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Multiband mean-field theory of the d + ig superconductivity scenario in Sr2RuO4
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Many seemingly contradictory experimental findings concerning the superconducting state in Sr2RuO4 can
be accounted for on the basis of a conjectured accidental degeneracy between two patterns of pairing that are
unrelated to each other under the (D4h ) symmetry of the crystal: a dx2−y2 -wave (B1g) and a gxy(x2−y2 )-wave (A2g)
superconducting state. In this paper, we propose a generic multiband model in which the g-wave pairing involving
the xz and yz orbitals arises from second-nearest-neighbor BCS channel effective interactions. Even if time-
reversal symmetry is broken in a d + ig state, such a superconductor remains gapless with a Bogoliubov Fermi
surface that approximates a (vertical) line node. The model gives rise to a strain-dependent splitting between the
critical temperature Tc and the time-reversal symmetry-breaking temperature TTRSB that is qualitatively similar
to some of the experimental observations in Sr2RuO4.
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I. INTRODUCTION

For more than two decades, Sr2RuO4 was generally be-
lieved to be a chiral p-wave superconductor (SC) mainly
due to a compelling narrative based on early experiments
[1–5]. The extreme sensitivity of the superconducting state to
impurities [6] unambiguously establishes that it is an uncon-
ventional SC, and various experiments confirm that the gap
is nodal [7,8]. However, recent nuclear magnetic resonance
(NMR) experiments have seemingly ruled out triplet pairings
of any sort [9–11].

Further constraints on the symmetry of the SC order can be
inferred from a variety of experiments. Elastocaloric data [12]
obtained when the Fermi surface is tuned through a Lifshitz
transition strongly suggest that the SC gap is nonvanishing at
the Van Hove points. Moreover, ultrasound experiments, taken
at face value, suggest a two-component order parameter with
highly constrained symmetries [13,14]: A discontinuity in the
c66 shear modulus implies that the only possibilities consist of
the innately two-dimensional irrep dxz-dyz (Eg) [15–21] or an
accidental degeneracy between two distinct one-dimensional
irreps whose tensor product has B2g symmetry, i.e., dx2−y2

and g [22–26] or s and dxy [27,28]. Evidence [29,30] of
time-reversal symmetry (TRS) breaking at or slightly be-
low Tc provides further evidence of a two-component order
parameter.

That the Fermi surface of Sr2RuO4 is quasi-two-
dimensional, i.e., it consists of three cylindrical sheets
corresponding to the α, β, and γ bands, makes it seem
unlikely that the SC order parameter has strong inter-layer
pairing in the vertical z direction, which provides an additional
strong reason to exclude the possibility of dxz-dyz (Eg) pairing.
This is further supported by the lack of a visible discontinuity
in the (c11 − c12)/2 (B1g) shear modulus [13]. Conversely,
an accidental degeneracy between distinct irreps requires a
certain degree of fine tuning so that the critical temperature
Tc is roughly equal to the TRS breaking temperature TTRSB,
i.e., Tc ≈ TTRSB. However, this requires only one degree of

fine tuning and thus could plausibly arise in a small subset
of SC materials.

In our recent works [22,23], we preferred the dx2−y2 + ig
pairing symmetry over the s + idxy wave, mainly due to ex-
perimental observations of line nodes in the SC gap function
[7,8,31]. Indeed, in a single-band model, d + ig pairing leaves
symmetry-protected line nodes along the diagonal directions
(110), (11̄0), while s + idxy pairing would require an extra
degree of fine tuning, i.e., a (s + idxy)-wave SC is generically
fully gapped. However, a perturbative study of the effective
interaction based on a “realistic” multiband model of the
electronic structure of Sr2RuO4 concluded that the leading
instabilities are in the s and dxy channels [27,28]; this result
raises issues concerning the “naturalness” of the dx2−y2 + ig
SC state. In particular, within a single band on a square
lattice, the pair wave function in a g-wave state vanishes at
all distances shorter than fourth-nearest neighbors, and thus
seemingly requires unnaturally long-range interactions.

To address this problem, we consider a generic multiband
microscopic BCS model in which the results follow largely
from symmetry considerations. In this model, the g wave
always lives primarily on the α and β bands, which derive
from the symmetry-related xz and yz Ru orbitals. There are
two reasons for this: (1) g-wave pairing is strongly disfavored
in the xy band in that the pair wave function vanishes where
the density of states is largest in the vicinity of the Van Hove
points. (2) Coupling between the xz and yz bands permits
g-wave pairing to be induced by second-nearest-neighbor ef-
fective interactions,1 i.e., much shorter range than is required

1Note: The interactions here should be viewed as effective in-
teractions. However, so long as any fluctuations that mediate such
interactions are far from critical, the resulting effective interactions
will be short ranged in space and time, as assumed here. For instance,
the correlation length associated with short-range spin-density wave
correlations (�q = 0.13 Å−1) seen in neutron scattering [48] has
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in a single-band context. Conversely, the dx2−y2 component is
strongest on the xy band.

As a consequence, the model readily accounts for the re-
cently observed uniaxial stress dependence of the splitting of
the critical temperature Tc from the time-reversal symmetry
(TRS) breaking TTRSB [29]. As we show via microscopic
Bogoliubov–de Gennes (BdG) calculations (Fig. 3), appli-
cation of uniaxial stress has little effect on Tc until it is
sufficiently strong to trigger a sharply peaked enhancement
close to the critical strain at which the xy band crosses a Van
Hove point, leading to a divergent density of states (DOS)
[12,32,33]. In contrast, across this Lifshitz transition, the xz
and yz bands are only slightly distorted (an asymmetry of
∼2%) [29] and thus the g-wave component of the order pa-
rameter is largely unaffected, resulting in a TTRSB that is only
weakly strain dependent. (The strain dependence would be
quite different for a putative (s + idxy)-wave state, in which
both components sit on all bands.) Within our model, the ap-
proximate degeneracy between the d- and g-wave components
persists in the presence of symmetry-breaking shear strain.
However, it is lifted by isotropic strain and leads to a linear
increase in Tc; this effect has not been detected in recent
experiments [34]. How to reconcile this observation with our
d + ig proposal remains unresolved at present.

Regarding the nodal structure, we show that the symmetry-
protected line nodes along the diagonal planes (110), (11̄0)
anticipated in the single-band model extend into Bogoliubov
Fermi surfaces (FS) in the general multi-band dx2−y2 + ig
state. The Bogoliubov FSs are extended in the kz direction
and consist of narrow ellipses for generic kz, that pinch into
point nodes in the kz = 0 and π planes. The pinching off at
kz = 0 and π is due to a combination of the mirror symmetries
Mz : z �→ −z and Mxy : x ↔ y.2 In practice, such Bogoli-
ubov Fermi surfaces would exhibit behavior characteristic of
line nodes (as is observed experimentally [7,8,31]), except at
extremely low temperatures.

II. MICROSCOPIC ANALYSIS

A. Setup

Unless otherwise specified, we will consider a two-
dimensional (2D) model, corresponding to a single RuO2

plane. [We we will consider the effects of three-dimensional

a correlation length that is 1/(a�q) ≈ 2 lattice constants, where
a = 3.85 Å is the in-plane lattice spacing.

2In general, mirror symmetry Mz acts on both on k space and
orbital and spin space Mz so that Mz = Mz ⊗ (kz �→ −kz ). In the
kz = 0, π planes, Mz conserves k so that Mz = Mz, and thus when
the state is even under Mz, the k-conserving Hamiltonian is decou-
pled in the eigenspaces Mz = ±i. Away from the kz = 0, π planes,
such a decomposition is not exact and thus the radius of the Bogoli-
ubov Fermi surface is in proportion to the weak coupling between
the orbital and spin eigenspaces Mz = ±i. This is not necessarily on
the same magnitude as the interplane coupling. Indeed, one could
imagine a general 3D Hamiltonian with kz dependence (due to in-
terplane coupling), but still decoupled in the eigenspaces Mz = ±i
involving only orbital and spin (see Appendix D). This particular
scenario would not be enough to induce Bogoliubov Fermi surfaces.

(a) (b)

FIG. 1. (a) Fermi surfaces (FS) computed in the absence of hy-
bridization and spin-orbit (SO) coupling. (b) FS including the effect
of hybridization between the xz, yz bands but no SO (solid lines), and
with both hybridization and SO (dashed lines). Here interplane dis-
persion is neglected; numerical parameters are given in Appendix A.

(3D) dispersion in the discussion of the nodal structure.] We
will always restrict our attention (for reasons already dis-
cussed) to gap functions that are even with respect to both
parity P and under mirror symmetry Mz. This leaves us
with only one-dimensional irreps of the point group D4h, i.e.,
(s, d, d ′, g)-wave pairings (A1g, B1g, B2g, A2g, respectively).

B. Normal state

Let us first consider the normal state � = 0 where the
Hamiltonian is

H0 = Hintra + Hhybrid + HSO,

Hintra =
∑
kνs

εν (k)ψ†
νs(k)ψνs(k),

Hhybrid =
∑

ks

εh(k)(ψ†
xs(k)ψys(k) + H.c),

HSOC =
∑

kνν ′ss′
εSOC(k)ψ†

νs(k)ψν ′s′ (k)lνν ′ · σss′ . (1)

The first term Hintra represents the dispersion of each orbital
ν = x, y, z (for dyz, dzx, dxy respectively), while the second
term Hhybrid is the spin-conserving hybridization between the
x, y bands and generates the α, β bands shown in Fig. 1, where
εh(k) characterizes the strength of hybridization between the
x, y bands.3 The third term represents the spin-orbit coupling
(SOC) where lμ

νν ′ = −iενν ′μ. The specific parametrizations of
εν (k), εh(k), and εSOC(k) used in our calculations are given in
Appendix A.

In the normal state, P,Mz, T are all preserved. The
single-particle space can thus be decomposed into the
eigenspaces of Mz = ±i,4 with ordered basis |+〉 ≡

3It should be noted that due to Mz symmetry, there exists no
spin-conserving hybridization between the x, z bands and y, z bands,
i.e., εx,z = εy,z = 0. However, in a full 3D model, such hybridization
terms are allowed and can give rise to gap functions between the
x, z bands and y, z bands, i.e., �x,z, �y,z �= 0, even in the absence
of spin-orbit coupling. Since Sr2RuO4 is quasi-2D, such terms can
always be treated perturbatively.

4That M2
z = −1 is due to its action on the spin sector.
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(x↑, y↑, z↓) and |−〉 ≡ (x↓, y↓,−z↑), respectively.5 The
signs are chosen so that the k-conserving antiunitary sym-
metry T P maps |+〉 �→ |−〉, and thus the two eigenspaces
have equivalent energy levels.6 The normal state Hamiltonian
is simplified as

H0 =
∑

k,a=±
ψ†

a (k)ε̂a(k)ψa(k),

ε̂± = 〈±|ε|±′〉 =
⎡
⎣ εx εh ∓ iεSOC εSOC

εh ± iεSOC εy ∓iεSOC

εSOC ±iεSOC εz

⎤
⎦,

(2)

where ψ
†
± are the creation operators for the basis |±〉 and

ε̂− = ε̂∗
+ due to T P .7 Using a multiorbital symmetry analysis

(Table II of [19] or Appendix B), the components εx(k) ±
εy(k), εh(k) must satisfy (S, D, D′)-wave (A1g, B1g, B2g) sym-
metry in k space, respectively.8

C. BCS state

Since the BCS Hamiltonian is assumed to preserve Mz, a
similar decomposition can be performed on the general multi-
band particle-hole space. More specifically, particle states |+〉
and hole states |−〉 form an ordered basis for the eigenspace
Mz = +i, and particle states |−〉 and hole states |+〉 for
Mz = −i. Let C denote particle-hole symmetry so that CP
denotes a k-conserving antiunitary symmetry [maps H(k) �→
−H(k)] between the Mz = +i ↔ −i eigenspaces. Hence,
the BCS Hamiltonian H in the decoupled eigenspaces Mz =
±i have equivalent (opposite signed) energy levels. When
TRS T is preserved, each eigenspace is further doubly (op-
posite signed) degenerate due to the local unitary symmetry
T C which commutes with Mz.9 Therefore, we can use the

5Technically, |±〉 are ordered bases for the eigenspaces of Mz = ±i
where Mz is the orbital and spin action of Mz so that Mz = Mz ⊗
(kz �→ −kz ). However, since we are dealing with an ideal 2D model,
the distinction will not be important until we consider a general 3D
model (see Appendix D).

6It should be mentioned that even in the absence of mirror sym-
metry Mz, the antiunitary symmetry T P is sufficient to show that
energy levels are doubly degenerate (and thus there are only three
Fermi surfaces). The potential benefit of this extra condition is to
obtain a canonical decoupling which will persist into the SC state
when TRS is broken.

7The prime in |±′〉 is to denote a possible different vector (within
the same ± sector) than |±〉, e.g., 〈x ↑ |ε|z ↓〉.

8S, D, D′ are capitalized to emphasize that the symmetries are only
with respect to k space and not orbitals and spin. It should be noted
that the symmetries of each component were obtained assuming that
the normal state ε(k) is invariant under the point group D4h. If, for
example, 100 or 110 strain was included, the point group would
shrink (though the normal state would still preserve mirror symmetry
Mz).

9Even in the absence of mirror symmetry Mz, the symmetries
T P, CP are sufficient to show that every nonzero eigenenergy
is doubly degenerate, while the zero eigenenergy space is quartic

TABLE I. The η = ± signs in the table are such that C(k) �→
ηC(k′) under point-group operation O = C4,Mxy where k′ ≡
O−1k. The first four components (last five) correspond to singlet
(triplet) pairing.

Component C \ Operation O C4 Mxy

�z + +
�x + �y + +
�x − �y − −
�x,y + �y,x − +
�x,y − �y,x + +
�x,z + �z,x + i(�y,z − �z,y ) + +
�x,z + �z,x − i(�y,z − �z,y ) − −
�y,z + �z,y + i(�x,z − �z,x ) − +
�y,z + �z,y − i(�x,z − �z,x ) + −

Nambu spinors �
†
±(k) = (ψ†

±(k), ψ∓(−k)) to write the BCS
Hamiltonian in the following block-matrix form:

H =
∑

k,a=±
�†

a (k)Ha(k)�a(k),

H±(k) =
⎡
⎣ ε̂±(k) �̂±(k)

�̂
†
±(k) −ε̂±(k)

⎤
⎦,

�̂+(k) =

⎡
⎢⎢⎣

�x �x,y �x,z

�y,x �y �y,z

�z,x �z,y �z

⎤
⎥⎥⎦, �̂− = −�̂T

+, (3)

where ε̂±(k) is given in Eq. (2). In the case where TRS T is
preserved, �̂(k)† = �̂(k).10

D. Symmetries of gap matrix

Using a multiorbital symmetry analysis ([19] or Ap-
pendix B), it is straightforward (but a bit complicated) to
see that the matrix elements of �̂(k) are mapped under π/2
rotation C4 and x ↔ y mirror symmetry Mxy (the remaining
generators of D4h), in the manner tabulated in Table I. De-
pending on the overall symmetry of the SC gap, the remaining
matrix components must satisfy corresponding symmetries in
k space shown in Table II.

It is worth mentioning that SOC in general mixes (physi-
cal) spin-singlet and -triplet pairings. Indeed, the gap matrix
�̂ = �̂singlet + �̂triplet can be decomposed into a singlet com-
ponent �̂singlet and a triplet component �̂triplet (referred to as

degenerate. However, the mirror symmetry Mz will make it possible
to analyze nodal points of TRS breaking accidentally degenerate
states, e.g., d + ig pairings.

10Due to the symmetry between �̂±, we will drop the + subscript
when referring to the gap matrix �̂+.
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TABLE II. k-space symmetry of components in gap matrix �̂(k)
in Eq. (3). The top row denotes the overall symmetry of the SC gap,
while each entry denotes the k-space symmetry of the corresponding
component, capitalized (S, D, D′, G) to emphasize k-space symme-
try only. The first four components (last five) correspond to singlet
(triplet) pairing.

Component C\ Symmetry s d d ′ g

�z S D D′ G
�x + �y S D D′ G
�x − �y D S G D′

�x,y + �y,x D′ G S D
�x,y − �y,x S D D′ G
�x,z + �z,x + i(�y,z − �z,y ) S D D′ G
�x,z + �z,x − i(�y,z − �z,y ) D S G D′

�y,z + �z,y + i(�x,z − �z,x ) D′ G S D
�y,z + �z,y − i(�x,z − �z,x ) G D′ D S

shadowed triplet in [26]), where

�̂singlet(k) =

⎡
⎢⎣

[c]�x �h 0

�h �y 0

0 0 �z

⎤
⎥⎦, (4)

�̂triplet(k) =

⎡
⎢⎣

0 i�h′ �x,z

−i�h′ 0 �y,z

�z,x �z,y 0

⎤
⎥⎦, (5)

�h = 1

2
(�x,y + �y,x ), (6)

�h′ = 1

2i
(�x,y − �y,x ). (7)

We emphasize that we do not assume SOC is weak;
rather, the dominant singlet behavior is a phenomenological
assumption. In this case, since G waves require unnaturally
long-range interactions to generate, Table II implies that the
g wave “naturally” lives mainly on the x, y bands, while all
other one-dimensional (1D) irreps s, d, d ′ wave should have
comparable magnitudes on all three bands. More specifically,
a g wave can be generated via the form �x/y(k) = ±D′(k)
which only requires second-nearest-neighbor interactions.11

E. Nodal structure

We now turn to the nodal structure of the dominantly sin-
glet d + ig phase. In a multiband model, the nodal points are
determined in a nonlinear manner by the SC gap � [i.e., by
solving det H (k) = 0] and thus the nodal structure of acciden-
tally degenerate states does not follow trivially from analyzing
1D irreps individually, e.g., [17,19]. Typically, the stability of
point nodes in 2D or line nodes in 3D is established under
only under the assumption of unbroken TRS T [35–38].

11Indeed, a state with �x,y = �y,x = D has g-wave symmetry
involving only nearest-neighbor pairing. However, since the hy-
bridization εh in the band structure is generally small compared to
the diagonal terms εx, εy, εz, the off-diagonal components of the gap
matrix �̂ are typically small for reasons unrelated to their range.

Below, we show that for the singlet d + ig pairing in a 2D
system, the existence and stability [39] of point nodes along
the (110), (11̄0) directions can be established, despite the
breaking of TRS, on the basis of unbroken Mz (along with the
usual Mxy).12 A small admixture of subdominant triplet pair-
ing due to SOC does not affect this result (see Appendix D).
In a general 3D model, however, this argument only applies
in the kz = 0, π planes; for all other (nonmirror invariant)
values of kz, the line nodes of the 2D problem expand into
narrow surfaces of gapless Bogoliubov quasiparticles (similar
to [40]), that become “pinched” into points at the kz = 0 and
π planes. The radius of these “Bogoliubov Fermi surfaces” is
small in proportion to the coupling of eigenspaces Mz = ±i
(see Appendix D).

In the Sr2RuO4 context, any such Bogoliubov Fermi sur-
faces would be small both as a consequence of the smallness
of the spin-conserving hybridization between the x, z and y, z
bands13 and atypical forms of SOC14 in units of the band-
width. Thus, a multiband d + ig phase will display properties
characteristic of vertical line nodes (such as a linear depen-
dence of the density of states in energy) down to extremely
low energies, consistent with the nodal behavior of the single-
band d + ig phase.

1. Existence of line nodes

By symmetry considerations tabulated in Table II, if the
overall symmetry is of singlet d + ig pairing, then along
the (110), (11̄0) directions, the only nonzero component of
the gap matrix �̂(k) is �x(k) − �y(k) [which we refer to
as 2�3(k) and possibly a complex number, i.e., �3(k) ≡
ei2θ (k)|�3(k)|]. It is then clear that by performing a k-
conserving gauge transform, the quasiparticle Hamiltonian
H+(k) with complex �3(k) is mapped unitarily to that with
non-negative |�3(k)|, i.e.,

e−iθτ3 H+(ε̂+,�3)eiθτ3 = H+(ε̂+, |�3|), (8)

where τ3 denotes the Pauli matrix in particle-hole space and
H+ depends on k implicitly via ε̂(k),�3(k). Equivalently,
the gauge transform maps the TRS breaking k-conserving
Hamiltonian H+(k) to such that preserves TRS,15 and thus
a line node can be found explicitly along the (110), (11̄0)
directions (see Appendix C). It is worth mentioning that if
we consider a triplet d + ig pairing, by Table I or II, there
are two nonzero components along the (110), (11̄0) directions
and thus the argument breaks down.

12A similar proof can be adapted to show the existence and stability
of line nodes along the (100), (010) directions for d ′ + ig pairing.

13Terms of the form 〈xs|ε(k)|zs〉, 〈ys|ε(k)|zs〉 for s = ↑, ↓, which
break the action of mirror symmetry Mz on the orbital and spin space
(couple the |±〉 bases).

14Terms such as 〈x↑|ε(k)|x↓〉, 〈x↑|ε(k)|y↓〉, since the typical form
εSOC(k)l · σ in Eq. (1) preserves SU(2) action on the orbital and spin
space and, thus, even for kz �= 0, π , is decoupled in the orbital and
spin bases |±〉.

15Indeed, gauge symmetry is the reason why single-band d + ig
states can still have stable line nodes despite breaking TRS.
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TABLE III. First three harmonics (R � 2) based on symmetry
and normalized via their squared integral. The 0 implies that there
does not exist such a symmetry component for the given range. We
have omitted the GR(k) wave since it does not appear until fourth-
nearest-neighbor interactions (R = 4).

Lattice Harmonic R = 0 R = 1 R = 2

(A1g) SR(k) 1 cos kx + cos ky 2 cos kx cos ky

(B1g) DR(k) 0 cos kx − cos ky 0
(B2g) D′

R(k) 0 0 2 sin kx sin ky

III. NUMERICAL RESULTS

A. Setup

Since on physical grounds, we plan to deal only with the
case in which the effective interactions are short ranged, it is
convenient to introduce lattice harmonics, specified by their
range R and their symmetry, which form an ordered basis for
any lattice function. The first few such harmonics for each
relevant symmetry are shown in Table III, normalized via their
squared integral (L2 norm). Thus, for example, we can decom-
pose a D wave in k space into a linear combination of lattice
harmonics DR(k) of range R (where R = 0 indicates onsite,
R = 1 is nearest neighbors, R = 2 is next-nearest neighbors,
etc.).

We can then consider an effective interaction in the BCS
channel of the form

V = 1

2

∑
μμ′,kk′

Vμμ′ (k − k′)P†
μ(k)Pμ′ (k′), (9)

where Pμ(k) = ψ↓μ(−k)ψ↑μ(k) annihilates a Cooper pair
in band μ and Vμμ′ (q) represents the interaction between
bands μ,μ′. By construction, the form of Vμμ′ (q) precludes
interband pairing of the SC gap, i.e., the self-consistency
equations imply �h = 0; a more general form of the interac-
tion would generally lead to a small but nonzero �h, but this
would not change any of our findings qualitatively.

We shall take interactions that respect the lattice symme-
tries and have range R � 216:

Vμμ′ (q) =
∑

R=0,1,2

vμμ′ (R)SR(q), (10)

where SR is given by the first row in Table III. It is then
convenient to express V as a sum of terms of the form
caψa(k)ψa(k′) where each ψa(k) transforms according to one
of the irreps (S, D, D′) of the point group and decomposed
into harmonics tabulated in Table III. We leave the details
of the decomposition in Appendix E. For completeness, the
nonlinear gap equation is given here

�μ(k) =
∑
μ′k′

Vμμ′ (k − k′)〈Pμ′ (k′)〉, (11)

16By symmetry, it is possible that Vx,x (q) �= Vy,y(q) and Vx,z(q) �=
Vy,z(q). However, the differences (Vx,x − Vy,y )(q) and (Vx,z − Vy,z )(q)
must satisfy B1g symmetry with respect to q. Therefore, for interac-
tion range R � 2, the interactions can only mix s and dx2−y2 wave
harmonics, e.g., (Vx,x − Vy,y )(k − k′) = s1(k)d1(k′) + d1(k)s1(k′) +
· · · , and thus have no direct effect on the R = 2 harmonics involving
the dxy or g waves.

FIG. 2. The T = 0 phase diagram in a representative 2D plane
in the multidimensional parameter space of interactions. The black
point corresponds to a point at which d and g are degenerate, with
parameters listed in Table IV; we will use these parameters in later
analysis including those reported in Figs. 3 and 4. In the main figure,
all interactions with range R < 2 are held fixed, while those with
R = 2 are varied maintaining the (arbitrarily chosen) relation vz,z =
0.73vx,y − 0.43, where the slope is positive so that vz,z, vx,y do not
compete [41]. The inset represents the thermal phase diagram along
the 1D cut through parameter space indicated by the dashed line in
the main figure. The different color solid lines are phase boundaries
corresponding to the point at which the indicated symmetry order
parameters vanish.

where the expectation value 〈. . . 〉 is taken with respect to the
BCS Hamiltonian.

For simplicity, we will henceforth set SOC to zero since
it does not qualitatively affect the results. In particular, the
Lifshitz transition occurs at k points (π, 0), (0, π ), where the
orbital character of each band is well defined and thus the SOC
terms are weak in any case. In this limit, the two-band system
consisting of the α and β bands decouples from the γ band
within the BCS Hamiltonian, though all three bands are still
coupled via the interaction term V in the nonlinear gap equa-
tion in Eq. (11). Using the fact that SU(4) is the spin group
of SO(6), we provide an intuitive manner of diagonalizing the
4×4 BdG Hamiltonian involving the two-band system, details
of which are left in Appendix F.

B. Zero temperature T = 0

Figure 2 shows a cut through the T = 0 phase diagram
in response to intraband and interband couplings, obtained
by solving the self-consistent BCS equations described in
Eq. (11). Indeed, as previously argued, by Tables II and III,
a g-wave SC gap with range R � 2 must satisfy �z = �x +
�y = 0 and thus must be constructed via the anticipated form
�x/y(k) = ±D′(k). Moreover, since D′

R(k) is first nonzero for
second neighbor R = 2, the range R = 2 interactions (includ-
ing both intraband vx,x, vz,z and interband vx,y) are responsible
for generating dxy- or g-wave symmetries. The remaining in-
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TABLE IV. Specific parameters (in units of the nearest-neighbor
hopping tz on the γ band) chosen of the interaction term in Eq. (10)
corresponding to the dot in Fig. 2. Note that in Fig. 2, only
vx,x (2), vx,y(2) were varied.

Interaction v/tz R = 0 R = 1 R = 2

vz,z(R) 7 −0.4 0.3
vx,x (R) 5 −0.1 −1.2
vx,y(R) 5 −0.1 1
vx,z(R) 5 0.1 0.1

teraction parameters are fixed and given in Table IV, tuned
so that at T = 0 there exists a background dx2−y2 wave.
Throughout, the preferred phase relation between the two
components is such as to break time-reversal symmetry, i.e.,
dx2−y2 ± ig or dx2−y2 ± idxy.

In the vast parameter space of interactions, it is probably
unsurprising that we can find regions in which the dx2−y2 and
g waves coexist. However, while in any single-band problem,
such coexistence regions are generically exceedingly narrow,
here the coexistence region is relatively large, reflecting the
fact that the two components live primarily on different bands,
and so hardly compete with one another.17 Within the coexis-
tence regions, the transition temperatures of the two orders
are comparable, i.e., Tc ∼ TTRSB. Indeed, in the inset graph in
Fig. 2, we plot the onset temperature Tonset of each component
(dx2−y2 , g, dxy waves) along the given cut (dashed purple line)
in the phase diagram. As the secondary order component tran-
sitions from dxy → g wave (left to right), the corresponding
background dx2−y2 wave has an increase in Tc.

C. Splitting of Tc, TTRSB with uniaxial stress

Let us tune the parameters to the dot in Fig. 2 so that
the ground state has dx2−y2 ± ig pairing and Tc ≈ TTRSB in
the absence of strain. We model the effect of uniaxial stress
(parametrized by εxx) by varying the band parameters in a
manner consistent with experiment [12,32] such that the γ

band crosses the Van Hove point (0,±π ) at εxx ≈ −0.44%
(details in Appendix G). The α, β bands are also distorted,
but only slightly [32].

The resulting critical temperature for the d and g compo-
nents are given in Fig. 3. Due to symmetry-breaking uniaxial
stress, the point-group symmetry D4h is broken, while the
subgroup D2h is preserved. This implies that the dx2−y2 com-
ponent in general gains an s-wave component. Similarly, the
g wave should also gain a dxy-wave component. However, our

17Along the x axis of Fig. 2, the presence of a dxy wave would
imply comparable magnitude on all three bands and thus induces
strong competition with the dx2−y2 wave. Therefore, the accidental
degeneracy between the dx2−y2 and dxy states is quickly destroyed
by the preference for a pure dxy wave as shown in inset of Fig. 2.
In contrast, the g-wave component mainly lives on the α, β bands by
symmetry requirements and thus there is a natural ground state where
the background dx2−y2 shifts progressively to the γ band to minimize
competition. A similar logic would apply in the instance where the
background state is an s wave instead of a dx2−y2 wave.

FIG. 3. Critical temperatures. The red and green lines represent
the critical temperatures of the d- and g-wave components. (The
thickness denotes numerical uncertainty in the result based on calcu-
lations on a 30002-site square lattice.) The Lifshitz transition occurs
at a uniaxial stress εxx ≈ −0.44%.

numerical calculations show that the additional dxy is much
smaller than the g-wave component. This is presumably due to
the fact that the α, β bands are minimally distorted in the pres-
ence of strain, while the strong d- or (d + s)-wave component
on the γ band suppresses any other symmetry component.
Therefore, we label the corresponding symmetries as given
in the legend of Fig. 3.

In the presence of small uniaxial stress εxx � −0.2%, away
from the Lifshitz transition, the critical temperatures remain
remarkably close to each other, and thus the accidentally de-
generate d + ig state is stable when the DOS remains roughly
constant. Near the Van Hove point εxx ≈ −0.44%, the d-wave
channel is enhanced causing the observed split in Tc > TTRSB.
At a value of the strain somewhat beyond the Van Hove
point, εxx � −0.5%, our calculations suggest that the g-wave
component is first observed when entering superconductivity.
However, note that in the context of short-range ordere (SRO),
there exists an observed competing spin-density-wave (SDW)
[29] which is not incorporated in our calculations.

D. Response to pure B2 and A1 strain

We again tune the parameters to the dot in Fig. 2 so that
the d, g waves are accidentally degenerate and investigate
the response of our multiband model to pure B2 and pure
A1 strain. The resulting critical temperatures regarding the
onset of d and g waves are shown in Fig. 4. In Fig. 4(a),
symmetry-breaking B2 strain is simulated by modifying the
second-nearest-neighbor (R = 2) hoppings in the normal-state
band structure (details in Appendix G). In this case, the critical
temperatures remain remarkably close to each other even at
large strain values (at which the relative phase between the
d, g components is θ = 0) and thus provides further evidence
to the stability of the accidental degeneracy in the presence of
strain. In Fig. 4(b), we introduced pure A1 strain by tuning the
relative energies of the three bands so that the γ band is driven
towards (away from) the Van Hove singularity for negative
(positive) values ε, with the total density of electrons held
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(a)

(b)

FIG. 4. The red and green lines represent the critical temperature
T at which the d and g waves occur under (a) pure B2 strain and
(b) pure A1 strain. The inset in subplot (a) shows the relative phase
between the d and g waves near Tc, i.e., along the horizontal dashed
line in (a).

fixed (see Appendix G). This results in a crossover between
the d, g waves, i.e., for ε < 0 the d wave is favored over the
g wave and vice versa, resulting in a kinklike feature in the
overall Tc [maximum of the two lines in Fig. 4(b)] at ε = 0.
No such kink has been detected in experiments on SRO to
date [34].

IV. SUMMARY

Although Sr2RuO4 would seem to be the ideal material
to serve as the model system for unconventional super-
conductivity, given that its normal state is an extremely
well-characterized Fermi liquid, even the symmetries of the
superconducting state have remained controversial [5]. Ulti-
mately, this issue can only be settled by either reproducible
phase-sensitive measurements, or by direct imaging (e.g., by
angle-resolved photoemission or quasiparticle interference)
of the gap structure on the Fermi surfaces. However, in the
absence of these, further progress must rely on more indirect
evidence based on comparisons between relatively robust as-
pects of theory and experimentally detected trends. Some of
these aspects depend only on symmetry. However, while mi-
croscopic aspects of the problem are more difficult to access
unambiguously, certain features, especially those that relate

directly to qualitative aspects of the known band structure, can
be useful for the present purposes.

Here, we have analyzed a simple microscopic model with
the band structure of Sr2RuO4 and effective pairing interac-
tions treated as phenomenological input (we make no claims
to the origin of the effective interaction). We have found sev-
eral features of the solution of this problem that lend credence
to the conjecture that the peculiar difficulty in settling the
order-parameter question arises from an accidental near de-
generacy between a dx2−y2 -wave and g-wave pairing tendency.
Specifically, we find the following suggestive results:

(i) It is sufficient to consider a model with relatively short-
ranged pairing effective interactions, out to second-neighbor
distance. In common with many previous studies [42–45], we
find that the generic result is that pairing is dominant either
on the γ band or on the α and β bands. Thus, in any case, a
certain degree of fine tuning of the interactions is necessary
to ensure that the gap magnitude is comparable on all bands
(as is experimentally established [46]).

(ii) Under circumstances of near degeneracy, the dx2−y2 -
wave pairing occurs dominantly on the γ band and the g wave
on the α and β bands. Loosely, this near degeneracy requires
no more fine tuning than is required to have comparable gaps
on all bands.

(iii) As a consequence, if the band structure is tuned (for
instance by uniaxial stress) such that the γ band approaches
the nearby Van Hove point, this can significantly enhance the
d-wave component of the order parameter, but has relatively
little effect on the g wave. (Generally, if two components
coexist in the same bands, then whatever enhances one tends
to suppress the other.)

(iv) The existence of gapless (nodal) quasiparticles is pro-
tected by symmetry, even if time-reversal symmetry is broken
in a dominantly singlet dx2−y2 + ig state, so long as the mirror
symmetry Mz (along with the usual Mxy) of the crystal is
unbroken. Conversely, similar to the single-band model, Mxy

breaking strain can induce a SC gap which can be detected in
experiment.

While none of these results are sufficiently unique to serve
as confirmation of the basic scenario, they serve to increase
confidence in its “naturalness.”

Note added. Recently, in Ref. [47] the authors stabilized
a dx2−y2 + ig state via introducing a second-nearest-neighbor
term in the bare interaction. Although the calculation was
done in the weak coupling limit in terms of random phase
approximation (RPA), it agrees with our proposal that a rela-
tively short-ranged model is sufficient to stabilize a g-wave
component. In contrast, Ref. [24] proposes a multipole-
fluctuation pairing mechanism to stabilize a dx2−y2 + ig state.
In doing so, they assumed a long-range interaction (∼1/q2

in momentum space) which may have been the reason for
stabilizing a secondary g-wave symmetry.
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APPENDIX A: BAND STRUCTURE

The normal-state dispersion values used in this paper are
found in the Supplemental Material (SM) of Ref. [49]. We
repeat them here for completeness, i.e.,

εx/y(k) = −μ0 − 2tx cos kx/y − 2ty cos ky/x, (A1)

εz(k) = −μz − 2tz(cos kx + cos ky) − 2t ′
z(2 cos kx cos ky),

(A2)

εh(k) = 4th sin kx sin ky, (A3)

where for Sr2RuO4, we use the values, the SO coupling was
taken to be εSOC = 30 meV.

tz (meV) tx (meV) ty/tx th/tx μz/tz μx/tx

119 165 0.08 0.13 1.48 1.08

APPENDIX B: SYMMETRY OPERATORS

We shall briefly discuss the explicit forms and properties
of symmetry operators, i.e., particle-hole symmetry (PHS)
C, time-reversal symmetry (TRS) T , and generators of the
point group D4h, i.e., parity P , mirror symmetries Mz,Mxy,
and π/2-rotation symmetry C4. Notice that, except for PHS
C, all other symmetries discussed will be restricted to the
particle space. Their extension to particle-hole space follows
uniquely that they commute with PHS C. More specifically,
〈ah|O|bh〉 = 〈ap|O∗|bp〉 where O∗ denotes complex conjuga-
tion of symmetry operator O and the subscripts h, p denote
hole, particle states:

(1) PHS C is an antiunitary map on particle-hole space,
which takes particle state to hole state and vice versa, and
maps the wave vector k �→ −k. In particular, C2 = 1.

(2) TRS T is regarded as antiunitary map on particle
space, which acts as exp(−iπσ2/2) on spin space, acts triv-
ially on orbital space, and maps the wave vector k �→ −k. In
particular, TRS reverse the spin operators, i.e., T σiT † = −σi

where σi are the Pauli matrices acting on spin space.
(3) Parity P is consistent with its real-space transform

x, y, z �→ −x,−y, z. Hence, it acts trivially on spin and orbital
space, and maps k �→ −k.

(4) Mirror symmetry Mz is consistent with its real-
space transform x, y, z �→ x, y,−z. More specifically, it acts
as exp(−iπσ3/2) on spin space [an SU(2) action which
canonically maps to PMz ∈ SO(3)], maps dyz, dzx, dxy �→
−dyz,−dzx,+dxy orbitals, and maps the wave vector k �→
M−1

z k ≡ (kx, ky,−kz ). Due to spin space, M2
z = −1.

(5) Mirror symmetry Mxy is consistent with its real-
space transform x, y, z �→ y, x, z. More specifically, it acts as
exp[−iπ (n̂ · σ )/2] on spin space where n̂ is the unit vector in
(−1, 1, 0) direction [an SU(2) action which canonically maps
to PMxy ∈ SO(3)], maps dyz, dzx, dxy �→ dzx, dyz, dxy orbitals,
and maps the wave vector k �→ M−1

xy k ≡ (ky, kx, kz ). Due to
spin space, M2

xy = −1.

TABLE V. Mapping of group operations O = C4,Mxy of D4h

where k′ ≡ O−1k.

Operation g Mapping

C4

εz(k) �→ εz(k′)

(εx ± εy )(k) �→ ±(εx ± εy )(k′)

εh(k) �→ −εh(k′)

εSOC(k) �→ εSOC(k′)

Mx,y

εz(k) �→ εz(k′)

(εx ± εy )(k) �→ ±(εx ± εy )(k′)

εh(k) �→ +εh(k′)

εSOC(k) �→ εSOC(k′)

(6) π/2 rotation C4 is consistent with its real-space
transform x, y, z �→ y,−x, z. More specifically, it acts as
exp(−iπσ3/4) on spin space [an SU(2) action which
canonically maps to C4 ∈ SO(3)], maps dyz, dzx, dxy �→
−dzx, dyz,−dxy orbitals, and maps the wave vector k �→
C−1

4 k ≡ (−ky, kx, kz ).
Notice that within certain planes (e.g., kz = 0, π plane

for Mz and kx = ky plane for Mxy), the mirror symmetries
Mz,Mxy are local in k and thus only act nontrivially in the or-
bital and spin space. Therefore, it is useful to define Mz, Mxy as
their orbital and spin actions so that Mz = Mz ⊗ (kz �→ −kz )
and Mxy = Mxy ⊗ (kx ↔ ky).

Normal-state symmetries

Using the explicit forms of point-group symmetries of D4h

discussed in the previous section, one finds that the matrix
components of the normal-state dispersion are mapped in a
rather complicated manner and thus tabulated in Table V.
Since the normal state is invariant under the point group D4h,
it is then clear that εx + εy, εx − εy, εh satisfy (S, D, D′)-wave
(A1g, B1g, B2g) symmetry in k space, respectively. Compare
this to the specific parametrization in Appendix A. A similar
analysis can be done for the SC state with regards to the SC
gap �(k).

APPENDIX C: EXISTENCE OF LINE NODE

Continuing the argument from Sec. II E 1, notice that
H+(ε̂, |�3|) can be decomposed into = τ1λ3|�3| + τ3ε̂+
[where λ3 = diag(1,−1, 0) is the third Gell-Mann matrix]
and thus anticommutes with τ2. Hence, the determinant
(which is invariant under unitary transforms) is given by

det H+(k) = | det[ε̂+(k) + i|�3(k)|λ3]|2, (C1)

where k is restricted along the (110), (11̄0) directions.
Therefore, there exists a nodal point if and only if
det(ε̂+ + i|ζ |λ3) = 0. Notice that mirror symmetry Mxy

maps λ3 �→ −λ3 while keeping ε̂+ invariant. Therefore,
det(ε̂+ + i|�3|λ3) = det(ε̂+ − i|�3|λ3) is a real value along
the (110), (11̄0) directions. The nodal equation det(ε̂+ +
i|�3|λ3) = 0 thus corresponds to one real equation (instead of
2 where both the real and imaginary components are required
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to be zero), and thus defines a line node along the (110), (11̄0)
directions.

For completeness, the nodal equation can be computed
explicitly to be

|�3(k)|2εz(k) + det ε̂(k) = 0 (C2)

and in the absence of SOC, εSOC = 0, the equation reduces to

|�3(k)|2 = εh(k)2 − εx(k)2. (C3)

Since the gap function is usually the smallest scale in the
system, the equation generally holds true at some point along
the diagonals, near the intersection of the FS of the x, y bands,
despite the fact that �3 �= 0.18

APPENDIX D: RIGOROUS PERTURBATIVE ARGUMENT

1. Setup

Let us consider a general 3D multiband dx2−y2 + ig state
H (k) with spin degree of freedom so that H (k) is a 4n×4n
matrix at each wave vector k (n = 3 is the number of orbitals
in Sr2RuO4). We shall assume that H (k) has arbitrarily strong
SOC and dominantly singlet with possible subdominant triplet
pairing and weak kz dependence so that we can treat the
triplet pairing and kz dependence perturbatively. Let H s(k) be
obtained from H (k) by setting the triplet-pairing gap elements
= 0, i.e., the purely singlet portion so that in particle-hole
space,

H (k) = H s(k) +
[

0 �triplet(k)
�triplet(k)† 0

]
. (D1)

Let us further define

H s
0 (k) =

∑
m=±i

1Mz=mH s(k)1Mz=m, (D2)

H0(k) =
∑

m=±i

1Mz=mH (k)1Mz=m, (D3)

where 1Mz=±i are the projection operators onto the
eigenspaces of the orbital and spin action Mz = ±i. In this
case, H0(k), H s

0 are decoupled in the eigenspaces Mz = ±i
which was the essential ingredient in our restricted 2D model
in the main text. It is worth mentioning that, here, H0(k) and
H s

0 (k) may have kz dependence.
Notice that mirror symmetry Mxy maps �(k) �→ −�(k)

so that after a gauge transform U = iτ3 (where τ3 is the Pauli
matrix in particle-hole space), the Hamiltonian H (k) is invari-
ant UMxy ≡ M̃xy. Subsequently, the restricted Hamiltonians
H s, H0, H s

0 are also invariant under M̃xy.

2. Starting point: Decoupled singlet Hamiltonian

As discussed in the main text, since H s
0 (k) is of purely sin-

glet pairing and is decoupled in the eigenspaces of Mz = ±i,
it has a line node extended in the kz direction in the (110)
direction, which we denote by ks

0(kz ). Let us fix kz, and thus
from Theorem 1, it is clear that dim ker H s

0 (ks
0) = 4m for some

m � 1. In the absence of other symmetries, it is generally

18If on the unlikely event that the |�3| is sufficiently large so that
Eq. (C3) never holds, there still exists a nodal point along the γ band
since SOC is assumed to be zero for (C3).

assumed that m = 1 so that we can choose φs
0(ks

0) so that
{φs

0(ks
0)} = (φs

0, M̃xyφ
s
0, CPφs

0, CPM̃xyφ
s
0) forms a basis for

ker H s
0 (ks

0), and we shall use Ps
0 (ks

0) to denote the projection
operator onto ker H s

0 (ks
0).

3. Adding mirror-symmetric perturbations,
e.g., weak triplet pairing

Let us fix kz as before, and let k be near ks
0(kz ) along

the (110) direction so that M̃xy = M̃xy. Since triplet pairing
is subdominant, we can assume that H0(k) − H s

0 (ks
0) with

respect to the gap of H s
0 (ks

0) [lowest nonzero energy level of
H s

0 (ks
0) and not to be confused with the gap function �(ks

0)]
when k is near ks

0 so that P0(k) can be well defined as the
projection operator onto eigenstates of H0(k) with energies
near zero and also unitarily equivalent to Ps

0 (ks
0) as explained

in Appendix D 6. By perturbation theory (Weyl’s inequality),
the variation of the energy values must be small and thus
it is sufficient to consider the restriction of H0(k) to P0(k)
when attempting find the zero energies of H0(k), i.e., only
eigenstates in P0(k) have energies sufficiently close to zero.

Since H0(k) is decoupled in the eigenspaces of Mz = ±i
and invariant under mirror symmetry M̃xy, from Theorem 1,
there must exist φ0(k) such that {φ0(k)} forms a complete or-
thonormal basis for P0(k) (though not necessarily degenerate
anymore). As an analogy, φ0(k), M̃xyφ0(k) should be consid-
ered as “pseudospins” in particle space, while the remaining
states are considered as “pseudospins” in hole states. Within
the basis {φ0(k)}, the restriction H0(k)P0(k) must be of the
form

H0(k)P0(k) =
[

ε̂0(k) �̂0(k)

�̂0(k)† −ε̂0(−k)T

]
. (D4)

By CP symmetry, �̂0(k) must form a singlet between the
pseudospins, i.e., in the basis representation {φ0(k)}, the ma-
trix �̂0(k) = �0(k)(iσ2) where �0(k) ∈ C and σ denotes the
Pauli matrix in pseudospin basis. Furthermore, under the basis
{φ0(k)}, the symmetries Mz, M̃xy have the matrix forms

Mz =

⎡
⎢⎢⎣

+i
−i

−i
+i

⎤
⎥⎥⎦,

M̃xy =

⎡
⎢⎢⎣

+1
+1

+1
+1

⎤
⎥⎥⎦. (D5)

Since H0(k)P0(k) preserves the local symmetries Mz, M̃xy, ex-
plicit calculations show that ε̂0(k) = ε0(k)σ0 where ε0(k) ∈
R and �̂0(k) = 0. Therefore,

H0(k)P0(k) = τ3 ⊗ ε0(k)σ0. (D6)

Therefore, along the (110) direction, the triplet-mixing Hamil-
tonian H0(k) has a nodal point at k if and only if ε0(k) = 0.
Since this a real equation on a 1D line, it is in general satisfied
at a single-point node k0(kz ) near ks(kz ) at each kz and thus
extended line nodes are stable under triplet mixing as long as
the symmetries Mz, M̃xy are satisfied.

014502-9



YUAN, BERG, AND KIVELSON PHYSICAL REVIEW B 108, 014502 (2023)

4. Adding weak coupling between eigenspaces of Mz = ±i

Let us fix kz as before, and let k be near k0(kz ), but not
necessarily in the (110) direction. Since Sr2RuO4 is quasi-2D,
the coupling between eigenspaces of Mz = ±i must be weak
and thus we can assume that H (k) − H0(k0) with respect to
the gap of H0(k0) [lowest nonzero energy level of H0(k0) and
not to be confused with the gap function �(k0)] when k is
near k0 so that P(k) can be well defined as the projection oper-
ator onto eigenstates of H (k) with energies near zero and also
unitarily equivalent to P0(k0) as explained in Appendix D 6.
By perturbation theory (Weyl’s inequality), the variation of the
energy values must be small and thus it is sufficient to consider
the restriction of H0(k) to P0(k) when attempting find the zero
energies of H0(k), i.e., only eigenstates in P0(k) have energies
sufficiently close to zero.

I. First assume that k is still along the (110) direction so
that M̃xy is a local symmetry. It should be noted from the
matrix form of M̃xy with respect to {φ0(k0)} in Eq. (D5) that

tr(M̃xyP0(k0)) = 0. (D7)

Since M̃xy has eigenvalue ±1, we see that tr(M̃xyP0(k0)) must
be an integer and thus, by continuity, for sufficiently small
variations H (k) − H0(k0), we must also have

tr(M̃xyP(k)) = 0. (D8)

Since H0(k) still preserves mirror symmetry M̃xy in the di-
agonal planes and dim P(k) = dim P0(k0) = 4, we see that
eigenstates of H (k) in P(k) can be divided by the eigenspaces
of M̃xy = ±1, each of which is of dim 2, i.e., dim ker(M̃xy ±
1) = 2. Notice that CP commutes with M̃xy and thus maps
within each eigenspace M̃xy = ±1. Hence, by Lemma 1,
there exists an orthonormal basis χ±, CPχ± consisting of
eigenstates of H (k) within each eigenspace M̃xy = ±1, re-
spectively. Let us now define

φ(k) = 1√
2

(χ+ + χ−). (D9)

Then it is clear that {φ(k)} forms a complete orthonormal ba-
sis for P(k). We can then repeat the same argument as before,
restricting to the effective two-band Hamiltonian H (k)P(k),
but only using mirror symmetry M̃xy this time. In this case, we
see that �̂(k) = 0 while ε̂(k) = ε(k)σ0 + ε′(k)σ1 or, equiva-
lently,

H (k)P(k) = τ3 ⊗ [ε(k)σ0 + ε′(k)σ1]. (D10)

Therefore, the perturbed Hamiltonian H (k) has a node if and
only if |ε(k)| = |ε′(k)|. Since this we can either take ε(k) =
+ε′(k) or ε(k) = −ε′(k), the originally single node k0 for
H0 splits into two nodes along the (110) direction for H (k)
and thus suggests that there exists a Bogliubov Fermi surface
circling the original node k0 and intersecting the diagonal
plane at the two nodes.

II. To check this, let us assume the general case
where k is not necessarily along the (110) direction, but
still near the original node k0. A similar argument can
be repeated to show that there exists a complete basis
{φ(k), χ ′(k), CPφ(k), CPχ (k)} for P(k), where φ(k), χ (k)
are not related by mirror symmetry M̃xy anymore. However,
since CP is still preserved, the effective two-band gap func-

tion �̂(k) must form a singlet between the pseudospins, i.e.,
�̂(k) = �(k)(iσ2). This implies that the particle-hole dis-
persion relation ε̂(k) can be unitarily transformed via any
SU(2) rotation in pseudospin space without affecting the
gap function. Therefore, the effective two-band Hamiltonian
H (k)P(k) can be unitarily transformed so that ε̂(k) is diago-
nal with entries ε±(k), i.e.,

H (k)P(k) =

⎛
⎜⎜⎝

ε+(k) �(k)
ε−(k) −�(k)

−�(k)∗ −ε+(k)
�(k)∗ −ε−(k)

⎞
⎟⎟⎠,

(D11)

where the solid lines divide the particle and hole subspaces.
Therefore, the effective Hamiltonian H (k)P(k) has a zero
mode if and only

|�(k)|2 + ε+(k)ε−(k) = 0. (D12)

In the absence of mirror symmetries and TRS, a small Zee-
man splitting occurs in pseudospin space, i.e., ε+(k) �= ε−(k),
and thus a Bogoliubov FS is generated where Eq. (D12) is
satisfied.

5. Some useful exact statements regarding symmetries

Lemma 1. Let A be a Hermitian operator on a 2N-
dimensional Hilbert space and T be an antiunitary operator
which anticommutes with A and satisfies T = T † = T −1.
Then there exists an orthonormal basis of the form φi, T φi,

i = 1, 2, . . . , N where φi corresponds to eigenvalue ai and
T φi corresponds to eigenvalue −ai. In particular,

dim ker A ∈ 2N. (D13)

Proof. It is clear that if φ is an eigenstate of eigenvalue
a, then T φ is an eigenstate of eigenvalue −a. Therefore, if
a �= 0, then φ, T φ must be orthogonal, and thus the summa-
tion of all eigenspaces with nonzero eigenvalue a �= 0 must
be of even dimension. Since the total Hilbert space is 2N
dimensions, we see that dim ker A ∈ 2N. Let us now consider
the restriction TA of T to ker A. Since T 2

A = IA is the identity
operator on ker A, we see that (TA − IA)(T + IA) = 0. Hence,
if φ ∈ ker A, then either φ̃ ≡ (TA + IA)φ is nonzero and thus
an eigenstate of TA with eigenvalue +1, OR φ̃ = 0 and thus φ

is an eigenstate of TA with eigenvalue −1. In the latter case, we
see that iφ is an eigenstate of TA with eigenvalue +1 since TA

is antilinear. Hence, we can always find an orthonormal basis
χ1, . . . , χ2m for ker A of eigenstates of TA with eigenvalue +1.
Now let us define

φ2i−1/2i = 1√
2

(χ2i−1 ± iχ2i ), i = 1, 2, . . . , m. (D14)

Then it is clear that φ2i = T φ2i−1 and thus we have found a
basis of the form φ, T φ for ker A and consequently for the
entire Hilbert space. �

Theorem 1. If BCS Hamiltonian h commutes with Mz,

M̃xy, then

dim ker h = 4m, m � 0. (D15)
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More specifically, there exists an orthonormal basis for ker h
of the form

{φ} ≡ (φi, M̃xyφi, CPφ, CPM̃xyφi : i = 1, . . . , m). (D16)

Proof. Since h commutes with Mz and Mz is Hermi-
tian with M2

z = −1, we can decompose the particle-hole
subspace into the eigenspaces of Mz = ±i. Notice that CP
commutes with Mz and since the eigenvalue of Mz are imag-
inary, we see that CP is an antiunitary operator between the
eigenspaces Mz = +i ↔ Mz = −i. In particular, we see that
dim ker(Mz ± i) = 2n. Since h anticommutes with CP , we
see that if φ is an eigenstate of h in eigenspace Mz = +i
with energy E , then CPφ is an orthogonal eigenstate of
h in eigenspace Mz = −i with energy −E , and vice versa.
Similarly, notice that M̃xy anticommutes with Mz and thus
is a unitary operator which maps between the eigenspaces
Mz = +i ↔ Mz = −i. Therefore, CPM̃xy is an antiunitary
map which maps each eigenspace onto itself, i.e., ker(Mz ± i)
is invariant under CPM̃xy. Notice that CPM̃xy is an antiunitary
Hermitian operator which anticommutes with h within each
eigenspace ker(Mz ± i). Therefore, by Lemma 1, within each
eigenspace ker(Mz ± i), the kernel of h is doubly degener-
ate. In fact, we can find an orthonormal basis of the form
φi, CPM̃xyφi, i = 1, . . . , m, for ker h ∩ ker(Mz − i) (notice
that the basis may be empty, i.e., m = 0, if ker h is trivial,
i.e., only contains the zero eigenstate). And by CP symmetry,
we see that the kernel of h is quartic degenerate. More specif-
ically, φi, M̃xyφi, CPφi, CPM̃xyφi, with i = 1, . . . , m, form an
orthonormal basis for ker h. �

6. The Riesz projector and perturbation theory

For this section, let h0 be a Hermitian operator on a finite
N-dimensional Hilbert space and let hλ = h0 + λV denote
the perturbed Hermitian operator parametrized by the small
parameter λ and the perturbation is denoted by V . To have a
controlled perturbation theory, we require the eigenspaces of
h0 to “evolve smoothly” to those of hλ as we tune the small
parameter λ. One way of defining such a smooth evolution
rigorously is to apply the Riesz projector [50,51], which we
shall define shortly.

For simplicity, let E1(hλ) � E2(hλ) � · · · � EN (hλ) de-
note the eigenenergies of hλ in ascending order (where each
energy level is repeated by their degeneracy), and let E0

denote a (possibly degenerate) eigenenergy of h0, i.e., there
exists some i such that

Ei−1(h0) < E0 ≡ Ei(h0) = Ei+1(h0) . . .

= Ei+m−1(h0) < Ei+m(h0). (D17)

It is then clear that we can draw a circle � in the complex plane
C which only contains E0 in the interior and none of the re-
maining energy levels of H0. By the Weyl inequality, we know
that |En(hλ) − En(h0)| � |λ|||V ||, i.e., the variation in energy
levels is controlled by the small parameter λ. Therefore, for
sufficiently small λ, the energies Ei(hλ), . . . , Ei+m−1(hλ) are
still contained in the interior of � while the remaining energy
levels of hλ are in the exterior. Within this neighborhood of λ

values, we can define the Riesz projector as

Pλ ≡ 1

2π i

∮
�

dz

z − hλ

. (D18)

It is then easy to see that Pλ is smooth with respect to λ

and is equal to the projection operator onto the summation
of eigenspaces Ei(hλ), . . . , Ei+m−1(hλ). Since the number of
energy levels (repeated by their degeneracy) does not change
in the interior of � for sufficiently small λ, we see that dim Pλ

is constant and Pλ, Pλ′ are unitarily equivalent for distinct
values of small λ, λ′.

APPENDIX E: DECOMPOSITION OF THE INTERACTION

Consider the interaction V in Eq. (9) given by the form
V (k − k′) where we have suppressed the band indices μ,μ′
for simplicity. Since V (q) is assumed to be D4 invariant, we
can rewrite it in terms of s-wave lattice harmonics with range
R � 0,

V (q) =
∑
R�0

v(R)SR(q). (E1)

Let |r〉 denote the Dirac delta function at real-space lattice
site r and WR denote the D4-invariant subspace spanned by
|r〉 over all lattice sites r of range R, i.e., |r| = R. Then in real
space, the lattice harmonic sR can be written as the summation
over all lattice sites r of range R, i.e.,

SR = 1√|WR|
∑
|r|=R

|r〉, (E2)

SR(r) = 1√|WR|δ|r|=R, (E3)

where |WR| is the number of lattice sites r with range R.
Conversely, in momentum k space, the lattice harmonic can
be rewritten as

sR(k − k′) = 1√|WR|
∑
|r|=R

〈k − k′|r〉 (E4)

= 1√|WR|
∑
|r|=R

〈k|r〉〈r|k′〉 (E5)

= 1√|WR| 〈k|
⎡
⎣∑

|r|=R

|r〉〈r|
⎤
⎦|k′〉 (E6)

= 1√|WR| 〈k|PR|k′〉, (E7)

where PR denotes the projection operator onto WR. Notice that
for a given range R, the subspace WR can be decomposed into
a unique combination of irreps of the symmetry group D4, and
thus PR must be diagonal in terms of its decomposition, i.e.,

PR = 1√
WR

∑
ψR

|ψR〉〈ψR|, (E8)

where the summation is over all possible lattice harmonics ψR

in WR corresponding to distinct irreps. In particular,

sR(k − k′) = 〈k|PR|k′〉 = 1√
WR

∑
ψR

ψR(k)ψR(k′)∗. (E9)
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As an example, consider the case R = 1 in Table III. Since
only W1 = A1 ⊕ B1 ⊕ E , we see that

S1(k − k′) = 1
2 [S1(k)S1(k′) + D1(k)D1(k′)]

+ 1
2 [px(k)px(k′) + py(k)py(k′)], (E10)

where px(k), py(k) is an orthonormal basis for the E irrep in
W1. Notice that the terms projecting into the E irrep are not
involved in computing the nonlinear gap equation in Eq. (11)
since we assumed that the gap function � is of even parity.
Therefore, in the main text, lattice harmonics belonging to the
E irrep for any range R are omitted.

APPENDIX F: DIAGONALIZATION OF TWO-BAND
BCS HAMILTONIAN: SU(4) → SO(6)

1. Setup

Ignoring spin-orbit coupling, εSOC(k) = 0, the two-band
system involving the α, β bands decouples from the single-γ
band in the BCS Hamiltonian. Therefore, we can use the
reduced two-band Nambu spinor [in contrast to the three-band
spinor in Eq. (3)]

�†(k) = [ψ†
x↑(k) ψ

†
y↑(k) | − ψx↓(−k) − ψy↓(−k)].

(F1)

To rewrite the decoupled two-band BCS Hamiltonian,

H (k) =

⎛
⎜⎜⎜⎝

εx εh �x �h

εh εy �h �y

�†
x �

†
h −εx −εh

�
†
h �†

y −εh −εy

⎞
⎟⎟⎟⎠, (F2)

where we have kept the k dependency implicit in the entries
since the BCS Hamiltonian H (k) is local in k, and the solid
lines separate the particle-hole subspaces. Due to particle-hole
symmetry and even parity, the eigenenergies of the local H (k)
are doubly degenerate, i.e., of the form ±E . To reduce this
degeneracy and make the diagonalization process more trans-
parent, let us consider H (k)2, i.e.,

H (k)2 =

⎛
⎜⎜⎝

R + h a + ib 0 c + id
a − ib R − h −c − id 0

0 −c + id R + h a − ib
c − id 0 a + ib R − h

⎞
⎟⎟⎠ (F3)

= R + hσ03 + aσ01 − bσ32 − cσ22 − dσ12, (F4)

where σμν = σμ ⊗ σν is the tensor product of Pauli matrices
and

R = ε2
h + |�h|2 + 1

2

(
ε2

x + |�x|2 + ε2
y + |�y|2

)
, (F5)

h = 1
2

(
ε2

x + |�x|2 − ε2
y − |�y|2

)
, (F6)

a + ib = �
†
h�x + �h�

†
y + εh(εx + εy), (F7)

c + id = �h(εx − εy) − (�x − �y)εh. (F8)

Indeed, to solve the nonlinear gap equation, we need to
obtain the one-particle density matrix (1-pdm) �(k) [52]

defined by

�(k) ≡ 1

eβH (k) + 1
(F9)

= 1

2
− H (k)U (k)† 1

2|E (k)| tanh

(
β|E (k)|

2

)
U (k),

(F10)

where U (k) is the unitary matrix which diagonalizes H (k)2

into E (k)2. Notice that the 1-pdm �(k) is related to the Nambu
spinors in Eq. (F1) in the sense that the matrix entries of �(k)
are given by

�(k)ab = 〈�†(k)b�(k)a〉. (F11)

2. A reformulation of SU(2) → SO(3)

The single-band BCS Hamiltonian is generally diago-
nalized via the SU(2) → SO(3) relation [or su(2) ↔ so(3)
isomorphism] and thus it is natural to think the correspond-
ing SU(4) → SO(6) homomorphism [su(4) ↔ so(6)] can be
used to diagonalize the two-band BCS Hamiltonian. With
that in mind, let us reformulate the SU(2) → SO(3) relation
so that it can be easily generalized to the SU(4) → SO(6)
isomorphism.

Let â ∧ b̂ be the antisymmetric matrix with entry −1 at
(a, b) and +1 as (b, a). In the example of d = 3 dimensions,

1̂ ∧ 2̂ = −iL3, (F12)

exp(θ 1̂ ∧ 2̂) = exp(−iθL3), (F13)

where L3 is the standard angular momentum along the +3̂
direction. Notice that in d = 3 dimension, a rotation in a
plan (e.g., e−iθL3 ) can be specified by the normal vector 3̂
and a rotation angle θ . However, in higher dimensions, this is
impossible and thus we instead specify a rotation by the plane,
e.g., 1̂ ∧ 2̂ (the plane spanned by the orthonormal frame 1̂, 2̂),
and the rotation angle θ . Notice that 1̂ ∧ 2 = −2̂ ∧ 1̂, and thus
the order of the 2 axes represent the direction of rotation, e.g.,
exp(θ 1̂ ∧ 2̂) rotates the axes 1̂ → 2̂ by an angle of θ .

It’s then clear that the SU(2) → SO(3) relation [su(2) ↔
so(3) isomorphism] is given by

1

2i
σ1 ↔ 2̂ ∧ 3̂, (F14)

1

2i
σ2 ↔ 3̂ ∧ 1̂, (F15)

1

2i
σ3 ↔ 1̂ ∧ 2̂, (F16)

where σi are the Pauli matrices. In particular, a 2×2 Hermitian
matrix in the Lie algebra isu(2)

H = cos θσ3 + sin θσ1 ↔ cos θ 1̂ ∧ 2̂ + sin θ 2̂ ∧ 3̂ (F17)

can be diagonalized H = U †σ3U via the unitary operator

U = exp
(
−θ

σ2

2i

)
↔ exp(θ 3̂ ∧ 1̂). (F18)

It should be emphasized that the only requirement for such a
diagonalization procedure is that 1̂, 2̂, 3̂ form an orthonormal
frame. In higher dimensions, such an orthonormal frame may
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TABLE VI. SU(4) → SO(6) relation. 1̂, 2̂, 3̂, 1̂′, 2̂′, 3̂′ denote the
6 axes generating R6 so that â ∧ b̂ generates the Lie algebra so(6).
The entry â ∧ b̂ in row μ and column ν corresponds to σμν/2i
where σμν = σμ ⊗ σν is the tensor product of Pauli matrices, e.g.,
σ13/2i ↔ 1̂′ ∧ 3̂. The red boxes show the only nonzero entries in
H (k)2 in Eq. (F4).

(F19)

be arbitrarily chosen, and may not correspond to the original
standard axes.

3. The SU(4) → SO(6) relation and its application
to the two-band system

Using the framework established in the previous section,
we can easily generalize the isomorphism to SU(4) → SO(6),
tabulated in Table VI. Indeed, let 1̂, 2̂, 3̂, 1̂′, 2̂′, 3̂′ denote the
6 axes generating R6 so that â ∧ b̂ generates the Lie algebra
so(6). Let σμν = σμ ⊗ σν denote the tensor product of Pauli
matrices (all except σ00) which generates the Lie algebra
isu(4). Then Table VI is read in the following manner: the
entry â ∧ b̂ in row μ and column ν corresponds to σμν/2i,
e.g., σ13/2i ↔ 1̂′ ∧ 3̂.

To apply this isomorphism in diagonalizing the two-band
system, notice that the red lines in Table VI boxes the only
entries occurring in H (k)2 as given in Eq. (F4). Therefore, we
can map H (k)2 into the Lie algebra so(6) so that

H (k)2 ↔ h1̂ ∧ 2̂ + g2̂ ∧ n̂ (F20)

↔ r(cos θ 1̂ ∧ 2̂ + sin θ 2̂ ∧ n̂), (F21)

where we have ignored that constant R term since is commutes
with any unitary operator and

gn̂ = a3̂ + b3̂′ + c2̂′ + d 1̂′, r2 = h2 + g2. (F22)

It is then clear that 1̂, 2̂, n̂ form an orthonormal frame in R6,
and thus using the example given in Eq. (F17), it is intuitive
to see that H (k)2 is diagonalized via

U (k) ↔ exp
(
θ n̂ ∧ 1̂

)
(F23)

= exp

(
i
θ

2g
(aσ02 + bσ31 + cσ21 + dσ11)

)
(F24)

= cos

(
θ

2

)
+ i sin

(
θ

2

)
1

g
(aσ02 + bσ31 + cσ21 + dσ11)

(F25)

so that

H (k)2 = U (k)†E (k)2U (k), E (k)2 = R + rσ03. (F26)

In particular, there exists F (k), f (k) given by

F (k) =
∑
σ=±

1

4
√

R(k) + σ r(k)
tanh

(
β

2

√
R(k) + σ r(k)

)
,

(F27)

f (k) =
∑
σ=±

σ

4
√

R(k) + σ r(k)
tanh

(
β

2

√
R(k) + σ r(k)

)
,

(F28)

such that

1

2|E (k)| tanh

(
β|E (k)|

2

)
= F (k) + f (k)σ03, (F29)

U (k)† 1

2|E (k)| tanh

(
β|E (k)|

2

)
U (k)

= F (k) + f (k)

r(k)

⎛
⎜⎜⎝

h a + ib 0 c + id
a − ib −h −c − id 0

0 −c + id +h a − ib
c − id 0 a + ib −h

⎞
⎟⎟⎠

(F30)

= F (k) + f (k)

r(k)
[H (k)2 − R(k)]. (F31)

It is then easy to obtain the 1-pdm �(k) in Eq. (F9).

APPENDIX G: SIMULATING STRAIN AND STRESS

In this Appendix, we describe the detailed parameters used
to simulate pure A1 and B2 strain in the main text. For simplic-
ity, let us define

ε0 ≡ 1
2 (εx + εy), (G1)

ε3 ≡ 1
2 (εx − εy), (G2)

where ε0, ε3 should be regarded as the coefficients of decom-
posing the x, y band structure into Pauli matrices, i.e.,(

εx εh

εh εy

)
= ε0σ0 + εhσ1 + ε3σ3. (G3)

In the absence of strain, εx, εy are given by Eq. (A1) and thus
we rewrite the equations as follows:

ε0(k) = −μ0 − 2t0(cos kx + cos ky) + 4t ′
0 sin kx sin ky,

t0 = (tx + ty)/2 (G4)

ε3(k) = −2t3(cos kx − cos ky) − 2t ′
3(cos kx − cos ky),

t3 = (tx − ty)/2 (G5)

εz(k) = −μz − 2tz(cos kx + cos ky) − 2t ′
z(2 cos kx cos ky),

(G6)

εh(k) = 4th sin kx sin ky. (G7)

To simulate different types of strain, let us introduce the fol-
lowing notation:

ε0(k) = −μ0,A1 − 2t0,A1 (cos kx + cos ky)

− 2t0,B1 (cos kx − cos ky) + 4t0,B2 sin kx sin ky, (G8)
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ε3(k) = −2t3,A1 (cos kx − cos ky) − 2t3,B1 (cos kx + cos ky),

(G9)

εz(k) = −μz,A1 − 2tz,A1 (cos kx + cos ky)

− 2t ′
z,A1

(2 cos kx cos ky) (G10)

− 2tz,B1 (cos kx− cos ky) + 4tz,B2 sin kx sin ky, (G11)

εh(k) = 4th,A1 sin kx sin ky. (G12)

To simulate pure A1 strain εA1 , we have

ts,A1 (εA1 ) = ts(1 − αt,A1εA1 ), s = z, z′, 0, 3, h (G13)

μz,A1 (εA1 ) = μ0(1 − αμ,A1εA1 ), (G14)

where μ0,A1 is modified so that the total density of electrons
〈n〉 is kept fixed for nonzero values of εA1 , and we have
taken αt,A1 = 3 and αμ,A1 = 8 so that we mainly modify the
chemical potentials when simulating pure A1 strain. Similarly,
to simulate pure B1 and B2 strain, we have

ts,B1 (εB1 ) = −tsαB1εB1 , s = z, 0, 3 (G15)

ts,B2 (εB2 ) = −t3αB2εB2 , s = z, 0 (G16)

where we have taken αB1 = αB2 = 12.
It should be noted that in order to simulate uniaxial stress,

we used the Poisson ratio ν ≈ 0.3935 for Sr2RuO4 [53] so
that both A1 strain and B1 strain are present, i.e.,

εyy = −νεxx, (G17)

εA1 = 1
2 (εxx + εyy), (G18)

εB1 = 1
2 (εxx − εyy). (G19)

The magnitudes αt,A1 , αμ,A1 , αB1 were tuned19 so that the γ

band in Sr2RuO4 crosses the Van Hove point at εxx ≈ −0.44%
[12], while the α, β bands distort slightly (an asymmetry of
∼2%) [32].

19Notice that the magnitudes α are slightly different from the SI of
Ref. [12]. Indeed, the reference only considered the single-γ band
case and did not modify the chemical potential μz, which we believe
to be the main source of A1 strain since it first appears as an onsite
hopping term.
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