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Zigzag phase transition in the frustrated Ising honeycomb lattice
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We investigate the thermal phase transitions of the J1-J2-J3 Ising model on the honeycomb lattice. This model
exhibits the zigzag (ZZ) antiferromagnetic phase, which is observed in the Ising honeycomb compound FePS3.
By employing a cluster mean-field approach, we describe the role of exchange couplings on phase transitions
and thermodynamics of the model. We found first- and second-order transitions between ZZ and paramagnetic
phases. Moreover, the model hosts thermal order-by-disorder state selection and, for weak third-neighbor
couplings, signatures of strong frustration, such as a round maximum in the specific heat. Our results provide a
picture for the nature of thermally driven phase transitions in a wide range of exchange interactions. We show
that the first-order phase transition observed in FePS3 is hosted by the present microscopic model by adopting
exchange couplings from literature.
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I. INTRODUCTION

The inability to simultaneously satisfy all interactions in
frustrated spin systems introduce a conflicting situation that
can strongly affect the stability of magnetic phases, altering
the criticality and the thermodynamics at low temperatures.
In these systems, dimensionality plays a significant role on
critical phenomena, with low-dimensional magnets seemingly
more sensitive to frustration effects [1]. Within the Ising
model, well-known examples of frustrated two-dimensional
(2D) systems include the antiferromagnetic triangular [2]
and J1-J2 square lattices [3]. In the former, conventional
long-range order is absent at finite temperatures and ther-
modynamic signatures of strong frustration arise, including
residual entropy [2,4] and a round maximum in the specific
heat [5]. In the latter, phase boundaries can exhibit continuous
and discontinuous order-disorder phase transitions, including
tricriticality, depending on the ratio between first- and second-
neighbor interactions [6].

From the experimental point of view, numerous efforts
have been made to produce and characterize 2D magnets,
which is often motivated by the rich phenomenology and po-
tential applications of these materials [7]. Recently, research
on van der Waals materials provided significant advances in
the field, including the experimental realization of atomically
thin magnets [8]. Within this class of materials, several tran-
sition metal phosphorus trisulfide compounds, such as FePS3

[9], MnPS3 [10], and NiPS3 [11], emerged as promising can-
didates for technological application of 2D magnets [8,12].
In addition, these compounds host antiferromagnetic long-
range order within the honeycomb lattice structure formed
by the transition metal magnetic ions, providing platforms
for the study of magnetic phase transitions at the monolayer
limit [13].

*mateus.schmidt@ufsm.br

Among the transition metal phosphorus trisulfide com-
pounds, FePS3 provides a unique example of a 2D magnet
with Ising anisotropy [9]. Iron atoms in bulk FePS3 form
weakly-interacting layers of a graphenelike structure that or-
ders into a zigzag (ZZ) antiferromagnetic phase (see Fig. 1)
below the Néel temperature TN ≈ 120 K [14–17]. Attempts
to model the unusual antiferromagnetic structure observed
in FePS3 showed that exchange interactions up to third-
neighbors in a honeycomb lattice should be taken into
account [16,18,19]. These results also indicate that frustrated
exchange interactions are hosted by FePS3, making it pro-
totypical to investigate the role of competing interactions in
2D magnetism. In addition, mechanical exfoliation allows
obtaining atomically thin layers that exhibit analogous mag-
netic properties of bulk FePS3, with TN remaining almost
independent of thickness [9]. It is also worth noting that early
studies of bulk FePS3 proposed that the transition between ZZ
and paramagnetic (PM) phases is a first-order phase transition
[14,20,21]. This hypothesis has been corroborated by spin
wave measurements of a powdered sample of FePS3 [18] and
is also in agreement with the magnetic specific heat sharp peak
[22] and a steep variation in magnetic susceptibility observed
near TN [9,14]. Despite the vast relevance of the compound,
the origin of the first-order ZZ-PM phase transition observed
in FePS3 remains elusive.

In the present work, we investigate the thermal phase
transitions of an Ising model with interactions between first
(J1), second (J2), and third neighbors (J3) on the honeycomb
lattice. We focus in the case with ferromagnetic (FE) J1 and
antiferromagnetic J3, which allows obtaining the ZZ phase
hosted by FePS3 at low temperatures [16,18,19]. In order to
investigate the phase transitions of the model, we employ the
cluster mean-field (CMF) method with clusters of up to 18
sites [23–28]. This framework provides an estimate for the
system free energy, allowing the stability analysis of phases,
the identification of the nature of phase transitions and the
derivation of thermodynamic quantities. It is worth noting that
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this method has been widely applied in the study of phase
transitions in frustrated magnets, such as the Ising [29] and
Heisenberg [30,31] models on the triangular lattice and the
Ising [32] and Heisenberg [33] models on the J1-J2 square
lattice. In particular, the CMF accuracy to identify the cou-
pling coordinate of the tricritical point in the frustrated Ising
model on the square lattice matches the state-of-the-art Monte
Carlo simulations [30]. In a recent work, the CMF method
was employed to investigate the J1-J2 Ising model on the
honeycomb lattice, incorporating thermodynamic signatures
of strong frustration introduced by competing interactions
[34]. Therefore, the method allows incorporating frustration
effects in phase diagrams and thermodynamics, which is of
utmost importance for the present study.

The rest of the paper is organized as follows. In Sec. II,
the model is described and the ground-state energy of the
relevant phases is calculated. The CMF implementation for
this particular model is also described in detail. Our results,
including phase diagrams and thermodynamic quantities, are
presented in Sec. III. The conclusion of the paper is given in
Sec. IV.

II. MODEL AND METHOD

We considered a honeycomb lattice with Ising spins at
the vertices and exchange couplings between pairs of first,
second, and third neighbors. The Hamiltonian of this system
is given by

H = −
∑
i, j

Ji jσiσ j − h
∑

i

σi, (1)

where Ji j is equal to J1, J2, or J3, h is the external magnetic
field, and σi = ±1 is the Ising spin variable of site i. This
model exhibits a rich ground-state phase diagram with several
types of antiferromagnetic phases. In a recent study [16],
mean-field calculations for the model with FE first-neighbor
couplings indicated that four types of antiferromagnetism can
compete with the FE ground state in the absence of external
field. It is found that FE third-neighbor interactions and an-
tiferromagnetic J2 can lead to an armchair (for weak J3) or
a stripe (for strong J3) phase. When antiferromagnetic third-
neighbor couplings are considered, the onset of the ZZ phase
or the Néel antiferromagnet (for strong J3 and a ferromagnetic
J2) can be observed. Although the ground state of the model
has been thoroughly described, the effects of temperature (T )
on the phase diagrams remains an open problem. In particular,
the exact solution for this model is known only for the limit
case J2 = J3 = 0, exhibiting a ferromagnetic long-range order
that breaks a twofold symmetry below the reduced critical
temperature kBTc/J1 ≈ 1.52 (kB is the Boltzmann constant)
[35,36].

In the present work, we focus on the case in the ab-
sence of external magnetic field (h = 0) with ferromagnetic
first-neighbor interactions (J1 > 0) and antiferromagnetic
couplings between third neighbors, i.e., −1 < J3/J1 < 0, a
scenario in which the ZZ antiferromagnetic phase can be
found. In Fig. 1, we present the six ZZ ground states, in which
the third-neighbor interactions are fully satisfied, but J1 and
J2 are only partially satisfied. The ground-state energy per site
of this phase is given by UZZ (T = 0) = (3J3 + 2J2 − J1)/2.

FIG. 1. The six zigzag microscopic ground states. The states de-
scribed in the lower panels can be obtained by global spin inversion
of the states described in the upper panels.

By comparing this energy with the one for the ferromagnetic
phase UFE (T = 0) = (−3J3 − 6J2 − 3J1)/2, one can build
the ground-state phase diagram of the model within the range
of parameters considered in the present work.

In order to investigate the thermal phase transitions hosted
by this model, we employ a cluster mean-field approximation
in Eq. (1). In this method, the system is divided into Ncl iden-
tical clusters of size ns. The interactions between magnetic
moments that belong to the same cluster are incorporated
exactly, while the couplings between spins from different
clusters are approximated using the usual mean-field approach

σiσ j ≈ σi〈σ j〉 + 〈σi〉σ j − 〈σi〉〈σ j〉, (2)

where 〈σi〉 is the local magnetization (mi) of site i. The method
accuracy is only bounded by the ability to compute the parti-
tion function of large cluster systems, that should account for
the 2ns spin states. In the present work, we adopt clusters of
ns = 1, 6, and 18, as shown in Fig. 2. In the following, we
discuss each case.

A. Mean-field approach

First, let us consider a single-site approximation, which is
equivalent to the standard mean-field theory and, therefore,
no intracluster interaction is taken into account. In the FE
phase, local magnetizations are identical, i.e., mi = mj . On
the other hand, in order to employ the mean-field approach
to the ZZ phase, one must consider the sublattices within this
long-range order. Figure 2(a) illustrates the mean fields acting
on a single site, with red and black sites belonging to sub-
lattices A and B, respectively. Here, we assume that the local
magnetization from sites belonging to different sublattices can
be related in the form mA

i = −mB
j , where mA

i (mB
j ) belongs to

the sublattice A (B).
Taking into account the magnetization pattern of each

phase, the local magnetizations can be evaluated from the
self-consistent equation

m = 〈σ 〉 = tanh (β m λFE/ZZ ), (3)

where β = 1/kBT . For the ferromagnetic phase λFE = 3J1 +
6J2 + 3J3, and for the ZZ phase λZZ = J1 − 2J2 − 3J3. It is
worth noting that m is the magnetization per site for the
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FIG. 2. The clusters adopted in the cluster mean-field approach with the colors in filled circles (representing magnetic sites) following
the zigzag pattern. Solid, dashed, and dotted lines represent first-, second-, and third-neighbor interactions, respectively. (a) The single-site
(standard mean field) approximation with mean fields represented by arrows. (b) The six-site cluster approach, with first-neighbor mean-fields
and all intracluster interactions in the central cluster. Panel (c) shows the 18-site cluster with mean fields and intracluster interactions related
only to first-neighbor interactions. Red clusters exhibit the same local magnetization pattern of the central cluster, while blue clusters show a
local magnetization pattern with opposite sign of the equivalent sites from the central cluster.

FE phase and the staggered magnetization for the ZZ phase.
After solving the self-consistent problem of Eq. (3), thermo-
dynamic quantities can be evaluated from the free-energy per
spin

f = −kBT ln [cosh (β m λFE/ZZ )] + λFE/ZZ m2/2. (4)

The free energy is also useful to locate first-order phase tran-
sitions, which is done by comparing its value for each of the
phases in the transformation.

B. Cluster mean-field approach

The single-site mean-field theory provides a simple frame-
work to investigate phase transitions. However, by neglecting
correlations, the method is unable to incorporate some impor-
tant effects of frustration. A straightforward improvement of
the standard mean-field treatment can be achieved by employ-
ing clusters of spins instead of canonical spins. In other words,
this framework allows to incorporate exactly the interactions
within the clusters. More important, frustration effects intro-
duced by intracluster interactions are incorporated exactly.
The cluster mean-field method has been employed to the study
of the honeycomb lattice in recent investigations [34,37]. In
particular, in Ref. [34], the frustrated J1-J2 Ising model was
investigated by employing the CMF method with the six-site
cluster of Fig. 2(b) and the 18-site cluster shown in Fig. 2(c).
It is worth noting that this particular choice of cluster shapes
allows obtaining the sixfold degeneracy of the ZZ phase.

By employing the approximation of Eq. (2) in the inter-
cluster couplings, the many-body problem is reduced to a

single-cluster Hamiltonian given by

HCMF = −
∑
〈i, j〉

Ji jSiS j −
∑
i, j

Ji j

[
Sim

′
j − mim′

j

2

]
, (5)

where mi is a local magnetization from a site within the
central cluster and m′

j are mean-fields from neighbor clusters.
In the ferromagnetic phase, one can relate the local magneti-
zation from the neighbor cluster to equivalent sites from the
central cluster (i.e., m′

j = mj). However, for the ZZ phase,
this straightforward relation is not always valid. In particular,
clusters highlighted in blue exhibit a magnetization pattern
that differs from the central one [see panels (b) and (c) of
Fig. 2]. It means that the cluster boundary conditions must be
adapted to the local magnetization pattern of the ZZ phase, as
done in a recent CMF study of a spin-1 model with competing
interactions [38]. In fact, sites from blue clusters show a local
magnetization with the same absolute value (but opposite
sign) of the topologically equivalent sites from the central
cluster. It means that the relation m′

j = −mj is valid when
considering blue clusters, and m′

j = mj for red clusters.
These relations between local magnetizations of the cen-

tral cluster and its neighbors allow to obtain an effective
single-cluster problem amenable to a self-consistent solution.
In principle, one can compute all local magnetizations, but
a reduced number of independent self-consistent parameters
can be obtained, depending on the cluster size and the long-
range order.

Let us now focus on the ns = 6 cluster, in which all sites
are topologically equivalent. We can write this Hamiltonian in
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the form

HCMF-6 = H ′
6 + HMF-6, (6)

where

H ′
6 = − J1[σ1(σ2 + σ6) + σ3(σ2 + σ4) + σ5(σ4 + σ6)]

− J2[σ1(σ5 + σ3) + σ2(σ4 + σ6) + σ3σ5 + σ4σ6]

− J3[σ1σ4 + σ2σ5 + σ3σ6]

incorporates the intracluster couplings and HMF-6 is the mean-
field contribution. In the ferromagnetic phase, all sites exhibit
the same local magnetization. It means that the CMF problem
is reduced to a single self-consistent parameter. For in-
stance, we can write the mean-field contribution as a function
of m1:

HFE
MF-6 = −(J1 + 4J2 + 2J3)

(
m1

6∑
i=1

σi − 3m2
1

)
. (7)

In the ZZ phase, the six-site cluster mean-field approxi-
mation introduces an inhomogeneity within the sublattices.
For instance, site 1 is not equivalent to sites 2 and 6. It is
worth stressing that this inhomogeneity is an artifact of the
CMF method instead of a feature of the model. Thus, there
are two independent self-consistent parameters. We can re-
duce the effective problem to the computation of the local
magnetizations from sites 1 and 2. Noting that m1 = −m4

and m2 = m6 = −m3 = −m5, the mean-field contribution is
given by

HZZ
MF-6 = (σ1 − σ4 − m1)(J1m1 + 2J3m2)

+ (σ3 − σ2 + σ5 − σ6 + 2m2)(−J3m1

+ [J1 − 2J2 − J3]m2). (8)

After solving the self-consistent problem, the free energy per
spin

fCMF-6 = − ln
(
Tr e−βHCMF-6

)
nsβ

(9)

can be evaluated. In addition, entropy per spin S = (U −
fCMF-6)/T and specific heat Cv = dU/dT can be computed
by using the internal energy per spin

U = 〈HCMF-6〉 = Tr HCMF-6 e−βHCMF-6

ns Tr e−βHCMF-6
. (10)

The order parameter of each phase can be computed from
the local magnetizations. The magnetization per site mFE =∑ns

i=1 mi/ns is the order parameter of the ferromagnetic phase
while the staggered magnetization

mZZ = (m1 + m2 + m6 − m3 − m4 − m5)/ns (11)

is the order parameter of the zigzag phase.
The implementation of the CMF method for the 18-site

cluster shown in Fig. 2(c) follows in an analogous way.
However, for this larger cluster, there are more independent
mean-field parameters, which leads to lengthy equations that
will be discussed in the Appendix. For instance, the ZZ phase
leads to nine independent mean-field parameters for ns = 18.
In order to classify the nature of phase transitions, we compare
the free energy of different phases. For the order-disorder

FIG. 3. Phase diagram of temperature versus second-neighbor
couplings for several strengths of J3/J1. Continuous and dashed lines
indicate second-order and first-order phase transitions, respectively.
Filled circles indicate the tricritical points.

phase transitions, we compare the free energies as a func-
tion of temperature adopting a reduced temperature step of
10−5. We classified the transition as first order when the
free energies of the phases showed a crossing point. Second-
order phase transitions were characterized by the absence of a
crossing point.

III. RESULTS

In this section, we present the numerical results obtained
from the mean-field and cluster mean-field treatment of the
J1-J2-J3 Ising model on the honeycomb lattice. In order to
compare our findings with the magnetic behavior of FePS3,
we consider a ferromagnetic J1 interaction, which is used as
unit of energy. In addition, we focus on antiferromagnetic
third-neighbor couplings, assuming that these interactions are
finite and weaker than the first-neighbor couplings. In the
following, we report our findings allowing ferromagnetic and
antiferromagnetic second-neighbor couplings.

In Fig. 3, we present the global phase diagram of the
model obtained within the six-site CMF approximation.
The temperature-coupling phase diagrams show FE and ZZ
ground states with a boundary between these two phases
located in agreement with the ground-state energies. When
thermal fluctuations are considered, frustration effects can be
noted in the phase diagram. In particular, for J3/J1 = −0.1, a
ferromagnetic second-neighbor coupling leads to the onset of
a ferromagnetic phase below a Curie temperature TC . We also
note that only second-order phase transitions are observed
in the FE-PM phase boundary. Moreover, reducing J2 brings
down TC until the ZZ phase takes place for J2 � −0.175J1. A
first-order phase transition separates the long-range orders at
low temperatures.

In the ZZ-PM phase boundary, a very interesting sce-
nario arises with the onset of first-order order-disorder phase
transitions. Moreover, for strong antiferromagnetic interac-
tions between second neighbors, second-order ZZ-PM phase
transitions can be found, with a tricritical point indicating
the change in the nature of phase transitions. In Fig. 4, we
present the behavior of thermodynamic quantities within the
six-site CMF calculation. For J3/J1 = −0.1, a discontinuity
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FIG. 4. Thermodynamics within the six-site CMF approxima-
tion. The order parameter, entropy per spin, and specific heat as
functions of temperature are exhibited for J3/J1 = −0.1 (left col-
umn) and J3/J1 = −0.3 (right column) and several strengths of
second-neighbor couplings. A dotted line indicates the discontinuity
in the order parameter and entropy.

can be observed in the ZZ phase order parameter and in
the entropy per spin as functions of temperature for J2/J1 =
−0.2,−0.3,−0.4, and −0.5. These discontinuities are sig-
natures of the ZZ-PM first-order phase transitions that take
place for these strengths of second-neighbor couplings. The
specific heat also exhibits a discontinuity at the transition,
but the behavior of this quantity cannot be used to unam-
biguously identify the nature of phase transitions. Moreover,
increasing the strength of second-neighbor interactions en-
hance the ZZ-PM ordering temperature. We also note that
the jump in the entropy and order parameter is reduced while
approaching the tricritical point, which takes place at J2/J1 ≈
−1.0 for J3/J1 = −0.1. An even more interesting scenario
can be observed in Fig. 4 for J3/J1 = −0.3. In this case,
thermodynamic signatures of first-order phase transitions are
observed for J2/J1 = −0.2,−0.3, and −0.4. On the other
hand, for J2/J1 = −0.5, the order parameter and entropy show
a continuous behavior at the phase transition, indicating a
second-order phase transition. This qualitative change in the
thermodynamic behavior of the system signals a change in
the nature of the phase transitions, indicating the presence of
a tricritical point between J2/J1 = −0.4 and J2/J1 = −0.5.
We also note that the specific heat becomes sharper at the
transition as the tricritical point is approached.

FIG. 5. Phase diagrams in the temperature-coupling plane for
J3/J1 = −0.04 adopting (a) ns = 6 and (b) ns = 18. The same con-
vention of Fig. 3 is adopted. The dotted line indicates a crossover
within the paramagnetic phase located at the specific heat maximum.

Our data supports that tricriticality takes place for all
strengths of J3/J1 considered for both ns = 6 and ns =
18 clusters. We also note that stronger antiferromagnetic
third-neighbor couplings enhance the Néel temperature, and
therefore favors the ZZ phase. This result is expected once a
negative J3 coupling favors anti-aligned third neighbors, driv-
ing a ZZ phase that is more robust under thermal fluctuations.
Then, one can expect that stronger frustration effects take
place when this interaction is weaker.

In Fig. 5, we present the coupling-temperature phase di-
agram for weak third-neighbor couplings (J3/J1 = −0.04)
obtained within the CMF method with clusters of size ns = 6
and ns = 18. The single-site mean-field results show contin-
uous order-disorder phase transitions and are omitted. The
ground-state transition between the two ordered phases takes
place at J2/J1 = −0.22, in agreement with the exact ground-
state energies presented in Sec. II. As a consequence of
the strong competition between these two ordered states, the
order-disorder transition reaches its lowest values for J2/J1 ≈
−0.22. In addition, we found a second maximum of specific
heat in the PM phase, which can be related to the onset of
a correlated paramagnetic phase. The dotted line indicates the
temperature in which this second maximum occurs. It is worth
noting that the J1-J2 Ising model on the honeycomb lattice
also exhibits a maximum of specific heat above the ordering
temperature [34]. Therefore this round maximum of specific
heat can be understood as a remnant effect of the strongly
frustrated scenario found when J3 = 0.

In order to further reason about the frustration effects, we
present results for the thermodynamics of the model at very
weak third-neighbor couplings in Fig. 6 (J3/J1 = −0.04). We
note that for J2/J1 = −0.3, entropy exhibits a discontinuity
and specific heat shows a sharp peak at the ZZ-PM phase tran-
sition, which is expected for a first-order phase transition. For
J2/J1 = −0.222, cooling down the system from high temper-
atures leads to a significant entropy drop, which is followed by
a specific heat maximum. At even lower temperatures, entropy
and specific heat show a discontinuity at the ZZ-PM phase
transition. For temperatures above the FE-PM phase transi-
tion, similar phenomena can be noted in the specific heat and
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FIG. 6. Thermal dependence of specific heat and entropy per
spin for J3/J1 = −0.04 and several strengths of second-neighbor
interactions within the 18-site CMF approximation. Colors delimit
the range of temperature in which each phase is found.

entropy [see, e.g., panel (d) of Fig. 6]. We also note that the
entropy is continuous at the FE-PM phase transition, which is
expected for second-order phase transitions. We remark that
the signatures of frustration spotted in the present model are
restricted to the neighborhood of the FE-ZZ ground-state level
crossing. In particular, for J2/J1 = −0.15, the maximum in
the specific heat within the PM phase is absent as shown in
Fig. 6(e).

Our results also indicate an order-by-disorder thermal se-
lection of the FE phase. This reentrant phenomenon can be
spotted in Fig. 6(c), where heating up the zigzag antiferro-
magnet leads the system into the ferromagnetic phase for
J2/J1 = −0.2205. The order-by-disorder state selection can
also be observed in the behavior of free energy. In Fig. 7, we
present the difference of the free energy per site between ZZ
and FE phases as a function of temperature. The coupling
strengths are set to correspond to the ground-state ZZ-FE
phase transition. It means that at absolute zero temperature,
the free energy of both phases is the same. As temperature is
increased, a finite difference between the free energies of these
phases can be noted, with the FE phase showing a lower free

FIG. 7. Difference between free energies per spin of FE and ZZ
phases (� f = fFE − fZZ ) as a function of temperature for coupling
strengths that correspond to the ground-state level crossing between
these phases. Panel (a) exhibits the data for ns = 6 and 18 at J3/J1 =
−0.04 and J2/J1 = −0.22. In panel (b), results for ns = 6 when
J3/J1 = −0.1 (J2/J1 = −0.175), J3/J1 = −0.3 (J2/J1 = −0.025),
and J3/J1 = −0.5 (J2/J1 = 0.125) are shown.

energy. Therefore, thermal fluctuations select the FE phase at
low temperatures. In Fig. 7(a), our data for J3/J1 = −0.04 and
J2/J1 = −0.22 show that this phenomenon can be observed
for ns = 6 and ns = 18. In addition, the order-by-disorder
state selection takes place at different coupling strengths, as
shown in Fig. 7(b). Analogous phenomenon was reported in
recent CMF [39] as well as Monte Carlo and Bethe lattice [40]
studies of the frustrated Ising bilayer honeycomb lattice.

The FePS3 compound shows signatures of a first-order
phase transition between ZZ and PM phases. Therefore, it
is interesting to consider whether the present model can in-
corporate the nature of the ZZ-PM phase transition hosted
by FePS3. As shown in Fig. 3, first-order phase transitions
can be found at different strengths of J3/J1 and J2/J1. In
Ref. [19], the magnon dynamics of FePS3 was investigated
by means of neutron inelastic scattering. A good fit to the ex-
perimental results was achieved by adopting J1 = 1.46 meV,
J2 = −0.04 meV, and J3 = −0.96 meV within a Heisenberg
model. In order to investigate whether this set of couplings
allows us to obtain the appropriate nature of phase transitions
in the present model, we adopt the exchange couplings consid-
ered in Ref. [19]. In Fig. 8, we present the phase diagrams for
clusters of ns = 1, 6, and 18 by considering J3/J1 = −0.66.
We note that the range in which first-order phase transitions

FIG. 8. Phase diagram of temperature versus coupling for
J3/J1 = −0.66 within the single-site mean-field and CMF approx-
imations. The same convention of Fig. 3 is adopted. The vertical
dotted line is placed at J2/J1 = −0.027, corresponding to the ex-
change estimate from Ref. [19].
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FIG. 9. Thermal dependence of the (a) zigzag phase order pa-
rameter and (b) entropy per spin for J3/J1 = −0.66 and several
strengths of J2/J1 within the single-site CMF approximation. The
inset in panel (b) shows the specific heat as a function of temperature.

are obtained depends on the level of the CMF approximation.
For instance, the single-site mean-field treatment suggests that
only second-order ZZ-PM phase transitions can be observed.
In Fig. 9, we present the mean-field results for the thermody-
namics of the model for J3/J1 = −0.66 and several strengths
of second-neighbor couplings. While the ZZ order parame-
ter and entropy exhibit a continuous behavior, the specific
heat shows a discontinuity at the phase transition, which is
consistent with second-order phase transitions. However, the
CMF results for ns = 6 and ns = 18 suggests the existence
of first-order phase transitions and tricriticality at the ZZ-PM
phase boundary. We note that the six-site CMF approximation
delivers a tricritical point at J2/J1 ≈ 0.00, indicating that a
second-order phase transition takes place for the experimen-
tally relevant strength of second-neighbor couplings J2/J1 =
−0.027. However, the 18-site approach indicates a first-order
ZZ-PM phase transition for the same strength of J2/J1 (see the
dotted line in Fig. 8), with a tricritical point at J2/J1 ≈ −0.12.
Considering that larger clusters provide better results within
the CMF approach, our findings indicate that the phase tran-
sition arising when J3/J1 = −0.66 and J2/J1 = −0.027 is a
first-order phase transition. Therefore, our results indicate that
the exchange couplings proposed in Ref. [19] allows us to
correctly reproduce the nature of the ZZ-PM phase transition
observed in FePS3.

Experimental results indicate that the magnetic specific
heat of FePS3 exhibits a sharp peak at the ZZ-PM phase
transition, which can be attributed to the discontinuous nature
of the phase transition. In Fig. 10, we present the behavior
of the order parameter mZZ , magnetic susceptibility, specific
heat and entropy per spin as functions of temperature for
exchange parameters in agreement with Ref. [19] (J3/J1 =
−0.66 and J2/J1 = −0.027). Entropy and the order parameter
exhibit a discontinuity at the phase transition, as expected for
first-order phase transitions. We also note that the magnetic
susceptibility lacks the round maximum above the ordering
temperature observed in bulk FePS3. On the other hand, χ (T )
exhibits the abrupt drop near the phase transition reported in
Ref. [9]. Moreover, the inset of Fig. 10(c) exhibits the discon-
tinuous behavior of the magnetic susceptibility at the ordering

FIG. 10. Thermal dependence of the (a) zigzag phase order
parameter, (b) entropy per spin, (c) magnetic susceptibility, and
(d) specific heat for J2/J1 = −0.027 and J3/J1 = −0.66 within 18-
site CMF approximation. The insets show the quantities near the
phase transition.

temperature, in agreement with the experimental results. More
interesting, the specific heat exhibits a sharp peak at TN , as
evidenced by the inset in Fig. 10(d). Therefore, our micro-
scopic model calculations allows to qualitatively reproduce
the behavior of specific heat observed for FePS3 by adopting
the exchange couplings proposed in Ref. [19].

It is worth noting that similar behavior of thermodynamic
quantities can be obtained in the range of parameters in
which first-order phase transitions are present. In order to
have a more clear picture for the range of parameters in
which first-order ZZ-PM phase transitions can be found in the
present model, we gathered data from our CMF calculations
in Fig. 11. We remark that fits to experimental results suggest
that J2 ≈ 0 and |J3| should be weaker but comparable with J1

[16,19]. Therefore, we focus our analysis on J3/J1 � −0.3.
Our findings suggest that lowering J3/J1 from −0.3 down
to −0.9 reduces the range of J2/J1 in which first-order ZZ-
PM phase transitions can be found. Moreover, assuming a
weak second-neighbor coupling narrows the range of J3/J1

in which first-order phase transitions take place. For instance,
constraining the absolute value of J2 so that |J2|/J1 < 0.05 al-
lows first-order phase transitions in a range of third-neighbor
couplings that is roughly between J3/J1 ≈ −0.3 and −0.8
according to our 18-site CMF results. It is also worth noting
that the filled square in Fig. 11 corresponds to the estimate
of exchange couplings for FePS3 from Ref. [19], which is
seemingly close to the tricritical point.

014436-7



P. F. DIAS AND M. SCHMIDT PHYSICAL REVIEW B 108, 014436 (2023)

FIG. 11. Coupling coordinates of the tricritical points computed
within the CMF approximation for ns = 6 (empty circles) and ns =
18 (filled circles). The solid line indicates the ground-state ZZ-FE
phase transition. The dashed line is a guide for the eyes following the
trend for the tricritical points obtained within the 18-site approxima-
tion. This trend allows to visualize regions in which first-order (FO)
and second-order (SO) phase transitions arise at the ZZ-PM thermal
phase transition. The filled square corresponds to the exchange esti-
mate for FePS3 proposed in Ref. [19].

IV. CONCLUSION

We investigated the thermal phase transitions and ther-
modynamics of the J1-J2-J3 Ising model on the honeycomb
lattice. Phase diagrams were obtained for ferromagnetic first-
neighbor interactions and antiferromagnetic third-neighbor
couplings (−1 < J3/J1 < 0) within a cluster mean-field ap-
proach with clusters of up to 18 sites. Our findings indicate
that the ZZ-PM phase boundary can exhibit several interesting
phenomena, including the onset of first-order phase transitions
and tricriticality. For weak third-neighbor couplings, strong
frustration effects take place close to the boundary between
ordered phases. In particular, a round maximum is found in
the thermal dependence of the specific heat, a thermodynamic
behavior that is often observed in strongly frustrated systems
such as the Ising triangular [5] and kagome lattices [41,42].

We also focus on the range of exchange couplings that
are relevant to the zigzag phase transition found in FePS3.
In particular, our CMF calculations provide an estimate for
the range of exchange parameters in which the model ex-
hibits first-order phase transitions. We note that the exchange
couplings estimated for FePS3 in Ref. [19], namely J2/J1 =
−0.027 and J3/J1 = −0.66, allows us to obtain a first-order
ZZ-PM phase transition for ns = 18. Therefore, our results
indicate that the J1-J2-J3 Ising model on the honeycomb lattice
can be a minimal model to obtain not only the type of unusual
magnetism observed in FePS3, but also is able to correctly
incorporate the nature of the phase transition observed in this
2D magnet. We expect that the rich phenomenology unveiled
within the CMF approach motivates studies of the present
model within other analytical and numerical methods. An
interesting question concerns the critical exponents of the
ZZ-PM phase transition, which can be investigated within
Monte Carlo simulations.

It is worth remarking that our microscopic model cal-
culations do not cover the vast complexity of FePS3 and
further investigations are required to draw a complete pic-
ture for the magnetism of this compound. For instance, we
neglect any spin interacting term beyond the Ising coupling

and the possibility of different strengths of interactions be-
tween equivalent neighbors [43]. We also note that although
very weak, interlayer interactions in bulk FePS3 might be
relevant for the nature of phase transitions. We believe that
incorporating some of these features in the present model can
lead to challenging and exciting problems. In fact, it has been
shown that pressure can reduce the interlayer distance, driving
a stronger coupling between crystal planes of FePS3 [17].
We note that recent results for the J1-J2 Ising model on the
square lattice indicate that the nature of phase transitions can
be strongly affected by interlayer couplings [44]. Therefore,
an interesting question for future research concerns whether
interlayer exchange interactions can affect the nature of phase
transitions exhibited by the J1-J2-J3 Ising model on the hon-
eycomb lattice. Moreover, the role of external magnetic fields
in the present model is also a subject worth investigating. The
possibility of a field-induced tricritical point was hinted in an
investigation of the high field magnetization of FePS3 [16].
Our findings suggest that the present model is prone to exhibit
a tricritical point, which might be also obtained by incorpo-
rating effects of transverse and longitudinal external fields. In
our opinion, the CMF method is a feasible approximation to
carry out these studies.
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APPENDIX: CMF THEORY FOR THE 18-SITE CLUSTER

In this Appendix, we describe the CMF implementation for
the cluster of size ns = 18 shown in Fig. 2(c). By adopting
the mean-field approximation of Eq. (2) in the intercluster
interactions, we can reduce the many-body problem to a
single-cluster effective problem with Hamiltonian

HCMF-18 = H ′
18 + HMF−18. (A1)

The intracluster term can be written in the form

H ′
18 = H ′

1 + H ′
2 + H ′

3, (A2)

where

H ′
1 = − J1[σ1(σ2 + σ6) + σ5(σ4 + σ6) + σ7(σ8 + σ12)

+ σ3(σ2 + σ4 + σ12) + σ11(σ10 + σ12 + σ14)

+ σ9(σ8 + σ10) + σ13(σ4 + σ14 + σ18)

+ σ15(σ14 + σ16) + σ17(σ16 + σ18)],

H ′
2 = − J2[σ1(σ3 + σ5) + σ3(σ5 + σ7 + σ11 + σ13)

+ σ2(σ4 + σ6 + σ12) + σ12(σ8 + σ10 + σ14)
+ σ7(σ9 + σ11) + σ4(σ6 + σ12 + σ14 + σ18)
+ σ11(σ9 + σ13 + σ15) + σ14(σ16 + σ18)
+ σ13(σ5 + σ15 + σ17) + σ10(σ8 + σ14)
+ σ15σ17 + σ16σ18],
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and

H ′
3 = − J3[σ2(σ5 + σ7) + σ3(σ6 + σ14) + σ4(σ1 + σ11)

+ σ8σ11 + σ10(σ7 + σ15) + σ12(σ9 + σ13)

+ σ18(σ5 + σ15) + σ13σ16 + σ14σ17].

The mean-field term can be written in a compact form
by considering the local magnetization pattern of the phases
under consideration. In the following, we discuss this term for
the FE and ZZ phases.

1. The ferromagnetic solution

The intercluster term within the CMF implementation must
account for different local magnetizations within the clus-
ter. This difference is an artifact of the method and only
takes place due to sites that are topologically inequivalent
within the cluster and/or sublattice. For the FE phase, the
local magnetizations of the central hexagon in 18-site cluster
are identical, i.e., m3 = m4 = m11 = m12 = m13 = m14. The
outermost sites of the cluster can exhibit two different local
magnetizations. The sites that are linked by the first-neighbor
intracluster couplings to the central hexagon exhibit the same
magnetization, which means that m2 = m5 = m7 = m10 =
m15 = m18. Finally, the remaining sites are also topologically
equivalent, allowing to write m1 = m6 = m8 = m9 = m16 =
m17.

In the FE case, the local magnetization pattern of all clus-
ters is the same, which means that the local magnetization

from neighbor clusters can be obtained from equivalent sites
of the central cluster. Thus, the intercluster term can be written
as

HFE
MF-18 = − J1[S2m1 + S1m2 − 6m1m2]

− J2
[
S1(2m1 + m3 + m2) + S2(2m2 + m1)

+ S3m1 − 6
(
m2

1 + m1m3 + m1m2 + m2
2

)]
− J3[S1(m3 + m2) + (S2 + S3)m1

− 6m1(m2 + m3)],

where S1 = σ1 + σ6 + σ8 + σ9 + σ16 + σ17, S2 = σ2 + σ5 +
σ7 + σ10 + σ15 + σ18 e S3 = σ3 + σ4 + σ11 + σ12 + σ13 +
σ14.

2. The zigzag solution

In the ZZ phase, we can identify two types of clusters
within the 18-site approximation. The red clusters in Fig. 2(c)
exhibit the same local magnetization pattern of the central
cluster. On the other hand, the blue clusters in Fig. 2(c) exhibit
local magnetizations (m′

i) with opposite sign of the local mag-
netizations from equivalent sites of the central cluster (mi). It
means that m′

i = −mi.
In addition, within the central cluster, the local magneti-

zations respect the relations m1 = −m16, m2 = −m15, m3 =
−m14, m4 = −m13, m5 = −m18, m6 = −m17, m7 = −m10,
m8 = −m9, and m12 = −m11. Using these relations, we can
write the intercluster term of the CMF Hamiltonian as

HZZ
MF-18 = − J1[μ1m7 + μ2m2 + μ3m1 + μ4m5 + μ5m6 + μ6m8 − 2(m1m7 + m5m8 + m6m2)] − J2[m3μ2 + m4μ4

+ m1(μ5 + μ2 + μ4 + μ7) + m2(μ1 + μ6 + μ3) + m5(μ5 + μ3 − μ4) + m6(μ1 + μ8 + μ3 + μ4) + m12μ1

+ m7(μ5 + μ6 + μ2) + m8(μ1 + μ9 − μ6 + μ2) + 2{m5(m8 − m7) − m1(m8 + m2 + m12 + m6)

− m2(m5 + m7) − m6(m3 + m7) − m8(m4 + m6)}] − J3[(μ8 + μ6)m1 + μ4(m2 − m4) + μ1(m3 + m5)

+ (μ3 + μ7)m6 + μ2(m7 + m12) + (μ5 − μ9)m8 − 2m1(m3 + m5) − 2m8(m2 − m4) − 2m6(m7 + m12)],

where μ1 = σ1 − σ16, μ2 = σ6 − σ17, μ3 = σ7 − σ10, μ4 =
σ8 − σ9, μ5 = σ2 − σ15, μ6 = σ5 − σ18, μ7 = σ12 − σ11,
μ8 = σ3 − σ14, and μ9 = σ4 − σ13.

In order to investigate the magnetic susceptibility χ =
dm/dh within the ZZ phase, we employ a numerical
derivative of the magnetization. It means that the magneti-
zation in the presence of a small external field should be
evaluated. At a finite external field, the local magnetiza-
tions of different sublattices do not hold a straightforward

relation. As a consequence, the 18 local magnetizations
should be evaluated. The local magnetizations from the
blue clusters can be obtained from sites within the central
cluster that holds an equivalent position within the sublat-
tice. For instance, the magnetization m1 is equivalent to the
magnetization m′

16 from the blue clusters. Analogous re-
lations can be established for all local magnetizations of
the blue clusters, allowing us to obtain the self-consistent
equations.
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