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Discrete time crystal made of topological edge magnons
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We report the emergence of time-crystalline behavior in the π -Berry phase protected edge states of a
Heisenberg ferromagnet in the presence of an external driving field. The magnon amplification due to the external
field spontaneously breaks the discrete time-translational symmetry, resulting in a discrete time crystal with a
period that is twice that of the applied electromagnetic field. We discuss the nature and symmetry protection of
the time crystalline edge states and their stability against various perturbations that are expected in real quantum
magnets. We propose an experimental signature to unambiguously detect the time crystalline behavior and
identify two recently discovered quasi-two-dimensional magnets as potential hosts. We present a realization of
time crystals at topological edge states, which can be generalized and extrapolated to other bosonic quasiparticle
systems that exhibit parametric pumping and topological edge states.
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I. INTRODUCTION

Symmetries and symmetry breaking underlie many inter-
esting phases and phenomena in condensed matter physics. A
crystal with a periodic array of atoms/molecules is a simple
example where continuous symmetry in space is sponta-
neously broken. Based on Lorentz invariance that puts spatial
and temporal coordinates on equal footing, Wilczek in 2012
proposed the idea of a time crystal [1], where time translation
symmetry can also be spontaneously broken in the ground
state of a quantum many body system—local observables
oscillate in time with fixed periodicity, analogous to the spatial
modulation in crystalline solids. However, despite Lorentz in-
variance, space and time are not completely interchangeable,
as evidenced by their different signs in the metric tensor.
Moreover, by its very own definition, the ground state or
any equilibrium state of a closed quantum system does not
vary with time and Wilczek’s original idea was shown to be
unfeasible [2–6]. Nevertheless the idea of time crystals as new
phases of matter has generated much interest over the past
decade. More recent studies have established that time crystals
can emerge under proper conditions. It is now widely accepted
that time crystals can be realized in out-of-equilibrium sys-
tems [5,7–11] and particularly in the presence of a periodic
driving field.

Time crystals have been theoretically studied and experi-
mentally reported in a range of systems, including magnons
[12,13], ultracold atoms [14,15], superfluid quantum gas
[15,16], and qubits [17–19]. Different time crystals can be
broadly categorized in two categories: continuous time crys-
tal [20–23] and discrete time crystal [24–26]. Discrete time
crystalline behavior in a periodically driven system is char-
acterized by the local properties that oscillate in time with
a period which is a multiple of that of the driving field
[12–16,24–45]. In many cases, the driving field injects en-
ergy into the system that eventually leads to thermalization.
The periodic behaviors before thermalization are known as

prethermal time crystals [27–31]. Conversely, if the driving
frequency is much larger than the local energy scales or
if heat generated during thermalization can be dissipated, a
driven dissipative time crystal can form because thermaliza-
tion takes a long time [40–44,46]. For Floquet many body
localized (MBL) systems [24–26], where absence of coupling
between different energy eigenstates prevent thermalization of
the states, a more robust long-lived time crystal can be real-
ized. However, MBL phase requires a strong disorder, which
is practically not feasible to prepare experimentally. Thus a
research effort is still ongoing to find new more efficient
and effective ways for stabilizing the many body phase time
crystal which is much more unstable than its counterpart space
crystals.

In this work, we show that a discrete time crystal can
emerge in the topological π -Berry phase protected magnon
edge state of a quantum magnet driven by a periodic field
in absence of any time reversal symmetry breaking interac-
tions (see Fig. 1). The topological protection of the edge
state strongly reduces the scattering of edge magnons. In
contrast to Floquet MBL, our proposal avoids the need for
strong disorder, which stands in the way of experimental
realization in larger systems [11]. We work with a realistic
microscopic Hamiltonian that captures the low-energy mag-
netic properties of the quasi-two-dimensional (2D) quantum
magnets haydeeite and Cu(1,3-bdc). The topological time-
crystal considered in this study should not be confused with
the Floquet topological time crystal studied in Refs. [47,48],
because the topology in the latter systems is out of equi-
librium phenomena, whereas the topology in our system is
intrinsic to the system which ensures the stability of time
crystal. While we have demonstrated the emergence of time
crystalline state in magnons on the kagome lattice, the results
are applicable to other bosonic quasiparticles like phonons,
plasmons, polaritons, etc., where parametric amplification has
been demonstrated [49–59] and topological edge states are
also present [60–74].
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FIG. 1. Realization of a discrete time crystal made of topological
edge magnons. At the edge spins oscillate with a period twice that of
the external EM field, breaking discrete time translational symmetry.
The phases of oscillation for neighboring sites are opposite as the
magnons are amplified at the k = π point

II. DISCRETE TIME CRYSTAL

We consider the ferromagnetic Heisenberg model on a
kagome lattice,

H0 = −J
∑

i j

Ŝi · Ŝ j . (1)

The low energy magnon excitations above the ferromagnetic
ground states are described by the linear spin-wave the-
ory: Ŝ+

i = √
2Sâi, Ŝ−

i = √
2Sâ†

i , and Ŝz
i = S − â†

i âi, where
S denotes the magnitude of the spin and â†

i (âi ) creates
(annihilates) a magnon at site i. Application of the above
transformation to H0 yields a tight binding magnon Hamil-
tonian where the interactions are neglected. The resulting
band structure for a ribbon geometry [Fig. 2(a)] is shown in
Fig. 2(b). The bulk bands carry a nontrivial quantized Z2 topo-
logical invariant (Zak phase or π -Berry phase) and contain
nearly flat topological edge states between the projected Dirac
points [75,76]. Any effective time reversal symmetry breaking
terms in the Hamiltonian, such as the Dzyaloshinskii-Moriya
interaction (DMI), would open up a gap in the magnon spec-
trum at the Dirac points [77] and imparts dispersion to the
edge states at k = π , destroying discrete time crystalline be-
havior that is discussed later in Sec. III.

As bosons not subject to the Pauli exclusion principle,
magnons normally populate the bottom of the band, far from
the edge states. However, recent studies have shown that
edge state magnons can be controllably amplified at arbitrary
energies by tailored electromagnetic (EM) waves [78]. The
EM field with amplitude E and frequency � couples to
the magnetic insulators via polarization [79–81] as

Hc = cos(�t )E ·
∑
〈i, j〉

Pi j, (2)

where Pi j is the polarization operator of the magnetic insu-
lator. The relevant terms in Pi j that contribute to magnon
amplification consist of bilinear spin operators on the nearest

FIG. 2. (a) Schematic of a kagome ferromagnetic system with
a finite number of sites along width (orange sites) and the system
is periodic along the green arrow after a certain number of sites.
(b) The magnon band structure is shown in black. The yellow dots
denote the amplified topological edge magnonic states. Inset shows
the magnified picture of the band near k = π and the color code
describes the value of the positive imaginary part of eigenvalues.
(c) The number of magnons at k = π as a function of time for upper
(blue) and lower edge (red) states, indicating parametric amplifica-
tion of edge magnons. (d) Time crystal made of topological edge
magnons reflected in oscillation of in-plane spin component Sx at a
site at upper (blue plot) and lower edges (red plot). Inset shows the
magnified figure within a particular time limit. The period of oscil-
lation is twice that of the external EM field. The parameters used for
all the plots are J = 1.0, γ = 5 × 10−4, η = 9 × 10−4, � = 5.1716,
p0 = 1.0, Ex

0 = 0.0, and Ey
0 = 0.002.

neighbor bonds (see Appendix A),

Pi j ≈ p0,i j (Si · Qi j )(S j · Qi j ). (3)

Other polarization terms are not important for this study
as they will be neglected in the rotating wave approxima-
tion [78]. Furthermore, we have neglected the effect of the
magnetic field component of the electromagnetic wave for
the following reasons. The magnetic field couples with the
system in a form of Zeeman coupling which carries a term
proportional to cos(�t ) and is only able to couple with the
magnons of energy �. Thus the edge magnons remain unaf-
fected which has a frequency of �/2 (see later in this section).
Bulk magnons are also less affected by magnetic field, as
discussed in Appendix F.

The equation of motion for the magnon field α̃k is given
by (see Appendix B for more details)

d

dt

(
α̃∗

k
α̃−k

)
= i

(
ε̃k − i γ I+η|αk |2

2
[H̃c]12

2

− [H̃c]21
2 −ε̃−k − i γ I+η|αk |2

2

)(
α̃∗

k
α̃−k

)
,

(4)

where (α̃∗
k α̃−k ) represent the magnon fields 〈 ˆ̃an,k〉; ε̃k is a

diagonal matrix with elements εn,k − �
2 , where εn,k is the

energy eigenvalue; γ and η are phenomenological linear and
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nonlinear damping constants; I is the identity matrix and
|αk|2 is the diagonal matrix with entries |〈 ˆ̃an,k〉|2. The sub-
scripts n and k are band index and reciprocal space point,
respectively. Moreover, [H̃c]12 is the off-diagonal elements
of the coupling matrix in the eigenbasis (see Appendix B).
The square matrix on the right hand side of Eq. (4) is the
dynamical matrix with complex eigenvalues (for η = 0). The
real and imaginary parts of the eigenvalues represent the en-
ergy and lifetime of the magnon, respectively. In the absence
of EM coupling ([H̃c]12 ≈ ON×N ), the imaginary part of the
eigenvalues is negative indicating magnon decay. However, as
the amplitude of the EM field increases the imaginary part of
some of the eigenvalues satisfying εn,k + εn,−k ≈ � becomes
positive. This indicates the onset of spontaneous amplification
of magnons. The yellow dots in the band structure [Fig. 2(b)]
are the eigenvalues with positive imaginary part.

The solution of Eq. (4) describes amplified coher-
ent magnons above a cutoff amplitude of the EM field
[15,16,82,83]. Figure 2(c) shows the amplified coherent
magnons population for the edge states of upper and lower
edges at k = π as a function of time. The presence of the
nonlinear damping suppresses the exponential increase of the
magnon number and the system reaches a steady state.

While the number of magnons (|〈 ˆ̃an,k〉|2) are identical in
the rotating and the laboratory frames in the steady state (see
Fig. 2), the field 〈 ˆ̃an,k〉 oscillates in time. Specifically when
the pair of amplified magnons satisfy εn,k = εn,−k = �/2, the
steady state expectation values for the field in the rotating
frame are independent of time, i.e., 〈 ˆ̃an,k (t )〉s

rot = 〈 ˆ̃an,k〉s
rot (see

Appendix D). Thus the fields in the two frames are related as

〈 ˆ̃an,k (t )〉s
lab ≈ 〈 ˆ̃an,k〉s

rot exp

(
i
�

2
t

)
, (5)

where the superscript “s” denotes steady state expectation
value.

The equation of motion (4) has a Z2 symmetry ˆ̃an,k →
− ˆ̃an,k . Above a critical amplitude of the EM field, the am-
plified magnon field at the edges of the system spontaneously
breaks the Z2 symmetry by acquiring a finite, nonzero 〈 ˆ̃an,k〉s

lab
that oscillates in time with a period which is twice that of the
driving EM field. Thus a discrete time crystal of edge state
magnons is formed via amplification [15,16] that breaks the
discrete time translational symmetry spontaneously.

This time crystalline behavior can be experimentally ob-
served by measuring the transverse magnetization at the
edges, i.e., the spin components Ŝx

i and Ŝy
i —the spin com-

ponent Ŝz
i is constant, because it is related to the number of

magnons |〈 ˆ̃ai,k〉|2, which is invariant in time in the steady state.
The x component of the spin, 〈Ŝx

i 〉, is given in terms of the
fields 〈 ˆ̃an,k〉s

rot as

〈
Ŝx

i

〉 =
√

S

2Nx

⎡
⎣ ∑

k>0,n

[U †
1 ]in〈 ˆ̃an,k〉s

rote
i�t
2 e−ikxi

+
∑

k>0,n

[U †
2 ]in〈 ˆ̃an,−k〉s

rote
i�t
2 eikxi

+[U †
1 ]in〈 ˆ̃an,0〉s

rote
i�t
2 + H.c.

⎤
⎦. (6)

Figure 2(d) demonstrates the oscillation of Sx
i at a site at

the upper edge (blue) and the lower edge (red). The different
k points arrive at a steady state at a different time (see Ap-
pendix C) and so Sx

i in Fig. 2(d) modulates transiently and
reaches a steady state when all the amplified k points do. The
oscillation amplitudes of 〈Ŝx

i 〉 at both edges are nearly identi-
cal, but they are not exactly equal, since it is a superposition
of several fields 〈 ˆ̃an,k〉s

rot [see Eq. (6)]; while the magnitude
of the fields 〈 ˆ̃an,k〉s

rot at two edges are the same, the phases
are not. Moreover, the amplitude of oscillation varies with
different simulations due to the random starting conditions
representing the vacuum fluctuations [82,83]. Finally, time
crystalline behavior also holds for the long-range order in
spatial directions due to the coherence of the pumped magnon
at k = π . Since the amplification of magnons extends over a
finite momentum range around k = π , a spatial modulation in
the amplitude of oscillation is expected.

III. SYMMETRY PROTECTION

Although a Heisenberg ferromagnet breaks time-reversal
symmetry τ , the system still preserves effective time reversal
symmetry τeff = Rπ (n)τ , where Rπ (n) is π rotation of spins
around an n axis. This effective symmetry is useful to describe
the system in the language of magnons [77]. The breaking
of effective time reversal symmetry, which depends on both
the direction of DMI and spin moments of a ferromagnetic
ground state, is ubiquitous in many real quantum magnets,
resulting in dispersive edge states. As a result, the condition,
εn,k = εn,−k for a pair of amplified magnons, as assumed
above, is broken. Then, 〈 ˆ̃an,k〉s

rot becomes time dependent and,
according to Eq. (5), the period of oscillation of the fields
at a particular k point will no longer be exactly twice the
period of the external EM field. For a finite system, there will
be a finite number of amplified points around k = π ; adding
over the fields at a few amplified points according to Eq. (6)
would result in an oscillation of Sx that is incommensurate
with the external field, resulting in a quasitime crystal [34].
In the thermodynamic limit, when the number of k points in
the vicinity of k = π diverges, the oscillation would become
chaotic in nature, destroying the time-crystal-like behavior.

Here we demonstrate the absence of the time crystal, in
the presence of time-reversal symmetry breaking DMI. We
would like to emphasize that not all DMI breaks time-reversal
symmetry. Breaking of time-reversal symmetry depends both
on the direction of DMI and the direction of spin moments of
a ferromagnetic ground state [77]. The model Hamiltonian in
the absence of time-reversal symmetry becomes

HD = −J
∑

i j

Ŝi · Ŝ j + D
∑

i j

ẑ · (Ŝi × Ŝ j ) − Bz

∑
i

Ŝz
i , (7)

where D and Bz are DMI and magnetic field perpendicular
to the 2D-lattice plane. The breaking of the time-reversal
symmetry opens up a gap in the bulk-magnon band and we
get a dispersive edge magnon state. Thus the amplification
is not only limited to the k = π but other momentum points
such that the relationship ωk + ω−k = � is satisfied, which
is shown in Fig. 3(a). Moreover, the spin oscillation at the
edges becomes chaotic in nature, as shown in Fig. 3(b). The
reason behind this chaotic oscillation can be understood from
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FIG. 3. (a) Magnon band structure in the presence of effective
time reversal symmetry breaking DMI. The yellow dots denote am-
plified magnon eigenstates. Inset shows the magnified band near
k = π . (b) A chaotic oscillation of spin component Sx at a site at the
upper (blue plot) and lower (red plot) edges are shown, indicating
the destruction of the time crystal. Insets show the magnified fig-
ures of the corresponding figures within a particular time limit. The
parameters used for all the plots are J = 1.0, D = 0.05, Bz → 0+,
γ = 5 × 10−4, η = 9 × 10−4, � = 5.1716, p0 = 1.0, Ex

0 = 0.0, and
Ey

0 = 0.02.

the following simple model with only two coupled modes with
energies ωk and ω−k :

Htoy = ωkâ†
k âk + ω−kâ†

−kâ−k + 2ε cos(�t )(â†
k â†

−k + âk â−k ).

(8)

It can be shown that the fields in the laboratory frame have the
following time dependence (see Appendix D):

αlab
±k = A±(t )e∓i

(ωk −ω−k )t
2 e−i �

2 t , (9)

where A±(t ) is amplitude modulation due to amplification
which becomes time independent in the steady state. From
this equation, we can conclude the oscillation frequency due
to parametric amplification is half of the driving field only
when the coupled state which is amplified has equal energies
ωk = ω−k; otherwise, the frequency of oscillation is different.
Moreover, when effects of oscillation from many coupled
oscillators with ωk 	= ω−k are superimposed as in Eq. (6), then
the resultant oscillation will be chaotic as in Fig. 3(b).

IV. STABILITY OF THE TIME CRYSTAL

Discrete time crystals of the amplified edge magnons are
stable unless bulk eigenmodes with a significant overlap with
the edge modes are amplified. The choice of the kagome
ferromagnet is preferable because the energy spectrum around
the edge state is asymmetrical [see Fig. 2(b)], resulting in sup-
pression of the bulk magnon amplification (see Appendix E,
where a comparison with the honeycomb ferromagnet is pro-
vided). However, edge magnon scattering can excite other
bulk magnon eigenmodes and contribute to the oscillation of
spin according to Eq. (6), which may become the reason for
instability of the time crystal.

The Hamiltonian H0 does not contain any magnon noncon-
serving terms, but such terms may arise in the presence of spin
anisotropy in many real quantum magnets. We have calculated
the bulk band structure and momentum resolved two-magnon

FIG. 4. Two magnon density of states (bluish-yellow color map)
and band structure (black line) for (a) zero magnetic field and (b) fi-
nite magnetic field Bz = JS. With increasing magnetic field, the
overlap between two magnon continuum with the band structure de-
creases, signifying fewer magnon nonconserving scattering. (c) The
two-magnon scattering rate as a function of band broadening for
different system widths. The scattering rate is s2 � 10 ns−1a−1 for an
ideal band broadening δE � 10−2JS, indicating a low scattering rate
compared with ideal magnon lifetime τlife � 1 ns. Thus secondary
amplification of bulk magnon is negligible.

density of states

Dk(ω) = 1

N

∑
n,n′,�

δ(ω − ωn,� − ωn′,k−�) (10)

for a system with a toroidal boundary condition [Figs. 4(a) and
4(b)]. When the energy of an eigenstate matches that of the
two magnon continuum, it can decay into two magnons with
lower energies. The two magnon continuum energy scales as
twice the negative of Zeeman term (2BzS) of a longitudinal
magnetic field Bz, while that of the magnon bands scale as
BzS. Hence for magnetic fields BzS > Eedge the edge states are
energetically separated from the two-magnon continuum and
cannot decay via this channel. At even higher fields, Bz > 6J ,
the two-magnon continuum gets separated in energy from
the magnon band structure, implying that two edge magnons
cannot combine and produce a higher energy magnon. As the
magnetic field increases, the higher order magnon noncon-
serving processes will disappear faster than the two magnon
decay processes. Thus an external magnetic field can suppress
the magnon nonconserving scattering in the system.

Magnon conserving scattering processes cannot be elimi-
nated by an external field and are always present in any spin
Hamiltonian. We calculated the scattering rate of magnons
due to two-magnon scattering (quartic terms of magnon
Hamiltonian) using Fermi’s golden rule,

s2 = 2π

h̄

∑
f

∑
i

|〈 f ||H(4)
0,int||i〉|2δ(E f − Ei ), (11)

014434-4



DISCRETE TIME CRYSTAL MADE OF TOPOLOGICAL … PHYSICAL REVIEW B 108, 014434 (2023)

where | f 〉 and E f (|i〉 and Ei) denote the state and energy of
the final (initial) state, respectively. H(4)

0,int is the quartic term
of the magnon Hamiltonian which is obtained by Taylor series
expansion of the Holstein-Primakoff transformation,

H(4)
0,int = −Jh̄2

4

∑
〈i j〉

[4â†
i â†

j âiâ j + â†
j â

†
j âiâ j

+ â†
i â†

j âiâi + â†
i â†

j â j â j + â†
i â†

i âiâ j], (12)

where higher order terms of the expansion are neglected
which have amplitudes of order O( 1

Sn ), n ∈ I � 1. For sim-
plicity, we have restricted our calculation to the upper-edge
states and considered only the scattering from the points
k = ±π and k = ±π ± δk (where δk = 0.0628). To numer-
ically calculate the scattering rate s2, we have considered a
finite width of energy levels δE , which physically implies
band broadening. The scattering rate as a function of band
broadening is plotted in a logarithmic scale in Fig. 4(c) for
different system sizes. It is observed that the scattering rate
decreases rapidly as the band broadening decreases. The band
broadening results from magnon interactions and the only
way to control the bandwidth is by controlling the density of
the amplified magnons. This is achieved by working at low
temperature and low EM field intensity. Even if the scattering
rate is high, as long as the lifetime of magnons at the scat-
tered state is small the behavior of the system is governed
by only the selectively amplified edge state magnons [12].
For example, the band broadening of an ideal magnon band
structure δE � 10−2JS, corresponding to scattering rate s2 �
10−4 ps−1a−1 = 10 ns−1a−1, can be interpreted as maximum
one edge magnon is scattered to the bulk magnon every 10 ns,
so secondary amplification of bulk magnon is not possible
since their lifetimes are usually less than 1 ns. Even in the
worst case scenario of large band broadening, a small density
of amplified edge state magnons is preferable to create a stable
time crystal. These conditions also help minimize magnon
decay due to magnon-phonon scattering. Finally, edge imper-
fections cause broadening of the edge states and reduce the
yield of coherent magnons [84,85].

The reduced scattering is a consequence of the topological
protection of the edge state. The presence of chiral symmetry
induces a flat edge mode at zero energy due to finite π -Berry
phase. Absence of chiral symmetry can result in a dispersive
edge state at nonzero energy in the presence of a quantized
nonzero π -Berry phase [75,76]. Interestingly, the π -Berry
phase protected topological edge states are robust against
impurities with or without chiral symmetry [76], providing
additional stability to the time crystalline behavior.

V. EXPERIMENTAL REALIZATION

The edge-magnon time crystals can be observed using
direct spatial and temporal imaging of spin-wave dynam-
ics via multiple recently developed techniques, such as Kerr
microscopy [86,87], Brillouin light scattering spectroscopy
(BLS) [88–90], and time resolved scanning transmission x-ray
microscopy (TR-STXM) [13,91–101]. BLS is useful to detect
magnons at a fixed frequency and wave vector [102–107] and
has recently been used to detect the space-time crystal in

the ferromagnetic insulator YIG [12]. Additionally, theoret-
ically proposed spin Hall noise spectroscopy is a promising
technique to detect the presence of edge magnons at a given
frequency [108,109]. The TR-STXM, in particular, is promis-
ing for directly imaging spin dynamics at the edge due to its
high accuracy in detecting magnon dynamics with a spatial
and temporal resolution of 20 nm and 50 ps, respectively
[13,91–93]. Recently, this method has been used to observe
the dynamics of the space-time crystal of bulk magnons in
permalloy strips [13].

The required estimated electric field amplitude to amplify
topological edge magnons is in between 106 and 1012 V/m,
depending on damping of edge magnons—weaker damping
requires lower intensity (see Appendix F).

We propose the spin- 1
2 kagome ferromagnets haydeeite

[110] and Cu(1,3-bdc) [111] as possible hosts of the discrete
time crystals of edge magnons as discussed in this work.
While the Haydeeite has experimental evidence for the ab-
sence of DMI [110], the Cu(1,3-bdc) contains out-of-plane
DMI that does not break any effective time reversal symmetry
[77] for the ferromagnetic ground state with in-plane mag-
netization [112]. The period of oscillations for the materials
haydeeite and Cu(1,3-bdc) is calculated to be 0.05 ps and
0.25 ps, respectively, which are estimated using experimen-
tally determined Heisenberg exchange interactions [110,111].
Thus these quantum magnets are perfect candidates for real-
izing discrete time crystals of edge magnons.
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APPENDIX A: POLARIZATION OPERATOR

The form of the polarization operator depends on the lat-
tice symmetries and is independent of the magnetic ground
state. However, for the estimation of the coefficient of the
polarization operator, one requires a more fundamental elec-
tronic model. There are various possible electronic models for
the spin exchange interactions in different materials. One of
the most simplistic electronic models is the Hubbard model.
Despite its limitations, the simplistic Hubbard model is used
to give an estimation of the coefficients of the polarization
operator. The Hubbard model is given by

HHubbard = −
∑

i j

[
(ĉ†

i↑ ĉ†
i↓)[tI cos(θ )

+ itn · σ sin(θ )]

(
ĉ j↑
ĉ j↓

)

+H.c.

]
+ U

∑
i

n̂i↑n̂ j↓, (A1)
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where t cos(θ ) and itn sin(θ ) (n is a unit vector) are the
real and complex hopping amplitudes of electrons on nearest
neighbor bonds, respectively. U is the on-site Coulomb repul-
sion. The polarization operator corresponding to the Hubbard
model is [78]

Pi j ≈ p0,i j (Si · Qi j )(S j · Qi j ), (A2)

where the p0,i j and Qi j are given by

p0,i j = −16θ2ea
t3

U 3
(e jk − eki ) = p0(e jk − eki ),

Qi j = n − nzẑ, (A3)

where e and a are the electron charge and lattice constant,
respectively. e jk is a vector on nearest neighbor bonds from
site j to site k. The sites i, j, and k are the sites on the same
triangle of the kagome lattice. The polarization terms other
than the terms in Eq. (A2) are not important for this study
because in the diagonal basis in the rotating frame those terms
are time dependent and so those terms are dropped in rotating
wave approximation in Eq. (4). Thus the polarization operator
is proportional to t3

U 3 .

APPENDIX B: DERIVATION OF EQUATION OF MOTION

The Hamiltonian describing a kagome ferromagnet on a
cylindrical geometry, coupled to an external EM field, is given
by

H =1

2

∑
k

(�†
k �−k )

(
H0(k) ON×N

ON×N H0(−k)T

)(
�k

�
†
−k

)

+ 1

2
cos(�t )

∑
k

(�†
k �−k )

(
[Hc]11 [Hc]12

[Hc]21 [Hc]22

)(
�k

�
†
−k

)
.

(B1)

N is the number of sites along the width of the ribbon [see
Fig. 2(a) in main text] and �k = (â1,k, â2,k, . . . , âN,k )T .
ON×N is a null matrix. The first and second matrices are
derived from the unperturbed Hamiltonian Eq. (1) and cou-
pling Hamiltonian Eq. (2) in the main text, respectively. The
Hamiltonian H is first represented in the diagonal basis �̃k =
U1(k)�k , �̃

†
−k = U2(k)�†

−k of matrices H0(k), H0(−k)T . This
is followed by transforming the system from the laboratory
frame to rotating frame by using the unitary operator U (t ) =
exp iωt

2

∑
k �̃

†
k �̃k ,

H′ = U (t )HU (t )† + ih̄U̇ (t )U (t )†. (B2)

Afterwards, by neglecting the time-dependent terms, we get
the following effective Hamiltonian:

Heff = 1

2

∑
k

(�̃†
k �̃−k ))

(
εk − �

2
[H̃c]12

2
[H̃c]21

2 ε−k − �
2

)(
�̃k

�̃
†
−k

)
,

(B3)

where εk and ε−k are the diagonal matrices of eigenvalues
of matrices H0(k) and H0(−k)T , respectively. The matrix
H̃12 = U1H12U

†
2 is the coupling matrix in the diagonal basis.

Only the off-diagonal terms [H̃ ]12 and [H̃ ]21 of the cou-
pling Hamiltonian appear in Heff due to the rotating wave

approximation. The equation of motion of field 〈�̃k〉 = α̃k =
(〈 ˆ̃a1,k〉, 〈 ˆ̃a2,k〉, . . . , 〈 ˆ̃aN,k〉)T is given by

d

dt

(
α̃∗

k
α̃−k

)
= i

(
ε̃k − i γ I+η|αk |2

2
[H̃c]12

2

− [H̃c]21
2 −ε̃−k − i γ I+η|αk |2

2

)(
α̃∗

k
α̃−k

)
,

(B4)

where ˆ̃an,k is the magnon annihilation operator of nth band at
k point; ε̃k is a diagonal matrix with elements εn,k − �

2 , where
εn,k is the energy eigenvalue; γ and η are phenomenological
linear and nonlinear damping constants; I is identity matrix
and |αk|2 is diagonal matrix with entries |〈 ˆ̃an,k〉|2.

APPENDIX C: EQUILIBRATION OF SPIN OSCILLATION

In this section, we show that the oscillation at different
k points equilibrates at different times [see Figs. 5(a) and
5(b)] resulting in a transient modulation of amplitude before
reaching the steady state as in Fig. 2(d) in the main text. The
figure also shows that the amplitude of oscillation decreases
rapidly away from k = π .

APPENDIX D: TOY MODEL FOR ANALYTICAL
CALCULATION OF DYNAMICS

In the main text we showed that the time crystal is not
stable in the absence of effective time reversal symmetry. The
reason behind this chaotic oscillation can be understood from
the following simple model with only two coupled modes with
energies ωk and ω−k:

H = ωkâ†
k âk + ω−kâ†

−kâ−k + 2ε cos(�t )(â†
k â†

−k + âk â−k ).

(D1)

Next we rotate the basis states with the unitary operator U =
ei�(n̂k+n̂−k )t , where n̂k = â†

k âk . The Hamiltonian in rotating
frame is

H′ = U (t )HU †(t ) + ih̄U̇ (t )U †(t )

= ω̃kâ†
k âk + ω̃−kâ†

−kâ−k + ε(e2i�t + 1)â†
k â†

−k

+ ε(1 + e−2i�t )âk â−k, (D2)

where ω̃k = ωk − �/2. Neglecting fast rotations (terms with
e±2i�t ), the effective Hamiltonian in rotating wave approxima-
tion becomes

Heff = ω̃kâ†
k âk + ω̃−kâ†

−kâ−k + εâ†
k â†

−k + εâk â−k . (D3)

By defining the field αk = 〈âk〉 and using the equation of
motion i d

dt 〈Ô〉 = 〈[Ô, Ĥeff]〉, we get the following coupled
differential equation:

i
d

dt

(
αk

α∗
−k

)
=

(
ω̃k − i γ

2 ε

−ε −ω̃−k − i γ

2

)(
αk

α∗
−k

)
, (D4)

where the phenomenological damping γ is added. The
coupled differential equation can be transformed into
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FIG. 5. Oscillation of spin component Sx at a site at upper edge (blue plot) and lower edge (red plot) are calculated (d) at k = π and (e)
at k = 3.1793 in Brillouin zone for a system with Ny = 91. Insets show the magnified figures of the corresponding figures within a particular
time limit. The parameters used for all the plots are J = 1.0, Bz → 0+, γ = 5 × 10−4, η = 9 × 10−4, � = 5.1716, p0 = 1.0, Ex

0 = 0.0, and
Ey

0 = 0.002. The figure shows that the different k points arrive at steady state at a different time and the amplitude of oscillation decreases
rapidly away from k = π .

the following second order differential equation:

d2αk

dt2
− (ω̃k − ω̃−k − iγ )

dαk

dt

+
[
ε2 −

(
ω̃k − i

γ

2

)(
ω̃−k + i

γ

2

)]
= 0. (D5)

Now using the ansatz αk = A1e−iωt we get a quadratic equa-
tion in ω, the solution of which is given by

ω = ωk − ω−k

2
− i

γ

2
± i

√
ε − (ω̃k + ω̃−k )2

4
. (D6)

The solution with positive sign is the only physical solution,
because in the limit ε → 0 the frequency should be ω → ωk .
Thus the solution for the field

αk = A+e−i
(ωk−ωk )t

2 e− γ t
2 e

√
ε− (ω̃k+ω̃−k )

4 t . (D7)

Thus the condition for amplification is given by√
ε − (ω̃k + ω̃−k )

4
>

γ

2
. (D8)

From now on, we focus on the oscillatory part of the solu-
tion, by taking the exponential decay or amplification into the
amplitude,

αk = A+(t )e−i
(ωk −ω−k )t

2 . (D9)

From Eq. (D4), we get α∗
−k = A−(t )e−i

(ωk −ω−k )t
2 , and thus we

have

α−k = A−(t )ei
(ωk −ω−k )t

2 . (D10)

It can be shown that the relation between the fields in
laboratory and rotating frame is given by αlab

±k = e−i �
2 tα±k;

thus the fields in laboratory frame are given by

αlab
±k = A±(t )e∓i

(ωk −ω−k )t
2 e−i �

2 t . (D11)

From this equation, we can conclude the oscillation frequency
due to parametric amplification is half of the driving field only

when the coupled state which is amplified has equal energies
ωk = ω−k ; otherwise, the frequency of oscillation is different.
Moreover, when effects of oscillation from many coupled
oscillators with ωk 	= ω−k are superimposed as in Eq. (6) in
the main text, then the resultant oscillation will be chaotic,
which is visible in Fig. 3(b).

APPENDIX E: COMPARISON BETWEEN KAGOME
LATTICE AND HONEYCOMB LATTICE

In this section we show that kagome lattice structure is a
suitable lattice structure for achieving a magnon time crystal,
by comparing the results with the honeycomb lattice. We have
studied a similar model in the honeycomb lattice to show the
advantage of the kagome lattice structure. The model Hamil-
tonian we take on the honeycomb lattice is given as

H = −J
∑
〈i j〉

Ŝi · Ŝ j + Ex(t )
∑

i

Kx,xy
i

[
Ŝx

j,AŜy
j,A − Ŝx

j,BŜy
j,B

]

+ Ey(t )
∑

i

[
Ky,xx

j

(
Ŝ

x
j,AŜ

x
j,A + Ŝ

x
j,BŜ

x
j,B

)
+ Ky,yy

j

(
Ŝ

y
j,AŜ

y
j,A + Ŝ

y
j,BŜ

y
j,B

)]
, (E1)

where the polarization terms are considered with respect to the
symmetry of the lattice and the terms which do not contribute
to the amplification are already discarded (mathematically
those terms will be discarded in rotating wave approxima-
tion). By diagonalizing the dynamical matrix as discussed in
the main text we achieved the band structure as shown in
Figs. 6(a) and 6(b) for different polarization. It can be no-
ticed that the electromagnetic field amplifies the bulk magnon
bands instead of the edge magnon bands, which is backed up
by the results in Figs. 6(c) and 6(d) showing maximum cou-
pling with electromagnetic field occurs with the bulk magnon
states.

Whereas the kagome lattice structure is useful for amplifi-
cation of edge magnons without amplifying the bulk magnons,
the reason behind not amplifying the bulk magnons is for
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FIG. 6. Magnon band structure is shown in blue, whereas the
red dots denote eigenstate with eigenvalues with positive imagi-
nary part for electric fields (a) Ey

0 = 0.015 and (b) Ex
0 = 0.015.

Maximum of absolute values of matrix elements [H̃c]12 is plotted
as a function of momentum for electric field amplitudes (c) Ey

0 =
0.001 and (d) Ex

0 = 0.002. The other parameters used for all the
plots are J = 1.0, S = 1, Bz → 0+, γ = 2.5 × 10−3, � = 3JS, and
Kx,xy = Ky,xx = Ky,yy = 1.0.

making the system more stable. Figures 7(a) and 7(b) show
that the magnon amplification in the kagome lattice is con-
fined to the edge states only. Moreover, choice of polarization
of electromagnetic field should be in the y direction to specif-
ically amplify the edge magnons. Figures 7(a) and 7(b) show
the imaginary parts of bulk magnon modes zero and nonzero
for y-polarized and x-polarized electromagnetic field. The
reason for this discrepancy is due to the difference in cou-
pling terms as shown in Figs. 7(c) and 7(d). The y-polarized
EM-field strongly couples with edge magnons, whereas the
x-polarized EM field strongly couples with bulk magnons.

APPENDIX F: REQUIRED INTENSITY OF LIGHT
AND THE EFFECT OF MAGNETIC FIELD

OF ELECTROMAGNETIC WAVE

In this section, we discuss the effect of magnetic field
and intensity of light that is required for the amplification
procedure. The intensity of light that is required to get amplifi-
cation is unknown and depends on damping of magnon states.
The lifetime of magnons can be 1 μs, 1 ns, 1 ps, etc. De-
pending on that, the energy-state broadening according to the

FIG. 7. Magnon band structure is shown in black; the yellow and
blue dots denote eigenstate with eigenvalues with positive imaginary
part for electric fields (a) Ey

0 = 0.015 and (b) Ex
0 = 0.015. Maximum

of absolute values of matrix elements [H̃c]12 is plotted as a function of
momentum for electric field amplitudes (c) Ey

0 = 0.015 and (d) Ex
0 =

0.015. The other parameters used for all the plots are J = 1.0, D =
0.00, Bz → 0+, γ = 5 × 10−4, � = 5.1716, and p0 = 1.0.

uncertainty principle would be 10−9 eV, 10−6 eV, 10−3 eV,
respectively. Thus the damping parameters should be λ =
10−9 eV, 10−6 eV, 10−3 eV, respectively. Now, to have am-
plification, one is required to have electric field amplitude
Ec (V/nm), which should follow the inequality relationship
for a system with damping λ (considering the following ideal
system parameters, lattice constant a = 1 nm, t/U = 10−2),

EcP � λ[eV],

Eca[nm]e(t/U )3 � λ[eV]

[
where P ≈ a e

t3

U 3

]
,

Ec × 10−6 � λ V/nm,

Ec � 106λ V/nm,

Ec � 1015λ V/m. (F1)

Thus the electric field required for the amplification should
be 106 V/m, 109 V/m, 1012 V/m respectively. Based on the
relation B = E/c, the magnetic field amplitude should be
B = 0.01 T, 1 T, 1000 T, respectively. The magnetic fields
0.01 T and 1 T are still very negligible for a magnetic insu-
lator, because the Heisenberg exchange interaction is 1 meV,
whereas the energy equivalent to 1 T is μBB = 0.01 meV.
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