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Orbital current and torque at the interface of magnetic tunnel junctions
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This study formulated the longitudinal spin and orbital currents and torques in the nonequilibrium Green’s
function formalism for magnetic tunnel junctions with spin-orbit coupling (SOC). The analytical results for
the y and z components of the spin currents without SOC are consistent with those previously reported. We
show that the torque induced by the SOC is transmitted through the junction, resulting in an orbital coupling
between the two magnetic layers. Orbital torque deduced from the analytical expressions exhibits several unique
features. Orbital mixing is crucial to the orbital torque, and the torque may remain finite even for nonmagnetic-
ferromagnetic tunnel junctions. The result was interpreted in terms of long-range character of the magnetic
anisotropy and nondegeneracy of orbital states. The effects of finite voltage applied to the junctions have also
been clarified.

DOI: 10.1103/PhysRevB.108.014431

I. INTRODUCTION

The field of spintronics emerged from the discovery of
the giant and tunnel magnetoresistance [1,2], which facilitates
control of the charge current via spin. Successively, methods
of spin control by charge current, which utilize spin-injection,
spin-transfer torque, etc., have been proposed [3,4]. In these
phenomena, the spin-polarized longitudinal currents play an
essential role. Subsequently, transverse current of spins with-
out a charge current, that is, the spin Hall effect (SHE), was
proposed for a two-dimensional electron gas with spin-orbit
coupling (SOC) [5–7]. In the SHE, up- and down-spin elec-
trons, that is, the z components of the spin angular momentum
(SAM), flow in opposite directions. Moreover, the flow may
produce spin accumulation at the edges of samples [8,9].
Thus, it was proposed that the SHE is effective for spin
injection to realize control of the magnetization direction of
thin films in metallic layered systems [10,11]. Additionally, it
was reported that SOC is crucial for converting the spin polar-
ization of the current to the SAM in adjacent films [12,13].
Furthermore, numerical calculations of SHE performed for
transition metals indicated that a large SHE occurs in realistic
transition metals [14–16].

Kontani et al. [14–16] predicted that transverse current
of the orbital angular momentum (OAM), referred to as or-
bital Hall effect (OHE), may occur in transition metals. The
most intriguing point is that a large OHE exists in nonmag-
netic metals (NMs) with no SOC. The origin of this effect
has been interpreted in terms of momentum-space magnetic
field, that is, Berry curvature [17]. Because of the similar-
ity between the SHE and OHE, the orbital-spin conversion
[18,19], orbital torque caused by OHE [20,21], and orbital
Edelstein effect [22] have been proposed. The intrinsic OHE
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has been predicted to appear also in two-dimensional tran-
sition metal dichalcogenides [23] and group XIV materials
[24]. In addition, observations of orbital torque have been
reported [25].

Another important concept in spintronics is interlayer cou-
pling of spin moments in magnetic junctions, where two
ferromagnetic metal (FM) layers are separated by a thin NM
layer [26–29]. Experiments have reported that the magnetic
coupling oscillates as a function of NM layer thickness. The
phenomenon was formulated in terms of the interlayer current
of the y component of spin, in contrast to the z component
of spin (the direction of magnetic moment). The basic for-
mula is expressed in terms of the nonequilibrium (Keldysh)
Green’s function (GF) [30,31]. However, the final expression
is presented using the ordinary perturbation method because
the interlayer coupling itself is a phenomenon occurring in
the equilibrium state [32]. The numerical results were con-
sistent with experimental observations [33,34]. Considering
the aforementioned situations for the SHE, OHE, and the
longitudinal spin current, it is expected that an orbital current,
that is, the longitudinal current of OAM, may also exist at
magnetic junctions.

The longitudinal spin current in magnetic junctions is dif-
ferent from the transverse spin current in SHE. The transverse
current of the Hall conductivity has been calculated in the
linear response theory, and it vanishes in the zero-bias limit.
On the other hand, the longitudinal spin current through a
junction has been defined as the time variation of the rela-
tive angle of SAMs on the ferromagnetic layers in magnetic
junctions, and therefore it vanishes in the magnetically stable
(equilibrium) state. When the SAM of one FM layer of the
junction rotates from the stable state, there appears a torque to
restore the unstable state, and the spin current at the junction
becomes finite at the junction. The torque is called spin torque
[32]. Thus the spin current exists even in the zero-bias limit.
In a similar way, orbital torque could be defined as the time
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variation of OAM in ferromagnetic junctions. It is noted that
existence of magnetic moment is indispensable, and no spin
and orbital torques exist in paramagnetic junctions. The con-
cept of the orbital torque is thus different from that introduced
in Ref. [20]. Mathematically, the time derivative of the spin
moment, that is, the spin current, is expressed by using the
nonequilibrium GF, and the expression itself includes effects
of finite-bias states as well as those in the zero-bias state.

The aim of this paper is to clarify the characteristics of
the longitudinal spin and orbital currents through a tunneling
barrier in magnetic junctions with SOC. To this end, we de-
rive analytical expressions of the longitudinal spin and orbital
currents adopting simple models and a second-order approx-
imation. Inclusion of SOC is essential for the longitudinal
orbital current/torque, because the OAM is induced via SOC
in ferromagnetic metals and strongly coupled with the spin
state. In the approximation, however, we assume collinear
alignment of SAM and OAM, and neglect the change in the
spin and orbital states of each FM layer when they rotate.
The rotation may be called uniform rotation. The effects of
finite bias voltage on the spin and orbital currents will be also
investigated.

We demonstrate that an orbital current exists and produces
an orbital torque that acts between the two canted magnetic
moments of the FM layers. Interestingly the torque can be
nonzero even when one of the metals is nonmagnetic. The
existence of the orbital torque is interpreted in terms of the
long-range character of the magnetic anisotropy (MA) in-
duced by the SOC and nondegeneracy of orbital states. In
addition, we show that SOC produces an additional depen-
dence of the spin and orbital torques on the angle between the
two canted magnetic moments. Finally, we estimate the mag-
nitude of orbital coupling, with a discussion of the magnitude
of orbital moments near the MgO/Fe interface [35]. Further-
more, possible methods for observing the orbital coupling are
discussed. The results would be useful for interpretation of
results in future experiments.

The remainder of this paper is organized as follows.
Section II describes the basic formula for the spin and or-
bital currents, the simplified model and Hamiltonian, and
approximations to treat the nonequilibrium GF and SOC.
The analytical results of spin current/torque and orbital
current/torque are provided in Sec. III. In the same section,
we also give discussions on the model and approximations
and estimate magnitude of the orbital torque in ferromagnetic
tunnel junctions. The summary of the work is presented in the
final section.

II. MODEL AND FORMALISM

A. Spin and orbital currents

The time derivative of physical quantity F is given by the
Heisenberg equation, dF/dt = (i/h̄)[H, F], where H denotes
Hamiltonian. When quantity F is considered a local quantity
at site m, dFm/dt is the divergence of the quantity at site m,
that is, the difference between incoming and outgoing quan-
tities. When Fm is the charge, spin, or orbital density at site
m, dFm/dt may yield the corresponding current depending on
the Hamiltonian in the equation.

Thus, the charge current at site m is expressed as
dnm/dt for the Hamiltonian with nearest-neighbor hopping.
In this case, the expectation value includes terms such as
〈a†

mμσ anν,σ ′ 〉, which may be expressed in terms of the nonequi-
librium GF, defined as [32,36]

G+
nνσ ′,mμσ (t, t+) ≡ i

h̄
〈a†

mμσ (t+)anνσ ′ (t )〉. (1)

In the limit of t ′ → t , and after Fourier transformation into ω

space, the electric charge current at site m is expressed as

〈
JC

m

〉 = e

2π h̄
Tr(spin,orb)

∫
dω(Amm↑↑ + Amm↓↓), (2)

with

Amm = G+
mntnm − tmnG+

nm, (3)

where tmn indicates the hopping Hamiltonian between the
sites m and n, and Amm is a matrix for both spin and orbital
spaces.

Because of the charge conservation law, the expression
Eq. (2) is apparent. However, the spin and orbital currents
are not necessarily conserved when the directions of SAM
and OAM vary spatially. In the following, we consider the
electron hopping through a tunnel barrier as a source of spin
and orbital currents in magnetic tunnel junctions, because we
are interested in the torque caused by the relative rotation of
magnetic moments on magnetic layers in the junction. Other
sources of spin and orbital currents/torques are neglected.
We also consider change in the electronic states due to SOC
near the junction interface, since it may modify the electron
hopping through the tunnel barrier. Here, change in the spin
and orbital moments is not included. The situation may corre-
spond to the uniform rotation of the magnetic moment in each
magnetic layer; that is, the rotation satisfies the collinearity
and no change in magnitude of spin and orbital moments. In
a simple one-dimensional model explained below, the time
derivative of SAM and OAM at a single site may provide
sufficient information on the spin and orbital currents through
the barrier interface.

Mathematically, we adopt the following approximations to
calculate the time variation of SAM and OAM. We consider
only the hopping Hamiltonian at the tunnel barrier for H in
the Heisenberg equation. Although the SOC is ignored for H
in the Heisenberg equation, it is included in the definition of
the Green’s function G+

mn to treat the change in the electronic
states produced by the uniform rotation. Effects of spin mixing
in the electron hopping at the junction barrier are also consid-
ered.

After these approximations, the spin and orbital currents at
site m are expressed as before,

〈
JS

m

〉 = 1

4π
Tr(orb)

∫
dωAmmσ, (4)

〈
JL

m

〉 = 1

2π
Tr(spin)

∫
dωAmmL/h̄, (5)

respectively. Here, σ and L are Pauli spin matrix and OAM
matrix, respectively, and the operators σ and L/h̄ play a role
of projection of Amm onto the spin and orbital spaces, respec-
tively. As can be seen from the definition of Amm in Eq. (3), the
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FIG. 1. Schematic figure of one-dimensional lattice, which is
divided into three parts: left part including sites m, m − 1, etc.; right
part with sites n, n + 1, etc.; and an insulator region between sites m
and n with hopping Hamiltonian t . Sites m and n are edge sites of the
left and right parts of electrodes. The direction of magnetic moment
M on right part is canted by an angle (θ, ϕ) with respect to that on
left part (not shown) parallel to z axis as shown in the figure.

currents given by Eqs. (4) and (5) are those that flow through
a junction interface.

Torque is defined as follows [32,36]. When the quantity Fm

is an angular momentum (AM), the time derivative of Fm de-
notes the torque acting on AM. Then, the explicit expression
of dFm/dt for SAM and OAM at site m must yield spin and
orbital torques, respectively. Because the torque is caused by a
relative rotation of AMs on the left and right lattices, no torque
is exerted on the whole system. The torque we are interested
in is a relative torque appearing at the junction interface, and
is given by the difference in the spin or orbital currents at sites
m and n, which are located at the edges of the two metallic
electrodes (see Fig. 1). For example, the y component of the
relative torque acting at the junction is expressed as

NSy(Ly)
mn (θ ) = 〈

JSy(Ly)
m

〉 − 〈
JSy(Ly)

n

〉
, (6)

for ϕ = 0. It is noted that 〈JSy(Ly)
m 〉 is opposite in sign to

〈JSy(Ly)
n 〉, which has been confirmed by analytical expressions

obtained.
When the direction of the SAM (or OAM) on the left

electrode is different from that on right electrode by the angle
θ , coupling energy E (θ ) = J̃ cos θ is produced. This energy
is related to torque by N (θ ) = dE (θ )/dθ [32,36]. Thus, the
coupling constant E (0) can be evaluated. We formulate spin
and orbital currents and relative torques at the interface using
Eqs. (3)–(5), and clarify their characteristics. In the following,
we call the relative torque Nmn simply torque at the junction,
since it relates to the coupling of SAM (OAM) on left and
right lattices.

B. Model Hamiltonian

We consider tunnel junctions in which two magnetic metals
are separated by a thin insulating layer. The lattice of the junc-
tion exhibits a cubic symmetry, and the electronic structure is
presented in a tight-binding Hamiltonian as follows:

H = HT + Hex + HSOC, (7)

HT =
∑

i, j,σ,σ ′

∑
μ,ν

tμν

i jσσ ′a
†
iμσ a jνσ ′ , (8)

where tμν

i jσσ ′ indicates electron-hopping between the nearest-
neighbor sites i and j, and indices (σ,μ) and (σ ′, ν) are the
spin and orbital at sites i and j, respectively. Wave functions

can be expressed using mixed representation with a wave
number parallel to the junction plane and layer indices per-
pendicular to junction plane. However, in practice, we adopt
a one-dimensional lattice model, as shown in Fig. 1, to render
analytical study feasible. In addition, we use the t2g model,
wherein xy, yz, and zx orbitals are included, because the
essence of the orbital properties is maintained in the model.
The Hamiltonian Hex denotes the on-site exchange potential
treated in the Hartree-Fock approximation. As a result Hex is
expressed as on-site, spin-dependent energy levels. HSOC de-
notes the SOC, given practically by the on-site L-S coupling,

h̄ξ [(σ+L− + σ−L+)/2 + σzLz] ≡ V , (9)

where ξ denotes the coupling energy. Thus, H is easily ma-
nipulated as a tight-binding Hamiltonian.

We define the charge, spin, and orbital currents as time
derivatives of the charge, spin, and orbital densities, respec-
tively, at site i, expressed as

ni =
∑
μσ

a†
iμσ aiμσ , (10)

si = h̄

2

∑
μ

(a†
iμ↑ a†

iμ↓)σ

(
aiμ↑
aiμ↓

)
, (11)

l i =
∑

σ

(a†
i1σ a†

i2σ a†
i3σ

)L

⎛
⎝ai1σ

ai2σ

ai3σ

⎞
⎠, (12)

respectively. Here, L is defined as

Lx/h̄ =
⎡
⎣0 0 −i

0 0 0
i 0 0

⎤
⎦, Ly/h̄ =

⎡
⎣ 0 i 0
−i 0 0
0 0 0

⎤
⎦,

Lz/h̄ =
⎡
⎣0 0 0

0 0 i
0 −i 0

⎤
⎦, (13)

for the t2g model. Indices 1, 2, and 3 denote the xy, yz, and
zx orbitals, respectively. Here the x, y, and z axes are defined
as shown in Fig. 1, and up (↑) and down (↓) spins are the z
components of SAM.

Now, we specify the practical form of HT corresponding
to the one-dimensional model shown in Fig. 1. HT is divided
into the following three parts: the left (L) and right (R) parts
and an insulator part. The matrix forms of the hopping terms
are assumed to be

HL
T = HR

T =
⎡
⎣h1 0 0

0 h2 0
0 0 h3

⎤
⎦, (14)

tmn = tnm =
⎡
⎣t1 0 0

0 t2 0
0 0 t3

⎤
⎦, (15)

respectively, in the order of the xy, yz, and zx orbitals. Here,
h1 = h2 	= h3 for the model shown in Fig. 1. As evident,
the present model can easily be generalized to a three-
dimensional model with a simple cubic lattice, by introducing
an in-plane wave vector, defined on the junction interface.
When the magnetic moment on the R lattice is canted to that of
the L lattice at an angle (θ, ϕ), as shown in Fig. 1, the hopping
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Hamiltonian tmn depends on the angles θ and ϕ. However, in
practice, ϕ = 0 is often used for simplicity.

C. Approximations to nonequilibrium GF

As we focus our study on a tunnel junction in which a
thin insulating barrier is inserted between the two metals,
the tunneling Hamiltonian tmn can be treated as a second-
order perturbation. When tmn = 0, the two metals are in
equilibrium, and their GFs are denoted by gA(R) and g+(−), re-
spectively. The perturbation method for nonequilibrium states
is nonconventional. Herein, we used the methods proposed
by Caroli et al. [30,31], which provide well-known results of
Bardeen’s expression for the tunneling conductance.

The nonequilibrium GF formalism includes four GFs:
GA(R) and G+(−), where GA and GR are the advanced and
retarded GF, respectively, and G+ and G− correspond to oc-
cupied and unoccupied states, respectively. Among these four
GFs, only three are independent because the general relation
G+ − G− = GA − GR holds, by definition.

The basic method for the second-order perturbation of the
hopping integral tmn in a nonequilibrium state is given by
Caroli’s method,

G+
mn = gR

mmtmnG+
nn + g+

mmtmnGA
nn


 gR
mmtmng+

nn + g+
mmtmngA

nn, (16)

and a similar approximation to G+
nm. In the second part of

Eq. (16), G+(A)
nn is replaced with g+(A)

nn . The general expressions
for the currents include only second-order terms of tmn, and
after straightforward computation, we obtain analytical ex-
pressions by using the general relationship g+(ω) − g−(ω) =
gA(ω) − gR(ω), where g+(ω) and g−(ω) represent the occu-
pied and unoccupied states in the equilibrium state, and the
definition of the Green’s function gA(R)(ω) is

gR(A) = P(ω − H )−1 − (+)iπδ(ω − H ). (17)

D. Spin-orbit coupling

Inclusion of SOC in the formalism is crucial, for sev-
eral reasons. SOC induces orbital moments that are typically
quenched in metals without SOC. SOC produces MA in FMs
through which the stable direction of the magnetic moment
can be determined. When the direction of the magnetic mo-
ment deviates from the stable state, torque is induced to
recover the stable direction. When the relative direction of
magnetic moments in adjacent layers of a junction is altered,
a torque may act between the magnetic moments on the two
FM layers via the SOC. Moreover, new tunneling paths can
be opened by mixing ↑ and ↓ spin states by the SOC, which
affect both spin and orbital currents.

Despite the importance of SOC, we adopt a simplified
treatment of the SOC to derive analytical expressions: the L-S
coupling is introduced only at the interface of the junction, the
nth site at the edge of the ferromagnetic R lattice in the present
one-dimensional model, and it is treated as a second-order
perturbation [37],

(gn)σσ ′ = (
g0

n + g0
nV ng0

nV ng0
n

)
σσ ′, (18)

where V n is the L-S coupling at site n and g0
n denotes the

unperturbed GF defined by using HT and Hex. The first-order
term for V n vanishes by symmetry argument [38], and the
second term includes the coupling of spin and orbital degrees
of freedom. The unperturbed GF g0

n is easily obtained in the
form of a continued fraction for one-dimensional lattices [39].
Thus, gm is a diagonal matrix in the spin and orbital space,
whereas gn includes off-diagonal elements.

Here we remark on MA of the system. The easy axis of
magnetic moment in the present model is arbitrary. Although
it is easily determined in the three-dimensional lattices, asym-
metry in the one-dimensional lattice appears only between the
y direction and z-x plane, as shown in Fig. 1. Nevertheless,
we assume that the magnetic moments on the two FMs are
parallel to the z axis in the stable state, and calculate the spin
and orbital currents after canting the magnetic moment on the
R lattice at a certain angle (θ, ϕ). Notably, additional effects
may appear in spin (orbital) current when SOC is included in
the L lattice, even if no canting of magnetic moments occurs
in the L lattice.

III. ANALYTICAL RESULTS AND DISCUSSION

In this section, we present the analytical results for the z
component of the spin currents, the y component of the spin
torque, three components of the orbital torque in a spinless
model, and the y component of the orbital torque including
the spin degrees of freedom. We omitted results for the x
components of spin and orbital torques except for the result
given in Eq. (23), because their essential features are the same
as those of the y component.

A. Spin current and torque

Here, we formulate explicit expressions for the z compo-
nent of the spin current and y component of the spin torque
using Eqs. (4) and (6). Orbital degrees of freedom were in-
cluded by taking traces over the orbitals.

First, we show the expression for the z component of the
spin current, which is the difference between the up- and
down-spin currents under finite voltage. The expression ob-
tained for ϕ = 0 is

〈JSz〉 = π
∑

μ

t2
μ

∫
dω[F1 cos2(θ/2) + F2 sin2(θ/2)

+ F3 sin(θ/2)][ fL(ω) − fR(ω)], (19)

where

F1 = DL↑μ(ω)DR↑↑μ(ω) − DL↓μ(ω)DR↓↓μ(ω),

F2 = DL↑μ(ω)DR↓↓μ(ω) − DL↓μ(ω)DR↑↑μ(ω),

F3 = [DL↑μ(ω) + DL↓μ(ω)][DR↑↓μ(ω) + DR↓↑μ(ω)].

Here, fL(R)(ω) is the Fermi distribution function of the L (R)
lattice, and DLσμ(ω) and DRσσ ′μ(ω) are the imaginary parts
of gL

mmσμ(ω) and gR
nnσσ ′μ(ω), respectively, which are orbital

diagonals because gR
mm and tmn are orbital diagonals, even

though gR
nn includes effects of the SOC.

F1 and F2 are ordinary spin-mixing terms in the tunneling
current caused by canting of the SAM. When θ = 0, the
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difference between the up- and down-spin currents can be
observed, as is already known. The F3 term originates from
spin mixing in the local GF of the nth site owing to SOC.
Further, another angle dependence is implicitly included in
DRσσ ′μ(ω) due to SOC: sin(2θ ) for σ = σ ′, and both cos2 θ

and sin2 θ for σ 	= σ ′.
Next, we show the y component of the spin torque acting

between SAMs on the mth and nth sites. The explicit expres-
sion of the torque defined by Eq. (6) is given as

NSy
mn = 1

π

∑
μ

t2
μ

∫
dω{[Im G1 Re G2 fL(ω)

+ Re G1 Im G2 fR(ω)] sin θ + 2[Im G1 Re G3 fL(ω)

+ Re G1 Im G3 fR(ω)] cos θ}, (20)

with

G1 = gL
m↑μ(ω) − gL

m↓μ(ω),

G2 = gR
n↑↑μμ(ω) − gR

n↓↓μμ(ω),

G3 = gR
n↑↓μμ(ω) = gR

n↓↑μμ(ω).

In this expression, sin θ denotes the ordinary interlayer cou-
pling, which vanishes for θ = 0 and π , whereas the cos θ term
is a new coupling path that appears via the SOC. Additional
angle dependence also appears via gR

nσσ ′μμ(ω) as mentioned
in the case of 〈JSz〉. We note that the term G3 includes sin θ

owing to the SOC and vanishes at θ → 0.
In the equilibrium state, the expression is reduced to

NSy
mn = 1

π

∑
μ

t2
μ

∫
dω Im[G1(G2 sin θ + 2G3 cos θ )] f (ω).

(21)

The result without the G3 term is consistent with the expres-
sion presented by Edwards et al. [32] in the lowest-order
approximation of the interlayer hopping t . Thus, in this for-
malism, we find that the results in a nonequilibrium state can
be obtained by a replacement

Im[G1G2] f �⇒ (Im G1 Re G2) fL + (Re G1 Im G2) fR (22)

in an equilibrium state.

B. Orbital current and torque

When the directions of magnetic moments of the R and
L lattices are canted by an angle (θ, ϕ), an orbital current
may appear. Consequently, torque is induced to restore the
direction of OAM. Here, we formulate the orbital current and
torque acting on the OAM through the insulating layer in the
junction by evaluating Eq. (6). SOC exists only at the nth site,
as assumed.

First, we present the results of the orbital torque without
a spin degree of freedom. In other words, we formulate an
orbital current through the junction in a model with spin-
independent hopping and three orbitals that are independent
of the canting of OAM. The SOC, however, exists on the nth
site, and the magnetic moment on the R lattice is canted by
an angle (θ, ϕ). The model is physically fictitious; however,
this may simplify the analysis and reveal the orbital and angle
dependencies of the orbital torque.

The expressions obtained for the torque in the equilibrium
state are expressed as

NLx
mn = 1

π

∫
dω Im(H13) f ∝ (h̄ξ )2 sin 2θ sin ϕ, (23)

NLy
mn = − 1

π

∫
dω Im(H12) f ∝ (h̄ξ )2 sin 2θ cos ϕ, (24)

NLz
mn = − 1

π

∫
dω Im(H32) f ∝ (h̄ξ )2 sin2 θ sin 2ϕ, (25)

with

Hpq = gR
npq

{
gL

mpp

(
tptq + t2

p

) − gL
mqq

(
tptq + t2

q

)}
, (26)

where ξ denotes the magnitude of the SOC and p and q are
the orbital indices 1,2, or 3.

The expression of Eq. (26) shows that the orbital torque
depends on the electronic state of the nth and mth sites and on
the orbital components of the electron hopping tp, etc., at the
junction. The results suggest that the orbital torque vanishes
under the orbital degeneracy, that is, gL

mpp = gL
mqq and tp = tq.

Actually, NLy
mn = 0 for the model given in Fig. 1. Inclusion

of additional interorbital hopping at the junction, however,
produces more complex expressions of the orbital torque (not
shown). Thus, the existence of nondegenerate orbital states
seem to be indispensable for orbital torque.

The (θ, ϕ) dependence of the orbital torque shown in
Eqs. (23)–(25) seems to be obvious. For example, θ = π/2
in (25) gives the maximal torque around the z axis with fixed
ϕ, and ϕ = 0(π/2) gives a maximal torque around y(x) axis
with fixed θ .

The orbital torque acting on OAM is proportional to t2 and
to ξ 2. This result is also obvious because these quantities were
treated in the second-order perturbation. Nevertheless, the
presence of an orbital torque may require a suitable interpreta-
tion because there is no SOC and no OAM might appear in L
lattice. The most likely explanation is that the torque is caused
by MA induced by the existence of the junction structure. The
interpretation may be supported by the long-range character of
MA [38] and nondegenerate orbital states near the junction.

Next, we show the expression for the y component of the
orbital torque, including spin degrees of freedom. Here, we
assume that t1 = t2 ≡ t , because t3 was found to be irrelevant
in this case. The expression of the y component of the orbital
torque in the equilibrium state is given as

NLy
mn = 2

π
t2

∫
dω[Im(GmGn) sin θ

+ 2 Im(Gm↑Gn↑ + Gm↓Gn↓) cos2(θ/2)

+ 2 Im(Gm↑Gn↓ + Gm↓Gn↑) sin2(θ/2)] f (ω), (27)

with

Gm(ω) = Gm↓(ω) − Gm↑(ω), (28)

Gn(ω) = gR
nn↑↓21(ω) + gR

nn↓↑21(ω), (29)

Gmσ (ω) = gL
mmσ2(ω) − gL

mmσ1(ω), (30)

Gnσ (ω) = gR
nnσσ21(ω). (31)

014431-5



INOUE, TSUJIKAWA, AND SHIRAI PHYSICAL REVIEW B 108, 014431 (2023)

Because orbital states 1(xy) and 2(yz) are degenerate for a
one-dimensional lattice with a straight line, Gmσ (ω) should
vanish. Nevertheless, we retained this term in Eq. (27) for later
discussion of more realistic systems.

The angular dependence of sin θ in Eq. (27) originates
from spin mixing due to the canted SAM, similar to the spin
torque expressed in Eq. (21). However, it vanishes without the
SOC because Gn(ω) is a term caused by SOC, as shown in
Eq. (29). The terms with cos2(θ/2) and sin2(θ/2) result from
the SOC included in Gnσ (ω); therefore, they also vanish as the
SOC tends to zero. When θ = 0, the cos2(θ/2) term vanishes
because gR

nnσσ21 ∝ sin 2θ .
Thus, the orbital torque expressed by Eq. (27) is propor-

tional to t2ξ 2 similar to that in Eq. (24). The nondegeneracy
of the orbitals on the mth site is also crucial for these terms, as
shown in Eq. (30). The expression for nonequilibrium states
can be obtained using the procedure expressed in Eq. (22).

When the left lattice (mth site) is nonmagnetic, gL
mm↑1(2) =

gL
mm↓1(2) ≡ gL

mm01(2), etc., we obtain

NLy
mn=

4

π
t2

∫
dω Im

[(
gL

mm02−gL
mm01

)(
gR

nn↑↑21+gR
nn↓↓21

)]
f (ω).

(32)

The angle dependence apparently disappears, but is included
in the spin-orbit terms of gR

nn↑↑21 and gR
nn↓↓21, which are pro-

portional to sin 2θ , as mentioned earlier.
The torque NLy

mn given by Eq. (32) vanishes in the present
one-dimensional model because gL

mm02 = gL
mm01. However, the

degeneracy of orbitals 1 and 2 may easily be lifted; for exam-
ple, by lattice distortions, and NLy

mn remains to be nonzero. In
more realistic models with two- and three-dimensional lattices
and noncubic lattices, orbital degeneracy is naturally lifted.
Therefore, the nonvanishing orbital torque is plausible in re-
alistic NM/I/FM junctions. The nonvanishing orbital torque
in the NM/I/FM junctions can be interpreted in the same
manner as that given for Eq. (24): MA caused by the existence
of the junction structure produces the orbital torque at the
junction. The long-range character of MA [38] acting through
the junction and the nondegeneracy of the orbital states are
responsible to the flow of the orbital current.

Let us now compare the results for the spin and or-
bital currents/torques. The z component of the spin current
vanishes in the limit of zero bias as seen in Eq. (19). How-
ever, all components of the orbital torque appear nonzero
even in the zero-bias limit. The differences in the results
can be attributed to the difference in the mathematical form
of σ and L: The former is the spinor operator, while the
latter is the three-dimensional matrix operator. Different ba-
sis functions YLM might be used for OAM; however, the
electronic states must be calculated using the basis func-
tions, and the final expression of the current should be the
same.

The longitudinal spin and orbital currents/torques studied
in this work vanish when the entire system is paramagnetic.
This feature is in strong contrast with the SHE and OHE stud-
ied in the paramagnetic metals. Dependence on the SOC also
differs from each other [15]. For a further understanding for
transverse and longitudinal spin and orbital currents/torques,
more detailed analyses seem to be desirable [40].

C. Discussion

The calculated results were obtained under restricted con-
ditions: the SAM and OAM are always collinear and their
magnitude is unchanged in the rotated states (uniform rota-
tion). Furthermore, the SOC was introduced at only the edge
site of right electrode. Other effects such as lattice distortion,
finite-temperature effect, etc., have been neglected. Discus-
sions on these points are given below.

The assumption of the uniform rotation would be reason-
able when the angles θ and ϕ are sufficiently small and the
increase in the coupling energy between FM layers caused
by the magnetization rotation is smaller than the spin-orbit
energy. In this case the second-order perturbation may be
effective; however, higher-order perturbations must be in-
corporated to include effects of mixing of SAM and OAM
and of change in their magnitude under their rotation. In-
clusion of SOC only at the edge site may neglect effects
of the change in the electronic states caused by SOC on
the other sites. Nevertheless, the qualitative feature of the
spin and orbital torque could be obtained in the present
study, because the edge sites are the most crucial part of
the lattice to produce the torque/coupling at the interface
of the junction [38]. We have ignored torque transfer to
the lattice, which could be one of the important issues in
future.

Now we estimate the order of magnitude of the orbital cou-
pling and propose possible methods for observing the orbital
coupling. As explained in Sec. II, coupling energy E (θ ) is
defined by

∫
N (θ )dθ with a θ → 0 limit. From the expression

of the torque in Eq. (27), the orbital coupling energy can be
expressed as

E (0) ≡ Eorb ∼ t2ξ 2
∫

dω[gR(ω)]4 f (ω), (33)

where the quartic term of the retarded GF originates from the
second-order perturbation to SOC. Because the energy scale
of gR(ω) can be 1/W per atom, where W is the bandwidth and
the integral provides additional energy W , Eorb ∼ t2ξ 2/W 3 is
obtained per atom. By considering W ∼ 5 eV and ξ ∼ 0.1 eV
[15] and assuming t ∼ 10−3 eV, the magnitude of Eorb is
10−10 eV per atom. This value may be compared with the spin
coupling energy Espin. The calculated value of Espin is approx-
imately 3 × 10−6 eV/atom for the Co/Cu/Co trilayer with
seven Cu atomic layers [33]. As expected, Eorb is significantly
smaller than Espin in a metallic junction. This difference is
primarily due to the effects of the SOC and tunnel barrier. Ad-
ditionally, the difference arises from the difference between
orbital moment (morb) and spin moment (mspin), because the
orbital (spin) coupling energy must be proportional to the
square of morb (mspin). Recently, Sakamoto et al. [35] obtained
morb/mspin ∼ 0.04 for Fe near the MgO/Fe interface using
depth-resolved x-ray magnetic circular dichroism and first
principles. Even when the latter effect is considered, Eorb may
be smaller than Espin. Therefore, enhancement of Eorb should
be attempted to render orbital coupling observable. Among
the ingredients listed above, control of hopping integral t by
reducing the barrier thickness and/or barrier height is the most
effective for this enhancement. Moreover, the SOC can be
enhanced at edge sites of magnetic layers [38].
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Nevertheless, the observation of orbital coupling may be
nontrivial because spin coupling is also included in the en-
tire coupling. Therefore, the orbital contributions should be
carefully separated from the spin torque/coupling. Separation
can be performed by noting that only spin torque vanishes
for the NM/I/FM junctions. Furthermore, we must separate
the contribution caused by the existence of the interface from
that owing to the effects of the SOC itself. Such a separation
can be realized by measuring several combinations of junction
materials because SOC and interlayer hopping may contribute
differently to the magnitude of the orbital torque. In addi-
tion, orbital torque/coupling acting on the OAM may cause
relaxation in the direction OAM, which can be observed via
ferromagnetic resonance for example, as reported in [18]. For
quantitative comparison between experimental and theoretical
results, it is desirable to formulate more explicit expressions
for the orbital torque in systems with clear orbital moments.

IV. SUMMARY

This study formulated the longitudinal spin and orbital
currents through tunnel junctions with SOC. We first derived
a general form of the orbital currents at the interface using
nonequilibrium GF formalism. Subsequently, the explicit for-
mulas for the y and z components of the spin and orbital
currents/torques are derived for the one-dimensional lattice
model. We applied second-order perturbation to the hopping
term in the insulator as well as to the SOC in the Hamiltonian.
The coupling energy between OAMs (SAMs) at the interface
was derived as the difference in the orbital (spin) currents at
the junction interface.

The results of this study can be summarized as follows.
The orbital torque is caused by SOC and relaxes through

the junction interface as an orbital current, resulting in an
orbital coupling between two magnetic layers. The orbital
and the spin torques acting at the interface contain addi-
tional angle dependence owing to SOC in addition to the
ordinary sin θ term for the spin torque. The direction of the
torque acting on OAM is determined by the SOC. Further-
more, the orbital torque may remain finite even for NM/I/FM
junctions. The origin of the orbital torque at the junction
has been attributed to MA caused by the junction struc-
ture, indicating the importance of the long-range character
of MA and nondegeneracy of orbital states. Finally, the ef-
fects of finite voltage at the junction of the torque was
clarified.

The magnitude of the orbital coupling energy was esti-
mated, and methods to observe orbital torque/coupling were
proposed. The difference between the longitudinal orbital
(spin) current investigated in this study and the transverse
current of OHE (SHE) was discussed; however, this remains a
fundamental issue, and should be studied further in the future.
The numerical calculations for more realistic models are also
left for future research.
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