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Effect of ring-exchange interactions in the extended Kitaev honeycomb model
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Motivated by the possible triple-Q classical order in the Kitaev candidate material Na2Co2TeO6, we investigate
microscopic models that may stabilize the triple-Q order by studying an extended Kitaev honeycomb model with
ring-exchange interactions (namely, the K-�-�′-JR model) using the variational Monte Carlo method. It turns
out that with a positive ring-exchange interaction (JR > 0) there indeed appears an exotic noncoplanar triple-Q
ordered state featured by three Bragg peaks at symmetry-related M points in the crystallographic Brillouin zone.
A magnetic field in the honeycomb plane can suppress the triple-Q order and induce a gapless quantum spin
liquid (QSL) with eight cones. Furthermore, with the increase of JR a proximate Kitaev spin liquid with eight
Majorana cones labeled “PKSL8” is found, which is very stable over a large range of � interactions. The PKSL8
state shares the same projective symmetry group with the Kitaev spin liquid (KSL) which is located at small
� and JR. In a weak magnetic field applied normal to the honeycomb plane, the PKSL8 turns into an Abelian
chiral spin liquid with Chern number ν = −4, unlike the KSL, which yields a chiral spin liquid with ν = 1.
Since the triple-Q phase is adjacent to two QSLs in the phase diagram, our work suggests that it is more hopeful
to experimentally realize the exotic QSL phases starting from the triple-Q order.

DOI: 10.1103/PhysRevB.108.014437

I. INTRODUCTION

Quantum spin liquids (QSLs) are exotic phases of matter
exhibiting no conventional long-range order even at zero tem-
perature due to strong quantum fluctuations [1–6]. QSLs are
characterized by long-range entanglement and the existence
of intrinsic fractional excitations [7–10]. These fractional-
ized quasiparticles can obey fractional exchanging statistics
and are dubbed “anyons”. However, it is challenging to
construct lattice spin models in two or higher dimensions
to support spin-liquid ground states. After Kitaev proposed
a honeycomb-lattice model of bond-dependent Ising-type
spin interactions (Sγ

i Sγ

j ) supporting an exactly solvable
spin-liquid ground state [11], much progress has been made in
systems with strong spin-orbit coupling [12–18]. The spin-
liquid phase of the Kitaev model has a gapless or gapped
excitation spectrum, and in a suitable magnetic field the gap-
less Kitaev spin liquid (KSL) can be turned into a gapped
chiral spin liquid (CSL) that supports non-Abelian anyonic
excitations.

To realize the KSL, a series of spin-orbit entangled
candidate materials have been proposed and studied pro-
foundly [19,20], such as α-RuCl3 [21–25], α-Li2IrO3 [26,27],
Na2IrO3 [28–31], Cu2IrO3 [32,33], H3LiIr2O6 [34], and
Na2Co2TeO6 [35–42]. However, most of these materials man-
ifest a magnetic long-range order at low temperatures, instead

*liuzxphys@ruc.edu.cn

of having a spin-liquid ground state, indicating the existence
of other symmetry-allowed interactions beyond the Kitaev
coupling such as the nearest-neighbor symmetric off-diagonal
� interaction (Sα

i Sβ
j + Sβ

i Sα
j ) and Heisenberg interaction

(Si · S j). To explain the experimental data in Kitaev materi-
als, a series of lattice spin models have been proposed. For
instance, a third-neighbor Heisenberg interaction [43–46] or a
nearest-neighbor off-diagonal �′ interaction (Sα

i Sγ
j + Sγ

i Sα
j +

Sβ
i Sγ

j + Sγ

i Sβ
j ) [47–49] is included in the effective spin model

to interpret the zigzag order at low temperatures.
However, the experimental results of inelastic neutron scat-

tering in Na2Co2TeO6 seem to indicate a triple-Q ordered
state [50,51], which supports three Bragg peaks at symmetry-
related points in the Brillouin zone. Thus, it is difficult to
distinguish between the triple-Q order and the zigzag order
in neutron diffraction experiments due to domain mixing
effects. The triple-Q order has threefold rotation symmetry
C∗

3 (both in spin and lattice space), while the zigzag order
breaks this symmetry. In some sense, the C∗

3 symmetric triple-
Q order can be obtained by superposing three zigzag order
parameters. An important question is how to stabilize this
triple-Q order in a lattice model. A simple idea is to add some
C∗

3 symmetric exchange interactions in the proposed lattice
model. For instance, in a magnetic field applied normal to the
honeycomb plane, the Heisenberg-Kitaev honeycomb model
may support a noncoplanar triple-Q state [52,53]. In addi-
tion, near the hidden-SU(2) symmetric point in an extended
K-�-�′-J model, the negative nonbilinear six-spin exchange
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FIG. 1. Schematics of one-pair (R2, left upper row), three-pair (R6, right upper row), and two-pair (R4, bottom row) spin exchange
interactions on each plaquette of the honeycomb lattice, respectively. In the one-pair case, the number of elements is 6, 6, and 3, respectively.
In the two-pair case, the number of elements is 6, 6, 3, 3, 6, 3, 6, 6, and 6, respectively. In the three-pair case, the number of elements is 2, 6,
3, 3, and 1, respectively. The light red shadow connecting one pair of sites (i, j) represents the Heisenberg interaction (Si · Sj).

interaction favors triple-Q order [54]. Here we propose an-
other mechanism to stabilize this triple-Q order in the generic
extended Kitaev honeycomb model, which does not need
hidden-SU(2) symmetry: multielectron ring-exchange inter-
actions (JR). Generally, the ring-exchange interaction possibly
arises from higher-order corrections in the strong-coupling
expansion of the Hubbard model [55,56]. Additionally, a
triple-Q order is also stabilized by higher-order interactions
in higher spin systems [57].

In this paper, we investigate the quantum K-�-�′-JR model
using the variational Monte Carlo (VMC) approach, and the
global phase diagram is obtained. The positive ring-exchange
interaction (JR > 0) indeed supports a triple-Q ordered state
that features Bragg peaks at three M points in the crystal-
lographic Brillouin zone. In addition, the triple-Q order is
stable under weak magnetic fields. Interestingly, the magnetic
field along the (x − y) direction may suppress the triple-Q
order and induce a gapless Z2 QSL with eight cones on the
high symmetry line of the first Brillouin zone. This result
is instructive for an experimental search of gapless QSLs
and triple-Q order in related materials. Furthermore, with the
increase of the ring-exchange interaction with JR/|K| � 0.15,
a spin-liquid phase is found which is much stabler than the
KSL phase. It contains eight Majorana cones in its spinon
excitation spectrum and shares the same projective symmetry
group (PSG) [58,59] with the KSL, and is thus called the
“proximate-KSL8” (PKSL8) phase. In a magnetic field ap-
plied normal to the honeycomb plane, the PKSL8 realizes an
Abelian CSL with Chern number ν = −4 while the KSL is
turned into a non-Abelian CSL with ν = 1.

The rest of the paper is organized as follows: In Sec. II,
we introduce the K-�-�′-JR model on the honeycomb lattice
and describe the numerical method used in this work. In
Sec. III, we summarize our main findings in the phase diagram
including various QSLs and magnetically ordered phases. We
further show the physical response of the system to magnetic
fields for QSL phases as well as magnetically ordered phases
in Sec. IV. The paper is concluded in Sec. V.

II. MODEL AND METHOD

We start with the extended Kitaev model on the honeycomb
lattice containing the Kitaev-exchange (K-term), off-diagonal

exchange (�- and �′-term), and ring-exchange (JR-term)
interactions:

H = HK + H� + H�′ + HR, (1)

with

HK =
∑

〈i, j〉∈αβ(γ )

KSγ
i Sγ

j ,

H� =
∑

〈i, j〉∈αβ(γ )

�
(
Sα

i Sβ
j + Sβ

i Sα
j

)
,

H�′ =
∑

〈i, j〉∈αβ(γ )

�′(Sα
i Sγ

j + Sγ

i Sα
j + Sβ

i Sγ

j + Sγ

i Sβ
j

)
,

HR =
∑
�

JRP̂�,

where 〈i, j〉 denotes nearest-neighbor sites; γ labels the type
of the bond 〈i, j〉 on the honeycomb lattice; α, β, and γ stand
for the spin indices; and P̂� = − 3

8 + R2 + R4 + R6 stands for
the ring-exchange interaction on the hexagon whose explicit
form is given in Eqs. (2) and (A1). Additionally, its graphical
form in the spin basis is represented in Fig. 1.

In most Kitaev materials, the Kitaev coupling has a
negative sign (K < 0). In the present paper, we adopt the
parameters of the interactions such that K < 0, � > 0, �′ < 0,
and JR > 0. Due to spin-orbit coupling, the symmetry of the
model is described by the finite magnetic point group D3d ×
ZT

2 besides lattice translation symmetries, where ZT
2 = {E , T }

is the time reversal group.
The model (1) can be mapped into an interacting fermionic

model in the Majorana representation Sm
i = ibm

i ci (under the
constraint bx

i by
i b

z
i ci = 1) introduced by Kitaev. One can com-

bine the Majorana fermions into complex fermionic spinons
Ci = (ci↑, ci↓)T such that the constraint is mapped into the
particle-number constraint C†

i Ci = 1. In the complex fermion
representation, the ring-exchange interaction can be simply
expressed as

P̂� = −χ̂i j χ̂ jkχ̂kl χ̂lmχ̂mnχ̂ni − cyclic(i jklmn) + H.c., (2)

where the index i, j, k, l, m, n ∈ hexagon (sorting clockwise
on the hexagon), and χ̂i j = C†

i Cj = c†
i↑c j↑ + c†

i↓c j↓.
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FIG. 2. Phase diagram of the quantum K-�-�′-JR model for
K < 0, � > 0, JR > 0, and �′/|K| = −0.05 in the limit of large
system size. There are two QSL phases of different types but with
the same PSG, the KSL, and the PKSL8. The magnetically ordered
phases include zigzag and triple-Q order.

The ground-state energy of the model can be calculated
from VMC using the Gutzwiller projected mean-field ground
states as trial wave functions. Thus we perform Gutzwiller
projection to the mean-field ground state |�MF(R)〉 to en-
sure the particle number constraint. The projected states
|�(R)〉 = PG|�MF(R)〉 provide a series of trial wave func-
tions depending on the choice of the mean-field Hamiltonian
HMF(R), where PG denotes a Gutzwiller projection and
R are treated as variational parameters. The energy of the
trial state E (R) = 〈�(R)|H |�(R)〉/〈�(R)|�(R)〉 is computed
using Monte Carlo sampling, and the optimal parameters R
are determined by minimizing the energy E (R).

In constructing the mean-field Hamiltonian, we follow the
guidance of the PSG and construct different types of QSL
Ansatz as trial states (for details see Appendix C). The mag-
netic order is treated as a background field, in which the
ordering pattern is obtained from single-Q or multi-Q approx-
imation, and the amplitude is determined by minimizing the
energy.

Our VMC calculations are performed on a lattice with
8 × 8 unit cells, namely, 128 sites. The spinon dispersion of

0.1 0.12 0.14 0.16 0.18
-0.4

-0.34

-0.28

-0.22

FIG. 3. (a) Spinon dispersion in the KSL, drawn with �/|K| = 0.1, �′/|K| = −0.05, JR/|K| = 0.1, showing two Majorana cones.
(b) Spinon dispersion in the PKSL8, drawn with �/|K| = 0.1, �′/|K| = −0.05, JR/|K| = 0.15, showing eight Majorana cones. (c) Ground-
state energy per site of the K-�-�′-JR model at fixed �/|K| = 0.1, �′/|K| = −0.05, showing a clear first-order phase transition.

the QSLs can be qualitatively obtained by diagonalizing the
mean-field Hamiltonian in a larger system size with the
optimized parameters from VMC calculations. From this dis-
persion, we can locate the positions of the nodes in the gapless
QSLs.

III. PHASE DIAGRAM

Because theoretical studies have shown that a very small
negative �′ interaction can support a zigzag-ordered ground
state [48,49,60], we study the K-�-�′-JR model at fixed
�′/|K| = −0.05 for simplicity using the VMC approach.
Figure 2 shows the VMC phase diagram of this quantum
model. We find that two spin-liquid states are robust from
our VMC calculations. One is the KSL, whose regime is
bounded approximately by �/|K| = 0.15 and JR/|K| = 0.13.
The second one is PKSL8, which is one QSL proximate to the
KSL, whose regime of stability is JR/|K| � 0.15. The KSL
and PKSL8 have the same PSG despite being physically quite
different states. In contrast to the spinon excitation spectrum
of the KSL, which has two Majorana cones in the first Bril-
louin zone [Fig. 3(a)], the PKSL has eight Majorana cones
[Fig. 3(b)]. These cones are protected from local perturbations
by the combination of spatial inversion and time reversal sym-
metry. Our numerical calculation strongly suggests the phase
transition between KSL and PKSL8 is sharply first-order due
to ground-state energy level crossing, as shown in Fig. 3(c).

Besides the QSL phases, there are two magnetically or-
dered states in a large region of the phase diagram (for details
see Fig. 2). One is a zigzag-ordered state, and the other is a
triple-Q ordered state. The spin configuration of the zigzag or-
der is shown in Fig. 4(a). The triple-Q order with an eight-site
magnetic unit cell is formed by superposing three zigzag order
parameters [50]. Therefore, the triple-Q order has threefold
rotation symmetry C∗

3 (including both spin rotation and lattice
rotation). We find that the positive ring-exchange interaction
may restore C∗

3 symmetry due to quantum fluctuations, re-
sulting in the emergence of the triple-Q state. To check the
magnetic properties of the projected state, we compute the
static structure factor:

S(q) = 1

N

∑
i, j

eiq·(ri−r j )
〈
Sri · Sr j

〉
. (3)
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FIG. 4. (a) Schematics of three-type zigzag orders connected by
a threefold rotation C∗

3 (both in spin and lattice space). The triple-
Q order is formed by the vector sum of three C∗

3 -related zigzag
structures. (b) The static spin structure factor S(q) for zigzag order
(with �/|K| = 0.4, �′/|K| = −0.05). (c) The static spin structure
factor S(q) for triple-Q order (with �/|K| = 0.4, �′/|K| = −0.05,
JR/|K| = 0.1). The red dotted line represents the first crystallo-
graphic Brillouin zone, and bright points in the figures are M points.

As shown in Fig. 4, for the triple-Q state, there are three
inequivalent Bragg peaks in the first crystallographic Brillouin
zone, whereas there is one inequivalent Bragg peak in the
zigzag order. However, for spin-liquid states there are no
prominent peaks in the static structure factor (not shown).

In principle, the ordered phase and spin-liquid phase could
be separated by a second-order phase transition or even by an
intermediate phase with coexisting magnetic and Z2 topologi-
cal order. However, according to our calculations, the phase
transitions are of first order, as can be observed either in
the level crossing in the ground-state energy or through the
discontinuities in the optimal variational parameters.

An interesting observation is that the triple-Q phase is
adjacent to two QSL phases at JR > 0. This indicates that
the triple-Q phase is “closer” to QSLs than the zigzag phase,
and thus provides a helpful hint for experimental searching
of QSLs. Especially, starting from the triple-Q phase, one
can hopefully realize the exotic PKSL8 phase (by tuning the
interactions in certain materials) which is neighboring to the
triple-Q phase in a large parameter region.

IV. EFFECT OF MAGNETIC FIELDS

One of the most exciting properties of the exactly solvable
KSL ground state is that it becomes a gapped non-Abelian
CSL in a generic magnetic field [11]. Thus the KSL in a field
becomes a ν = 1 CSL, where the non-Abelian statistics arise
due to unpaired Majorana modes associated with the vortices.
Our VMC results verify that in a small magnetic field along
the (x + y + z) direction these modes are also present in the
KSL phase (deviating from the exactly solvable point).

In the PKSL8, there are four pairs of cones in the spinon
dispersion, and each pair is connected by inversion or time
reversal symmetry. There is one pair at K and K′ points,
and three cones near the K point are connected by threefold
rotation. Each of the four pairs of cones becomes gapped

in a magnetic field B ‖ (x + y + z) and contributes a Chern
number ν = ±1. From our VMC calculations, the PKSL8
becomes a ν = −4 Abelian CSL in a small field, whose non-
trivial topological excitations include e, m, and ε. e and m are
the two different types of vortex in the Abelian CSL, which
are both semions. And the ε is the fermion. Whether there
are other spin liquids at a higher magnetic field and the field
along other directions is left for future study. In a CSL with
Chern number ν, there are ν branches of chiral Majorana edge
states, each of which contributes to a total chiral central charge
c− = ν/2. We can obtain the quantized number ν from the
thermal Hall conductance. The above result is verified within
our VMC analysis by calculating the ground-state degeneracy
(GSD) on a torus, which matches the number of topologically
distinct quasiparticle types (for details see Appendix D).

Now we focus on the response of the ordered phase to
magnetic fields. We only consider the triple-Q state since
the region of the zigzag ordered phase is very small. In the
field along the (x + y + z) direction, the triple-Q order is
suppressed by the field after which the system enters the fer-
romagnetic (FM) phase, as shown in Fig. 5. Then the system
enters the polarized phase (PP) through a first-order phase
transition in a larger field. The main difference between FM
and PP is that the direction of the spins in the FM phase ob-
viously deviates from the direction of the field (it lies roughly
on the plane spanned by [112̄] and [111] with small canting),
while in the polarized phase the spins are aligned along the
field direction. From the symmetry point of view, the FM
state spontaneously breaks the rotational reflection symmetry
(S6 = C6M111), while the polarized phase preserves all the
symmetry of the system and contains no symmetry-breaking
order. Since we have only considered a limited number of
Ansätze in our VMC approach, other methods may be needed
to study this phase diagram. Interestingly, in the field with
B ‖ (x − y), there is a direct phase transition from the triple-
Q order to the gapless Z2 QSL with eight Majorana cones
on the high symmetry line of the first Brillouin zone. Note
that the critical field in the (x − y) direction is smaller than
that in the (x + y + z) direction. To understand the nature
of the field-induced gapless QSL, we restore the D3d × ZT

2
symmetry by removing the magnetic field manually while

0 0.4 0.8 1.2

0 0.1 0.2 0.3

0 0.1 0.2 0.3

FIG. 5. Phase diagrams of the triple-Q state (�/|K| = 0.4,
�′/|K| = −0.05, JR/|K| = 0.1) in a magnetic field applied in
the (x + y + z) direction, in the (x − y) direction, and in the
(x + y − 2z) direction. “8-cone” denotes a phase whose low-energy
spinon dispersion has eight cones on the high symmetry line (i.e., the
horizontal line in the first Brillouin zone).
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FIG. 6. Phase diagram of the quantum K-�-�′-J4 model with
fixing �/|K| = 0.4, �′/|K| = −0.05. The zigzag ordered state is
sandwiched by triple-Q order and the PKSL14 state. “PKSL14”
denotes a proximate KSL state whose low-energy spinon dispersion
has 14 Majorana cones in the first Brillouin zone.

keeping all the other variational parameters intact, and we
find that the field-induced eight-cone state becomes a 20-cone
proximate-KSL (PKSL20) state [60,61]. However, in the field
with B ‖ (x + y − 2z), there is a direct phase transition from
the triple-Q order to the polarized phase. Therefore, we find
that different directional fields in the honeycomb plane can
have completely different physical consequences, and that the
field along the bond direction may induce a gapless spin-liquid
phase with Majorana cones.

V. CONCLUSION AND DISCUSSION

Although in a magnetic field applied normal to the
honeycomb plane the Heisenberg-Kitaev model supports
a noncoplanar triple-Q state, we find the field does not
favor the triple-Q state in the K-�-�′ model. Potentially the
ring exchange is important to stabilize the triple-Q order in
a generic extended Kitaev honeycomb model. Because the
ring-exchange interaction (P̂�) has SU(2) rotation symmetry
and lattice symmetry, we can represent it in the spin basis,
for example, one-pair [(Si · S j)], two-pair [(Si · S j )(Sk · Sl )],
and three-pair [(Si · S j )(Sk · Sl )(Sm · Sn)] spin exchange inter-
actions on the hexagon, which are represented by diagrams in
Fig. 1. Thus the ring-exchange interaction contains 17 types
of spin interactions, and the specific coefficients are given by
Eq. (A1). Interestingly, there is a sign structure in two-pair
spin exchange (R4) and three-pair spin exchange (R6), i.e., +1
(−1) for an even (odd) number of transpositions between light
red shadows in Fig. 1. We guess that the triple-Q order can
be stabilized by some of the exchange interactions mentioned
above (two special cases are discussed in Appendix B). In the
following, we mainly consider the nonbilinear two-pair spin
exchange interaction:

H4-spin = J4

∑
i, j,k,l,m,n∈�

R4(i jklmn), (4)

where the explicit form of R4(i jklmn) can be found in
Appendix A. From our VMC calculations of the quantum
K-�-�′-J4 model (i.e., H ′ = HK + H� + H�′ + H4-spin), we
find that the two-pair spin exchange interaction certainly sta-
bilizes the triple-Q order whose regime of stability is J4/|K| �
0.02 at �/|K| = 0.4, as shown in Fig. 6. Interestingly, the
two-pair spin exchange interaction J4/|K| � −0.175 may in-
duce a proximate KSL phase with 14 cones (namely, PKSL14)
which is similar to our previous work [61]. For instance, in a
weak magnetic field applied normal to the honeycomb plane,
the PKSL14 phase turns into a non-Abelian CSL with Chern
number ν = 5.

In conclusion, we have studied the quantum K-�-�′-JR

model on the honeycomb lattice using the variational Monte

Carlo method. One proximate Kitaev spin liquid state with
eight Majorana cones (PKSL8) is found, which shares the
same projective symmetry group with the Kitaev spin liquid.
In a suitable field, it turns into an Abelian chiral spin liquid
with Chern number ν = −4. Interestingly, the positive ring-
exchange interaction also induced an exotic triple-Q ordered
state which is stable in small magnetic fields. Finally, we
propose a mechanism to stabilize this triple-Q order in the
generic extended Kitaev honeycomb model.

In addition, there is another type of triple-Q order which
can be obtained by superposing three C∗

3 symmetry-related
stripe orders. Classical simulations [62] indicate that this
stripe-type triple-Q order can be stabilized by tuning the
interaction parameters (for instance by adding an antiferro-
magnetic Heisenberg term [63]). We leave this for future
study.
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APPENDIX A: EXPLICIT FORM
OF THE RING-EXCHANGE INTERACTION

Although the ring-exchange interaction can be simply ex-
pressed in the complex fermion representation, its form is very
complicated in the spin basis. In the following, we will give
the specific form of the ring-exchange interaction:

P̂� = − 3
8 + R2 + R4 + R6, (A1)

with

R2(i jklmn) = −22

8

[
(Si · S j ) + (Si · Sk ) + 1

2
(Si · Sl )

+ cyclic(i jklmn)

]
,

R4(i jklmn) = 24

8

[
(Si · S j )(Sk · Sl ) − (Si · Sk )(S j · Sl )

+1

2
(Si · S j )(Sl · Sm) + 1

2
(Si · Sk )(Sl · Sn)

−(Si · Sl )(S j · Sn) − 1

2
(Si · Sl )(S j · Sm)

+(Si · S j )(Sk · Sn) + (Si · S j )(Sk · Sm)

+(Si · S j )(Sl · Sn) + cyclic(i jklmn)

]
,

R6(i jklmn) = 3 × 26

8

[
1

3
(Si · S j )(Sk · Sl )(Sm · Sn)

−(Si · Sm)(S j · Sn)(Sk · Sl )

014437-5



JIUCAI WANG AND ZHENG-XIN LIU PHYSICAL REVIEW B 108, 014437 (2023)

+1

2
(Si · Sn)(S j · Sm)(Sk · Sl )

+1

2
(Si · Sm)(S j · Sl )(Sk · Sn)

−1

6
(Si · Sl )(S j · Sm)(Sk · Sn)

+ cyclic(i jklmn)

]
,

where the index i, j, k, l, m, n ∈ �. Its graphical form is
shown in Fig. 1 in the main text. Specifically speaking, R2,
R6, and R4 correspond to the left upper row, right upper row,
and bottom row in Fig. 1, respectively. Note that the index
(i, j, k, l, m, n) sorts clockwise on the hexagon.

APPENDIX B: EFFECT OF THE NONBILINEAR
SPIN INTERACTIONS

First, among the two-pair interactions, the first and third
types are special because they involve two pairs of nearest-
neighbor exchanges, as shown in Fig. 1. We are interested in
this special type of interaction because it may appear in lower-
order perturbations based on the spin-orbital coupled Hubbard
model. The specific form of these interactions is given below:

H ′
4-spin = J ′

4

∑
i, j,k,l,m,n∈�

24

8

[
(Si · S j )(Sk · Sl )

+1

2
(Si · S j )(Sl · Sm) + cyclic(i jklmn)

]
. (B1)

A natural question is whether this type of interaction could
stabilize the triple-Q order or not. Therefore, we consider
the following K-�-�′-J ′

4 model containing K , �, �′, and J ′
4

interactions:

H ′′ = HK + H� + H�′ + H ′
4-spin. (B2)

From our VMC calculations of the K-�-�′-J ′
4 model (B2)

with fixing �/|K| = 0.4 and �′/|K| = −0.05, we find that the
two-pair spin exchange interaction J ′

4/|K| � 0.05 may stabi-
lize a triple-Q order, as shown in Fig. 7(a). Therefore, these
small positive interactions (involving only two Heisenberg in-
teractions between nearest-neighbor sites) certainly stabilize
the triple-Q order.

Secondly, we also consider the three-pair spin exchange
interaction:

H6-spin = J6

∑
i, j,k,l,m,n∈�

R6(i jklmn). (B3)

We want to know whether this type of interaction could stabi-
lize the triple-Q order or not. From our VMC calculations of
the quantum K-�-�′-J6 model (i.e., H ′′′ = HK + H� + H�′ +
H6-spin) with fixing �/|K| = 0.4 and �′/|K| = −0.05, we find
that the three-pair spin exchange interaction could not stabi-
lize the triple-Q order, unlike the proposal around the hidden
SU(2) point [54]. On the one hand, our interaction parame-
ters are far from the hidden-SU(2) point; on the other hand,
quantum fluctuations may quantitatively or even qualitatively
change the classical order of the ground state.

-0.4 -0.2 0 0.2

-0.2 0 0.2 0.4
(a)

(b)

FIG. 7. (a) Phase diagram of the quantum K-�-�′-J ′
4 model with

fixing �/|K| = 0.4, �′/|K| = −0.05. (b) Phase diagram of the quan-
tum K-�-�′-J6 model with fixing �/|K| = 0.4, �′/|K| = −0.05.

Interestingly, the negative three-pair spin exchange inter-
action (J6/|K| � −0.1) may induce an eight-cone proximate-
KSL phase (PKSL8) from a zigzag order, as shown in
Fig. 7(b). Note that in a weak magnetic field applied normal to
the honeycomb-lattice plane, this PKSL8 state will turn into
an Abelian CSL with Chern number ν = 2, which is different
from the PKSL8 phase (with ν = −4 in a small field applied
normal to the plane) in Fig. 2 in the main text.

From the above discussions, we find that different kinds of
multispin exchange interactions may have completely differ-
ent physical consequences and that the four-spin terms play
an important role in stabilizing the triple-Q order.

In contrast to SU(2) symmetric ring-exchange interactions
above, we have also considered the Kitaev-type ring-exchange
interaction (i.e., Kitaev plaquette operator [11]), which is
anisotropic and breaks the SU(2) rotation symmetry. How-
ever, it turns out that this anisotropic ring-exchange term fails
to stabilize the triple-Q order from our VMC calculations.

APPENDIX C: CONSTRUCTION OF TRIAL
WAVE FUNCTIONS

In the VMC framework, the spin interactions in Eq. (1)
are rewritten in terms of interacting fermionic operators
and are further decoupled into a noninteracting mean-field
Hamiltonian HMF(R), where R denotes a set of parameters
and will be specified in the following. A series of trial wave
functions are constructed by Gutzwiller projection to the
mean-field ground state |�MF(R)〉.

1. Spin-liquid Ansätze based on PSG

A spin-liquid ground state preserves the entire space group
symmetry whose point group is G = D3d × ZT

2 . However, the
symmetry group of a spin-liquid mean-field Hamiltonian is
the PSG [58,59] whose group elements are space group oper-
ations followed by SU(2) gauge transformations.

It turns out that there are more than 100 classes of PSGs
for Z2 QSLs [where the SU(2) gauge symmetry breaks down
to the Z2 subgroup in the mean-field Hamiltonian] respecting
the G symmetry [59]. We believe that only a few PSGs are
relevant to our spin model in all PSGs. Therefore, in our
VMC calculations, we just consider a few of them which are
close to the one which describes the symmetry of the exact
ground state of the pure Kitaev model. Here “close” means
that the new PSGs and the Kitaev PSG have similar patterns
of symmetry fractionalization, namely, they differ by only one
or two invariants. The reason for choosing these PSGs is based
on the fact that the model (1) contains Kitaev interactions.
Therefore, it is reasonable to adopt the PSGs that are close to
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the “Kitaev PSG” given that the non-Kitaev interactions are
not extremely large.

Now we provide details of constructing HMF for a given
PSG. It is convenient to introduce the matrix operator ψi =
(Ci, C̄i ) with C̄i = (c†

i↓,−c†
i↑)T such that the spin operators

can also be written as Sm = Tr(ψ†
i

σ m

4 ψi ). In this form, it is
easily seen that there is a local SU(2) gauge symmetry in
the fermionic representation of spins [64]. The most general
expression of the mean-field Hamiltonian Ansatz [60,61,65–
67] with nearest-neighbor couplings reads

HSL
MF =

∑
〈i, j〉∈αβ(γ )

Tr [U (0)
ji ψ

†
i ψ j] + Tr

[
U (1)

ji ψ
†
i

(
iRγ

αβ

)
ψ j

]

+Tr
[
U (2)

ji ψ
†
i σγ ψ j

] + Tr
[
U (3)

ji ψ
†
i σγ Rγ

αβψ j
] + H.c.

+
∑

i

Tr(λi · ψiτψ
†
i ), (C1)

where Rγ

αβ = − i√
2
(σα + σβ ), λx,y,z are three Lagrangian mul-

tipliers to ensure SU(2) gauge invariance (where λz is the
one for the particle number constraint), τ x,y,z are genera-
tors of the SU(2) gauge group, and the matrices U (0,1,2,3)

ji

can be expanded with the identity matrix and τ 1,2,3 where
the expanding coefficients form a subset of R. Generally, the
values of λx,y,z are zero if there are no external magnetic fields.

As shown in the following, the PSG constrains the values
of the matrices U (0,1,2,3)

ji . The gapless KSL is believed to be a
finite, stable phase in the presence of non-Kitaev interactions,
including the � and �′ terms. The mean-field Hamiltonian de-
scribing the generic states around the KSL, which we denote
the KSL, will then respect the same PSG as the KSL itself.
Besides translation symmetry, the symmetry group of the pure
KSL, G = D3d × ZT

2 , has the three generators

S6 = (C3)2P, M = Cx−y
2 P, T = iσ yK,

where C3 is a threefold rotation around the direction along
(x + y + z), Cx−y

2 is a twofold rotation around the (x −
y) direction, and P is spatial inversion. The PSG of the
KSL (called the Kitaev PSG) is read most simply from the
Majorana representation, in which the mean-field Hamilto-
nian is

HK
MF =

∑
〈i, j〉∈αβ(γ )

ρa
(
icic j ) + ρc

(
ibγ

i bγ
j

)

=
∑

〈i, j〉∈αβ(γ )

iρaTr(ψ†
i ψ j + τ xψ

†
i σ xψ j + τ yψ

†
i σ yψ j

+ τ zψ
†
i σ zψ j ) + iρcTr(ψ†

i ψ j + τ γ ψ
†
i σγ ψ j

− ταψ
†
i σαψ j − τβψ

†
i σβψ j ) + H.c. (C2)

Because the c fermion never mixes with any of the bm

fermions, any PSG operation leaves the c fermions invariant.
The gauge operation, Wi(g), following the symmetry operation
g should then be Wi(g) = ±g. A detailed analysis [59–61]
shows that the gauge transformations of the generators S6, M,
and T are

WA(S6) = −WB(S6) = exp
[ − i

4

3
π

1

2
√

3
(τ x + τ y + τ z )

]
,

WA(M ) = −WB(M ) = exp
[ − iπ

1

2
√

2
(τ x − τ y)

]
,

WA(T ) = −WB(T ) = iτ y, (C3)

where A and B denote the two sublattices of the honeycomb
lattice.

When the Kitaev honeycomb model is extended to the
K-�-�′-JR model, there are several different Ansätze for states
beyond the Kitaev mean-field Hamiltonian [Eq. (C2)] that are
invariant under the same PSG. The � interaction gives rise to
the mean-field terms

H�
MF =

∑
〈i, j〉∈αβ(γ )

iρd
(
bα

i bβ
j + bβ

i bα
j

)

=
∑

〈i, j〉∈αβ(γ )

iρd Tr(ταψ
†
i σβψ j + τβψ

†
i σαψ j ) + H.c.

(C4)

and similarly for the �′ interaction

H�′
MF =

∑
〈i, j〉∈αβ(γ )

iρ f
(
bα

i bγ

j + bγ

i bα
j + bβ

i bγ

j + bγ

i bβ
j

)

=
∑

〈i, j〉∈αβ(γ )

iρ f Tr(ταψ
†
i σγ ψ j + τ γ ψ

†
i σαψ j

+ τβψ
†
i σγ ψ j + τ γ ψ

†
i σβψ j ) + H.c. (C5)

For the multielectron ring-exchange interaction (JR),

HJR
MF =

∑
〈i, j〉

iρrTr(ψ†
i ψ j ) + H.c. (C6)

Comparing with the general form Eq. (C1), the decouplings
expressed in Eqs. (C2), (C4), (C5), and (C6) contribute the
terms

Ũ (0)
ji = i(ρa + ρc + ρr ),

Ũ (1)
ji = i(ρa − ρc + ρd + 2ρ f )(τα + τβ ),

Ũ (2)
ji = i(ρa + ρc)τ γ + iρ f (τα + τβ ),

Ũ (3)
ji = i(ρc − ρa − ρd )(τα − τβ ), (C7)

to the coefficients U (m)
ji , in which j and i specify γ . However,

the most general coefficients preserving the C3 rotation sym-
metry (in the PSG sense) also contain multiples of the uniform
(I) and τ x + τ y + τ z gauge components:

˜̃U (0)
ji = iη0 + η1(τ x + τ y + τ z ),

˜̃U (1)
ji = η2 + iη3(τ x + τ y + τ z ),

˜̃U (2)
ji = η4 + iη5(τ x + τ y + τ z ),

˜̃U (3)
ji = η6 + iη7(τ x + τ y + τ z ). (C8)

If the full symmetry group, G = D3d × ZT
2 , is preserved, then

only three parameters η0, η3, and η5 are allowed; by contrast,
if one allows the breaking of spatial inversion symmetry, while
still preserving mirror reflection symmetry, then η1, η2, and
η4 are also allowed. Thus a spin-liquid Ansatz that preserves
the full PSG symmetry generated by Eq. (C4) contains the
variables U (m)

ji = Ũ (m)
ji + ˜̃U (m)

ji with eight real parameters in-
cluding ρa, ρc, ρd , ρ f , ρr , η0, η3, and η5. The KSL and PKSL8
both belong to the Kitaev PSG class. To obtain a reliable phase
diagram, we also consider other PSGs which are close to the
Kitaev PSG (for more details see Ref. [60]).
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TABLE I. Eigenvalues of the overlap matrices of the ground states of gapped states on a torus. ν is the mean-field Chern number of the
gapless states which are gapped by a small magnetic field B ‖ (x + y + z). The system size we adopt is 8 × 8 × 2. The data for the ordered
states are calculated without applying magnetic fields.

Parent state �

|K|
�′
|K|

JR
|K| ν ρ1 ρ2 ρ3 (ρ4) GSD

KSL 0.1 −0.05 0.1 1 0.9972 0.9994 1.0034 3
PKSL8 0.4 −0.05 0.2 −4 0.3067 0.3802 1.0000 2.3131 4
Zigzag 0.4 −0.05 0 0.0796 0.3414 0.4764 3.1026 4
Triple-Q 0.4 −0.05 0.1 0.0045 0.0107 0.0230 3.9618 1

2. Magnetically ordered states

To describe the magnetic order of the spin-symmetry-
breaking phases of the K-�-�′-JR model, we introduce the
classical order under single-Q approximation [63]:

Mi = M{sin φ[êx cos(Q · ri ) + êy sin(Q · ri )] + cos φ êz},
where Q is the ordering momentum, êx,y,z are the local spin
axes (not to be confused with the global spin axes), and φ

is the canting angle. (π/2 − φ) describes the angle by which
the spins deviate from the plane spanned by êx and êy. The
classical ground state is obtained by minimizing the energy of
the trial states.

In our VMC calculations, the static order is treated as
a background field coupling to the spins as site-dependent
Zeeman field; hence the complete mean-field Hamiltonian for
the K-�-�′ model reads

H total
MF = HSL

MF − 1

2

∑
i

(Mi · C†
i σCi + H.c.). (C9)

The ordering momentum Q of Mi in VMC is adopted from
the classical ground state or the classical metal stable states
(depending on the energy of the projected state). For a given
momentum Q, the local axes êx,y,z are fixed as they are in
the classical state. Then M and φ are treated as variational
parameters in the VMC framework.

In VMC calculations, we have considered not only single-
Q ordered states but also multi-Q ordered states, for example,
the triple-Q order which is formed by superposing three
single-Q order parameters. Thus the triple-Q order has a
threefold rotation symmetry.

APPENDIX D: GROUND-STATE DEGENERACY

As all know, the fractional statistics of the quasiparticles
in gapped QSLs imply a topology-dependent GSD. Further,
the confinement or deconfinement of the Z2 spin liquid is
reflected in the GSD of the Gutzwiller projected state when
placed on a torus. If the state is Z2 confined (deconfined), then
inserting a global Z2 π flux in one of the holes results in the

same (a different) state. Because this process is equivalent
to exchanging the boundary conditions of the mean-field
Hamiltonian from periodic to antiperiodic, in two dimensions
one may construct the four mean-field ground states |ψ±±〉,
where the subscripts denote the boundary conditions for the
x and y directions. After a Gutzwiller projection of these four
states to the physical Hilbert space, the number of linearly
independent states is equal to the GSD on a torus.

To make sure that field-induced CSLs are nontrivial, we
calculate the density matrix of the projected (VMC) states
from the wave-function overlap ραβ = 〈PGψα|PGψβ〉 = ρ∗

βα ,
with α, β ∈ {++,+−,−+,−−}. If ρ has only one signifi-
cant eigenvalue, with the others vanishing, then the GSD is 1,
indicating that the Z2 gauge field is confined. If ρ has more
than one near-degenerate nonzero eigenvalue, the GSD is
nontrivial and hence the Z2 gauge fluctuations are deconfined.
In the deconfined phases, if the Chern number is even then
from above the GSD is 4; however, if the Chern number is
odd, then the GSD is 3 because the mean-field ground state
|ψ++〉 has odd fermionic parity and vanishes after Gutzwiller
projection. The small-field-induced CSL with ν = 1 or −4
is certainly deconfined, whose GSD information is shown
in Table I. For the PKSL14 phase in Fig. 6, the small-field-
induced CSL with ν = 5 is also deconfined whose GSD is 3
(not shown).

In addition, we find that the triple-Q ordered state becomes
confined after Gutzwiller projection (the GSD on a torus is 1)
and belongs to the pure magnetically ordered phase. However,
as shown in Table I, the zigzag order becomes deconfined after
Gutzwiller projection (more than one fairly large eigenvalue
in the matrix ρ), and it may be an exotic phase with the
coexistence of Z2 quantum spin liquid and magnetic order. By
removing the zigzag order while keeping all the other varia-
tional parameters intact, we find that the potential coexisting
state becomes a proximate-KSL with 20 Majorana cones.
Therefore, the phase transition from the KSL to the potential
coexisting state is first order because of discontinuities in the
optimal variational parameters. It is an interesting question:
what is the nature of this potential coexisting phase? We leave
it for future study.
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