T = ω2

T

(
1 + 4α

d1d2

)
. (56)

In typical bilayer cuprates as, e.g., YBCO, one finds that
|ω̃T − ωT | ∼ 1 THz. One can then write the conductivity as
in Eq. (51), where now the real part reads

σ1(ω) = εB

4d

[(
ω2

z1d1 + ω2
z2d2

)
δ(ω) +

(
1 + 4α

d1d2

)

× d1d2

d

(
ω2

z1 − ω2
z2

)2

2ω̃2
T

[δ(ω − ω̃T )

+ δ(ω + ω̃T ) − 2δ(ω)]

]
(57)

and the imaginary part reads

σ2(ω) = εB

4πd

1

ω

[(
ω2

z1d1 + ω2
z2d2

)

−
(

1 + 4α

d1d2

)
d1d2

d

(
ω2

z1 − ω2
z2

)2

ω̃2
T − ω2

]
. (58)

Notice that in the infinite-compressibility limit α → 0 the
finite-frequency correction stays finite and one recovers the
result deduced in Ref. [5]. The phase oscillations described by
θ− are sketched in Fig. 6(a), while the real part of the conduc-
tivity σ1(ω) is shown in Fig. 6(b) with and without the com-
pressibility corrections. A finite-damping parameter � is also
introduced in the finite-frequency part of Eq. (57) to have a
direct representation of the optical experiments [2,27,31–35].
Indeed, the optical conductivity displays a peak at the trans-
verse plasma frequency ω̃T defined in Eq. (56), weighted by
the difference between the two squared Josephson plasma
frequencies defined in Eq. (31).

The procedure employed here makes clear that the peak ap-
pears exactly at the transverse plasma frequency because it is a
manifestation at |k| = 0 of the lower Josephson plasma mode
ωJ2 at the border of the Brillouin zone. Indeed, its weight
given by the difference of the plasma frequencies squared is
due to the fact that this low-energy mode is linked to opposite-
phase out-of-plane currents, as discussed in Sec. II D.

With the imaginary part of the conductivity σ2(ω) from
Eq. (51) one can evaluate the total out-of-plane super-
fluid stiffness of a bilayer superconductor; in the infinite-
compressibility limit this reads

e2D(BL)
z = ωσ2(ω)

∣∣
ω→0 = εB

4π

ω2
z1ω

2
z2

ω2
T

. (59)

This can be rewritten as a combination of the intrabi-
layer and interbilayer superfluid stiffnesses defined as Dzλ =
ω2

zλεB/(4πe2),

D(BL)
z = d

Dz1Dz2

Dz1d2 + Dz2d1
. (60)

Due to the fact that in typical cuprate superconductors Dz1 �
Dz2, from Eq. (60) one can see that the total out-of-plane
stiffness is dominated by the weaker interbilayer stiffness Dz2.
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FIG. 6. (a) Sketch of the mode θ− at frequency ωT excited by the
external field, as a function of the time. The arrows represent the
currents flowing from a layer to another; their widths represent
the magnitude of the currents while their lengths do not have a
physical meaning and are chosen only for graphic purposes. The
layers with net positive charge are shown in blue, while the layers
with net negative charge are shown in gray. On the right-hand side
we plot the voltage distribution as a function of z. (b) Real part
of the conductivity shown as a function of the frequency without
(gray) and with (blue) compressibility corrections (α = 0.6 Å2) as
written in Eq. (57). In the plots we chose ωz1 = 14.2 THz, ωz2 =
0.9 THz, d1 = 3.2 Å, and d2 = 8.2 Å, so that ωT = 12.1 THz and
ω̃T = 13.2 THz. A finite-damping parameter � = 0.3ωz2 is also
introduced.

One easily understands this result in the context of a 1D super-
conducting chain in which the total stiffness is given by Ds =
[
∑

i(1/Di )]−1, Di being the stiffness of the ith link, and thus
it is always dominated by the weakest link in the chain [66].

From Eq. (55) one can also obtain the dielectric function
of the system, which takes the form

ε(ω) = εB

(
ω2 − ω̃2

z1

)(
ω2 − ω̃2

z2

)
ω2

(
ω2 − ω̃2

T

) , (61)

with ω̃zλ defined as in Eq. (42). This is the result of the MLM
quoted in Ref. [30].

As suggested by Eq. (11) in the isotropic case, the dielec-
tric function appears also as the coefficient to the transverse
component of the gauge-invariant variables. This is also valid
in the present case. We start from the action in Eq. (39) written
in the k → 0 limit relevant for this section, and perform the
following change of variables:

ψ+ = 1

d
(ψz2d2 + ψz1d1),

ψ− = 1

d
(ψz2d2 − ψz1d1). (62)

Notice that by the definition of ψzλ in Eq. (27), the combina-
tion ψ+ is independent of the SC phase and reads

ψ+ = 2e

c

1

d
(Az1d1 + Az2d2). (63)

As such, this particular combination of ψz1 and ψz2 is the
uniform (kz = 0) transverse component of the gauge field.
One can then rewrite Eq. (39) in terms of the ψ± variables, and
integrate out the ψ− combination, which plays the analogous
role of θ− dressed by short-range Coulomb interaction in the
previous derivation. It is then straightforward to see that one
is left with

S(BL)
α �=0 [ψ+] = d

32πe2

∑
i�m

[
�2

mε(i�m)|ψ+(i�m)|2], (64)

where ε(i�m) goes into the dielectric function in Eq. (61) once
the analytical continuation has been performed. Thus, also
in the language of the gauge-invariant variables one is able
to recover the crucial role in bilayer superconductors of the
coupling between the short-range Coulomb interactions and
the kz = 0 response, encoded in Eq. (39) by the finite coupling
among ψ+ and ψ−.

IV. CONCLUSIONS

In the present paper we provided a detailed analysis of
the e.m. modes in a model system for a bilayer supercon-
ductor, i.e., a layered superconductor with two layers per
unit cell, characterized by different intracell and intercell
Josephson couplings among the SC sheets. Such a model
provides an excellent description of the optical response of
YBCO cuprates, one of the most studied families of high-Tc

superconductors. In particular, while the linear c-axis optical
response of YBCO has been experimentally investigated long
ago [2,31–34], its nonlinear out-of-plane THz response at-
tracted renewed interest in recent years thanks to the promise
to use intense light pulses to control the nonlinear driving of
the soft, undamped Josephson plasmon emerging below Tc

[18,21,27,28]. In this paper we addressed two main issues:
(i) the derivation of the energy-momentum dispersion for both
polariton and plasmons at arbitrary wavelength and (ii) the
derivation of the linear optical response along the c axis. The
issue (i) is motivated by the observation that in a layered
system the usual decoupling among longitudinal and trans-
verse e.m. degrees of freedom, that holds in isotropic systems
at all length scales, is only quantitatively valid at momenta
larger enough than the light cone. To state the problem dif-
ferently, the density and current fluctuations get intrinsically
mixed at low momenta, leading to hybrid light-matter modes
that preserve simultaneously both longitudinal and transverse
character. By using an effective-action approach where the
matter and the internal e.m. degrees of freedom are treated
on the same footing, we showed that the dispersions of the
generalized plasma modes can be obtained by the zeros of
the matrix of the physical gauge-invariant variables, given
by the compact and analytical expression in Eq. (28). One
has three modes in the relevant range of energies, two of
them starting from the frequency scales connected to in-
tracell and intercell Josephson couplings among layers, and
a third one starting from the larger in-plane plasma fre-
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quency. Even though the existence of multiple modes and
their numerical dispersions in selected regimes were already
discussed previously in the literature [11,30,57], the main
advantage of our approach is to reduce the numerical com-
plexity of the derivation to a simple eigenvalue problem of
an analytical matrix. This also simplifies considerably the
analysis of the polarization dependence of the modes in the
various regime for the momenta. We then identified two
crossover scales: above the lower one |kc1| ∼

√
ω2

z1 − ω2
z2/c

one finds the mixing among the two lower Josephson plas-
mons, with one mode evolving analogously to the lower
e.m. mode of the single-layer case, and the latter evolv-
ing towards a low-energy mode around the frequency
ωT =

√
(ω2

z1d2 + ω2
z2d1)/d , which represents opposite-phase

plasma oscillations between the planes, polarized along the
c axis for a wide range of momenta up to |k| ∼ 1/d . Above a
second crossover scale |kc2| ∼

√
ω2

xy − (ω2
z1d1 + ω2

z2d2)/d/c
the two upper modes have the analogous evolution of the
two modes of the single-layer case [26], and progressively
approach the pure transverse/longitudinal modes usually pre-
dicted within a standard-RPA approach.

To make closer connection with previous study focusing
on the c-axis linear response, we also computed the linear
optical conductivity. We showed that the theoretically pre-
dicted [5,30] and experimentally observed [2,27,31–35] peak
in the optical conductivity at the scale ωT can be under-
stood as an effect of an unusual finite-frequency correction
to the optical response due to out-of-phase fluctuations of the
SC phase in neighboring layers within the same unit cell.
This interpretation explains also the rather unexpected ob-
servation of a plasmon-like peak in the optical conductivity.
Indeed, the general expectation is that since the conductivity
is the current response to the local electric field, screening
effects due to Coulomb interactions should not be included.
In other words, in the usual diagrammatic language the op-
tical conductivity is obtained as a current response function
irreducible with respect to the Coulomb interaction [62–64].
As such, the conductivity should not carry signatures of the
plasma modes, that appear instead in the dielectric function
describing the screening. However, in the bilayer case the
beating mode connected to relative phase fluctuations among
neighboring planes within the same unit cell intrinsically cou-
ples to Coulomb interactions at large momenta, i.e., at short
length scales, and as such must be included in the physical
response, as it is usually done in DFT calculations in lattice
systems [63]. Following this procedure we then reproduced
the observed experimental peak at ωT and we also computed
its corrections for finite compressibility that can be relevant to
locate it for different doping levels.

Besides such a direct application to the computation of the
linear response, the results of the present paper, including the
methodological ones, provide a framework to address several
open issues still under discussion for what concerns recent
experiments using strong THz fields in YBCO [18,21,27,28].
Indeed, a precise characterization of the modes and their po-
larizations is the crucial prerequisite in order to understand
the possible mechanisms responsible for their contribution to
the nonlinear optical response. So far, both a coupling to an
infrared phonon mode [18] and a direct nonlinear coupling

of plasmons to light [12] have been proposed as possible
pathways for nonlinear driving of plasma waves in YBCO.
How these proposals can be justified at a full microscopic
level is still an open question, that certainly deserves future
investigation.
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APPENDIX A: PHASE-ONLY EFFECTIVE ACTION
IN THE PATH-INTEGRAL FORMALISM

Let us start from a grand-canonical Hamiltonian for a
generic single-band superconductor,

Ĥ − μN̂ =
∑
k,σ

ξkĉ†
kσ ĉkσ + ĤI , (A1)

where σ is the spin index, ξk is the band dispersion with
respect to the chemical potential μ, ĉ†

k,σ and ĉk,σ are the
electron creation and annihilation operators respectively. The
interacting Hamiltonian ĤI reads [41],

ĤI = −U

N

∑
k′

�̂
†
�(k′)�̂�(k′) (A2)

where �̂�(k′) = ∑
k γ (k)ĉ−k−k′/2,↓ĉk−k′/2,↑, with γ (k) =

cos(kxa) − cos(kya) accounting for the d-wave symmetry of
the order parameter, U > 0 is the SC coupling constant and
N denotes the number of lattice sites. In order to compute
thermal averages over the Hamiltonian (A1) we use the path
integral formulation. Within such framework the imaginary-
time action for fermions [7] can be written as

S[c, c] = S0 + SI

=
∫ β

0
dτ

[∑
kσ

ckσ (∂τ + ξk )ckσ + HI (k, τ )

]
, (A3)

where τ = it is the imaginary time variable summed from 0 to
β = 1

T and c and c are the Grassmann variables associated to
the creation and annihilation operators respectively. To obtain
the effective action in terms of the order-parameter collec-
tive degrees of freedom, the interacting action is decoupled
in the particle-particle channel by means of the Hubbard-
Stratonovich (HS) transformation by introducing the auxiliary
complex field �,

�(x, τ ) = (�0 + δ�(x, τ ))eiθ (x,τ ) (A4)

where �0 is the mean-field expectation value of the amplitude
associated to the SC energy gap, δ� and θ are amplitude and
phase fluctuations. By making an appropriate gauge transfor-
mation on the Grassmann fields c and c it is possible to make
the dependence on the phase θ explicit in the action. Then we
introduce the Nambu spinors �

†
k = (c†

k↑, ck↓), by which one

014503-14



GENERALIZED JOSEPHSON PLASMONS IN BILAYER … PHYSICAL REVIEW B 108, 014503 (2023)

can define the BCS Green’s function as

Ĝ0(k, iων ) = −
∫ β

0
dτ 〈T (

�̂k(τ )�̂†
k (0)

)〉eiωντ

= iωντ̂0 + ξkτ̂3 − �0γ (k)τ̂1

(iων )2 − E2
k

. (A5)

Here ων = (2ν + 1)πT are the Matsubara fermionic frequen-
cies, Ek =

√
ξ 2

k + (�0γ (k))2 the quasiparticles energy, and τ̂i

the Pauli matrices.
With these transformations on Eq. (A3), one finds that the

HS transform of SI is independent of the phase fluctuations,
while the free contribution now reads

S̃0 = S0 +
∫

dxdτ�(x, τ )�̂(x, τ )�(x, τ ). (A6)

�̂ is the self-energy, which depends, in principle, on both
amplitude and phase fluctuations. Nonetheless, as long as
one is interested in the low-temperature dynamics of phase
fluctuations in layered cuprates, amplitude fluctuations can be
neglected [43]. The self-energy then reads

�̂ =
[

i

2
∂τ θ + 1

8m∗ (∇θ )2

]
τ̂3 +

[
i

4m∗ ∇θ ·
↔
∇

]
τ̂0, (A7)

where
↔
∇ =

→
∇ −

←
∇, with

→
∇ (

←
∇) the gradient operator acting

on the function on its right (left). Notice that, according to
the Goldstone theorem, the phase θ appears in the self-energy
only through its time and spatial derivatives, i.e., there are no
mass terms for θ .

Since the action is quadratic in the fermionic variables, we
can now integrate them out. Ignoring the amplitude mean-field
expectation value �0, such procedure leads to the following
effective action for the phase fluctuations:

Seff[θ ] = Tr
+∞∑
n=1

(Ĝ0�̂)n

n
(A8)

where the trace is computed over both spin and momentum
degrees of freedom. In order to study the phase dynamics we
can compute this effective action at Gaussian level, truncating
the sum for n � 2,

SG[θ ] = 1

8

∑
q

[ − �2
mχρρ (q) + kαkβχ

j j
αβ (q)

− 2i�mkαχρ j
α (q)

]|θ (q)|2 (A9)

where q = (i�m, k) is the imaginary-time 4-momentum with
�m = 2πmT the bosonic Matsubara frequencies, and

χρρ (q) = T

N

∑
q′

Tr[Ĝ0(q′ + q)τ̂3Ĝ0(q′)τ̂3],

χρ j
α (q) = T

N

∑
q′

k′
α + kα

2

m∗ Tr[Ĝ0(q′ + q)τ̂0Ĝ0(q′)τ̂3],

χ
j j
αβ (q) = n

m∗ δαβ

+ T

N

∑
q′

k′
α + kα

2

m∗
k′

β + kβ

2

m∗ Tr[Ĝ0(q′ + q)τ̂0Ĝ0(q′)τ̂0],

(A10)

are the BCS response functions, which contain all the in-
formation on the microscopic fermionic degrees of freedom.
Again, if one is interested in the low-temperature phase-
dynamics, one can evaluate the BCS bubbles in the static limit
i�m = 0, k → 0; within such approximation Eq. (A9) goes to
the superfluid action in Eq. (2) of the main text. Notice the
symmetry of the SC order parameter only enters the problem
via the γ (k) factor, which modulates the SC gap �0γ (k). As
a consequence, the structure (A9) is general [41,42], and the
main dependence on the symmetry of the SC gap appears in
the temperature dependence of the current-current correlation
function, leading to a temperature dependence of the BCS
superfluid stiffness Ds that is linear at low T in the d-wave
case, in contrast to the exponential suppression for the fully
gapped s-wave case.

APPENDIX B: FIELDS DISCRETIZATION
IN BILAYER CRYSTALS

In this Appendix we derive the action associated with the
free contribution of the electromagnetic (e.m.) fields and fix
the discretization required for the SC phase action. To achieve
this, a possible procedure would be to work with continuous
Maxwell’s equation and discrete density and current defined
on an anisotropic lattice, which can then be reduced to a
layered structure by taking the continuum limit in the x and
y directions. This would require to express the free e.m. fields
in terms of a sum on the momenta appropriate to the lattice so
to have the correct periodicity and momentum conservation.
For instance, the bare Coulomb interaction for a single-layer
system would be described by the well-known propagator [67]

V SL
C = 2πe2d

kx

sinh(kxd )

cosh(kxd ) − cos(kzd )
. (B1)

For a bilayer crystal this procedure would be quite heavy.
In this paper we adopt an alternative procedure, in which
one goes back from the discretized Maxwell’s equations to
the action that generates them via the variational principle.
For instance, within this approach the single-layer Coulomb
interaction is given by

V SL
C = 4πe2

k2
x + 4/d2 sin2(kzd/2)

. (B2)

Comparing this with Eq. (B1), one understands that the two
approaches are equivalent at leading order in kd and even
if the latter is not as common as the standard anisotropic
discretization, it can be generalized to include the needed
fields on the bilayer lattice.

Let us consider a rectangular lattice structure. With no
loss of generality, x denotes the in-plane direction with lat-
tice constant a, while z is the out-of-plane coordinate with
intra- and interbilayer spacings d1 and d2 respectively. For
the sake of simplicity, here we do not consider explicitly the
y dimension of the lattice, although the y direction must be
considered in order to correctly define the field components.
Such discretization defines in a single unit cell two distinct
rectangular regions of area a · dλ called plaquettes. The lattice
and the quantities defined on it are shown in Fig. 7. To recover
the results of the main text one should take the limit a → 0 at
the end.
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FIG. 7. Sketch of the bilayer lattice structure. The spacings be-
tween the sites (gray dots) define two “plaquettes” of area a · d1 (red)
or a · d2 (blue). The e.m. scalar potential is defined on the sites, as
shown by the orange dots in a sample unit cell, while the components
of the vector potential are defined on the links between two sites,
as shown by orange arrows. This choice fixes the positions of the
magnetic and electric fields according to the definitions (B3), (B5),
and (B6). Here we also depict the two Gaussian surfaces along the
xz plane, �1 and �2 (perimeter of the yellow areas) in a sample unit
cell and the two Amperian loops relevant for the y component of the
magnetic field, �xy and �yz (blue rectangles) on the 3D model on the
bottom-right corner.

As a first step, we define the scalar potential φ and the
components of the vector potential Ax and Az on such a lattice
properly. A consistent choice is to define φ on the lattice sites
and Ai on the links between two neighboring sites along the
i direction. As a consequence, the magnetic field is along the
y direction and lies at the center of the λth plaquette,

Byλ,n = �zλAxλ,n − �xAzλ,n, (B3)

where the out-of-plane discrete derivative in this case is de-
fined as in Eq. (26) in the main text and the in-plane discrete
derivative �x acts on a generic function fλ,n according to

�x fλ,n(x) = fλ,n(x + a) − fλ,n(x)

a
. (B4)

In the continuum limit a → 0 relevant for the main text, �x

simply reduces to the in-plane partial-derivative operator ∂x.
On the other hand, the two components of electric field in
imaginary-time formalism are

Exλ,n = −�xφλ,n − i

c

∂Axλ,n

∂τ
, (B5)

defined on the link along the x direction between the sites x
and x + a, and

Ezλ,n = −�z,λφλ,n − i

c

∂Azλ,n

∂τ
, (B6)

defined on the link along the z direction between two subse-
quent layers.

To compute the electrostatic action, one needs to discretize
Gauss’s law for a bilayer lattice. In the most general case, its

integral formulation reads∮
�(�)

E(x) · n̂(x)dS = 4π

εB
Qenc. (B7)

In Eq. (B7), Qenc = ∫
�

dxρ(x) is the total electric charge con-
tained into a generic volume �, �(�) is the closed Gaussian
surface enclosing both � and the charge, and n̂(x) is the versor
normal to the surface at the point x. In order to apply Eq. (B7)
to our system, we have to choose two Gaussian surfaces prop-
erly, for label-1 and for label-2 sites. Within our 2D lattice,
the volume � is reduced to a surface and a generic Gaussian
surface is equivalent to a closed path in the xz plane. We thus
choose rectangular paths, such that each side of the rectangle
crosses perpendicularly one component of the electric field.
A good choice consists in two rectangular Gaussian surfaces,
both having in-plane and out-of-plane dimensions a and d/2
respectively, aligned so that each of them encloses a single
lattice site. The total fluxes over these two surfaces �1 and �2

are then given by∮
�1

E(x) · n̂(x)dS

= d

2
[Ex1,n(x + a) − Ex1,n(x)] + a[Ez2,n − Ez1,n], (B8)∮

�2

E(x) · n̂(x)dS

= d

2
[Ex2,n(x + a) − Ex2,n(x)] + a[Ez1,n+1 − Ez2,n]. (B9)

By using Eqs. (B8) and (B9) in Eq. (B7) with Q(1)
enc = q1,n and

Q(2)
enc = q2,n, we obtain the equation of motion for the electric

field,

d

2
(�xExλ,n + �zλEzλ,n) = 4π

εB

qλ,n

a
, (B10)

where the derivative along z acts now on a quantity defined on
the link between two out-of-plane sites as

�zλ fλ,n =
{

f2,n− f1,n

d/2 , λ = 1
f1,n+1− f2,n

d/2 , λ = 2.
(B11)

Equation (B10) can also be seen as the equation of motion
given by the imaginary-time action

S(BL)
E =

1,2∑
λ

d

2

∑
n

∫
d2xdτ ρλ,nφλ,n

− εB

8π

1,2∑
λ

∑
n

∫
d2xdτ

[
d

2
E2

xλ,n + dλE2
zλ,n

]
, (B12)

where the limit a → 0 relevant for the main text is taken, and
ρλ,n = lima→0 qλ,n/a is the 2D charge density.

The magnetic contribution, in full analogy with the deriva-
tion for the electrostatic term above, requires the discretization
of Ampère’s law, whose integral form reads∮

�(�)
B(x) · dl = 4π

c
Ienc (B13)

where Ienc = ∫∫
�

J(x) · n̂(x)dS denotes the electric current
flowing through a generic surface � bounded by the Amperian
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loop �(�) and dl is the infinitesimal length element parallel
to the curve at the point x. Taking vanishing y dimension,
one needs to define the two components of the linear-current
density as Ixλ,n and Izλ,n on the links. The former is enclosed
in a rectangular Amperian loop �yz along the yz plane with
vanishing y dimension so that the equation of motion for the
magnetic field along this path reads

d

2
�zλByλ,n = −4π

c
Ixλ,n, (B14)

where �zλ acts on Byλ,n according to Eq. (B11); the latter
is enclosed in a rectangular Amperian loop �xy along the
xy plane, and the equation of motion for the magnetic field
in the limit of vanishing y dimension reads in this case

a�xByλ,n = 4π

c
Izλ,n. (B15)

Equations (B14) and (B15) follow from the variational princi-
ple associated with the action

S(BL)
B =

1,2∑
λ

[
d

2

∑
n

∫
d2xdτ Jxλ,n

Axλ,n

c

+ dλ

∑
n

∫
d2xdτ Jzλ,n

Azλ,n

c

+ dλ

8π

∑
n

∫
d2xdτB2

yλ,n

]
, (B16)

where Jiλ,n = lima→0 Iiλ,n/a and we send a → 0.
The light-matter interaction and the free e.m. dynamics are

thus described by the action obtained by the sum of Eqs. (B12)
and (B16), which reads [68–70]

S(BL)[φ, A, ρ, J]

= S(BL)
E + S(BL)

B =
1,2∑
λ

∑
n

∫
d2xdτ

[
d

2
ρλ,nφλ,n

+ d

2
Jxλ,n

Axλ,n

c
+ dλJzλ,n

Azλ,n

c

]
+ εB

8π

1,2∑
λ

∑
n

∫
d2xdτ

×
[

dλ

εB
(�zλAxλ,n − ∂xAzλ,n)2−d

2

(
∂xφλ,n + i

c
∂τ Axλ,n

)2

− dλ

(
�zλφλ,n + i

c
∂τ Azλ,n

)2]
(B17)

where we made explicit the magnetic and electric fields ac-
cording to Eqs. (B3), (B5), and (B6). In the language of the
SC phase field θ , defined for consistency on the sites, one can
identify the charge density and the current density as

ρλ,n = e

4
κ0(i∂τ θλ,n − 2eφλ,n),

Jx = e

4
Dxy

(
∇xθλ,n + 2e

c
Axλ,n

)
,

Jz = eJλd2
λ

(
�zλθλ,n + 2e

c
Azλ,n

)
. (B18)

While the calculations above were performed with a magnetic
field along y, Eq. (B17) can be generalized for a magnetic field

FIG. 8. Energy-momentum dispersions as functions of kx for
kz = 0 (η = π/2) of the three mixed modes ωpl (green), ωJ1 (red),
and ωJ2 (blue) in the nonrelativistic regime. Dashed lines show
the compressibility corrections given by a finite α = 0.6 Å2. The
in-plane lattice constant in this plot is a = 3.5 Å.

along a generic direction. As such, the first row of Eq. (B17)
sets the discretization constants for the SC phase action as
written in Eq. (23) in the main text, while the second row turns
into the free e.m. contribution as given by Eq. (24).

We conclude this Appendix by establishing the rules for the
Fourier transform along the z axis used in the main text. First,
we fix the origin of the frame of reference on the link between
two subsequent layers of an arbitrary unit cell. On the nth unit
cell, a generic field f s,l

λ,n defined either on-site (s) or on the link
(l), transforms as

f s,l
λ,n =

∑
kz

eikz (nd+hs,l
λ ) fλ(kz ), (B19)

where

hs
λ =

{
−d1/2, λ = 1

d1/2, λ = 2
, (B20)

and

hl
λ =

{
0, λ = 1

d/2, λ = 2
. (B21)

APPENDIX C: DISPERSIONS OF THE PLASMA MODES IN
THE NONRELATIVISTIC REGIME

The formalism employed in this paper allows one to study
the plasma modes of a bilayer superconductor in every region
of the energy-momentum space. A more in-depth study of the
ωJ2 low-energy Josephson plasmon reveals a nontrivial be-
havior in the nonrelativistic regime. As discussed in Secs. II C
and II D in the main text, for |k| � |kc1| this mode saturates
towards a constant value of the frequency while sustaining
opposite-phase out-of-plane oscillations regardless of the di-
rection of propagation. However, for momenta approaching
1/d the dispersion actually starts growing linearly, as shown
with solid lines in Fig. 8. This effect could not be captured

014503-17



N. SELLATI et al. PHYSICAL REVIEW B 108, 014503 (2023)

by previous studies [22,30,57,71–74] focused on the optical
properties of the Josephson plasmons that used the fact that
ωxy � ωz1,z2 to ignore the in-plane dynamics. Moreover, this
dispersive behavior cannot be associated with the Bogoliubov
sound dispersion [11], as it appears even for α = 0 and the dis-
persion velocity appears to be two orders of magnitude greater
than the typical sound velocities in metals. Instead, since this
effect is only visible as kx �= 0 and the velocity increases
for η approaching π/2, we associate this behavior to the
non-negligible in-plane dynamics of the charges in the non-
relativistic regime. This is supported by the fact that the po-
larization of the Josephson mode acquires slowly-increasing
opposite-phase in-plane components as its dispersion grows.

A finite compressibility (α �= 0), apart from the small cor-
rections to the plasma frequencies at |k| = 0 discussed in
Sec. II E, affects significantly the dispersions of the modes
only in the nonrelativistic regime, as shown in Fig. 8 with
dashed lines. In particular, a finite α causes a weak linear
behavior in the ωJ1 Josephson mode, with sound velocity
vs ∝ √

α. The same compressibility effect takes place sim-
ilarly in the ωJ2 mode, adding up to its stronger linear
behavior in the nonrelativistic regime discussed above. The
effects of a finite compressibility are instead not apprecia-
ble on the ωpl mode, as the sound velocity is much smaller
than the light velocity with which the mode is growing,
vs 	 c.
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