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In this work we employ macrospin simulations of the magnetization dynamics obtained from the Landau-
Lifshitz-Gilbert equation coupled to angular momentum transport yielded by the nonequilibrium Green’s
function formalism to investigate two possible origins of the back-hopping effect in magnetic tunnel junctions
with one layer of a synthetic antiferromagnet as reference layer. One possible origin discussed in this work is
an additional sign reversal of the dampinglike (parallel) torque component as a function of the applied voltage.
The other is the destabilization and switching of the reference layer by the spin-transfer torque. We find that
this destabilization gives rise to a dynamic behavior manifesting in a back-and-forth switching of the free layer,
while the sign reversal of the dampinglike torque results in a second hysteresis loop.
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I. INTRODUCTION

A magnetic tunnel junction (MTJ) usually consists of two
ferromagnetic (FM) layers connected by an insulator. One
of the ferromagnetic layers (the reference layer, RL) has its
magnetization pinned in one direction, which can be achieved,
e.g., by a large uniaxial anisotropy, or by coupling it to an
antiferromagnet or hard magnetic layer via the interlayer ex-
change coupling. The latter has a variety of advantages [1],
including the possibility to compensate the stray field of the
stack by setting up a synthetic antiferromagnet, to only name
one. The magnetization direction of the second layer (the
free layer, FL) usually can be changed by internal or external
means.

The tunnel magnetoresistance (TMR) effect of MTJs [2,3]
opens up a vast variety of technological applications. One of
these is the spin-transfer torque (STT) driven magnetoresistive
random access memory (STT-MRAM) [4,5], which makes
use of the ability to influence the magnetization direction of
a ferromagnetic layer by injecting a spin-polarized current
[6–9]. The basic idea is to use a writing current in order to
align the free-layer magnetization either parallel or antipar-
allel to the reference-layer magnetization, depending on the
polarity of the applied voltage. Due to the TMR effect, the
parallel (antiparallel) state corresponds to a low (high) resis-
tance, that can be determined by a smaller reading current.

One might expect that higher voltages lead to faster switch-
ing with fewer writing errors, but for some SST-MRAM cells,
this is not the case. Instead, the device switches to either
the low- or high-resistance state indiscriminately [10]. This
means that when the voltage is gradually increased, the cell
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will first switch as desired but then, for larger voltages, switch
back to the original state and from there on, back and forth
between the two states. This so-called back-hopping effect
was observed for one (e.g., in Ref. [11]) and both voltage
polarities (e.g., in Ref. [10]), and it poses an obstacle for
reliable STT-MRAM.

Different potential origins for this effect have been dis-
cussed, including the reduction of the anisotropy of the
involved magnetic materials [12] or the quadratic nature of
the dampinglike torque component in MTJs as, e.g., indicated
theoretically and experimentally in Refs. [13–15]. Another
possible origin is the destabilization of the reference layer by
the STT, as argued in Refs. [16,17], which used a macrospin
model, including a Slonczewski torque term that scales lin-
early with the current. In fact, this effect would be the result
of basic STT properties and can therefore be expected to
appear not only in MTJs, but also in STT-driven giant mag-
netoresistance devices, as argued by Abert et al. in Ref. [18].
Devolder et al. attempted to determine the origin of the effect
by conducting time-resolved measurements of the switching
in Ref. [19]. They found that for the parallel to antiparallel
switching direction (P → AP) the device would first switch
to AP as intended but then transition into a low-resistance
state P′ that differs slightly from the original state. They also
found that this state usually relaxes into the AP state when the
voltage is cut off.

In this work we are going to show how both the additional
sign reversal of the dampinglike torque component and the
dynamic effect of the STT acting back on the reference layer
would yield undesired switching behavior in stacks with a
synthetic antiferromagnet as reference system. In contrast to
the computational works carried out in [16–18], we are not
going to assume a linear dependence of the torque on the
current but instead obtain both the fieldlike and dampinglike
torque from a free-electron model in a coherent transport
regime.
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II. METHODS

A. Simulation of the magnetization dynamics

The underlying assumption of the concurrent simulation
of the magnetization dynamics and the spin accumulation is
that the local magnetization of a ferromagnetic material is
due to localized electrons, while the (spin) current flowing
through the stack results from the movement of the delo-
calized conduction electrons. However, the systems do not
behave independently but mutually influence each other. In
this modeling the localized electrons induce an exchange
splitting to the potential felt by the conduction electrons,
resulting in an spin-dependent wave function. The spin accu-
mulation s is the local expectation value of the individual spin
components and can be obtained from numerical solutions of
the Schrödinger equation or, equivalently, the nonequilibrium
Green’s function formalism [20–23].

When the magnetization dynamics are obtained from the
modified Landau-Lifshitz-Gilbert equation (LLG),

∂m
∂t

= −γ m × Heff + αm × ∂m
∂t

+ T , (1)

the effect of spin accumulation on the local magnetization is
accounted for by the torque:

T = − Jsd

h̄Ms
m × s. (2)

Here m is the normalized local magnetization, Ms the sat-
uration magnetization such that the local magnetization is
M = Msm, γ is the reduced gyromagnetic ratio, α = 0.05 (if
not stated otherwise) denotes the Gilbert damping parameter,
and Heff is the effective field. The coupling between the local
magnetization and the spin accumulation is measured by the
spin-split potential Jsd.

Assuming that the spin accumulation relaxes much faster
than the local magnetization yields an iterative scheme for
coupled simulations that sees the spin accumulation being
updated on the basis of the current magnetization before every
time step of the LLG equation [21,22].

Since the m is a unit vector, the torque T can be split into
a dampinglike and a fieldlike part:

T = T dl + T fl, (3)

T fl = τfl m × p, (4)

T dl = τdl m × (m × p). (5)

In a spin-valve structure with a reference and free layer, the
polarization vector p is the magnetization direction of the
layer across the barrier:

p =
{

mRL for torque acting on mFL

mFL for torque acting on mRL
. (6)

It should be apparent from (2) that the component of s parallel
to m cannot change the dynamics obtained from (1). Thus the
effective spin accumulation

seff = −sflm × (m × p) + sdlm × p (7)

with

sfl = s · bfl

bfl · bfl
, (8)

sdl = s · bdl

bdl · bdl
, (9)

bfl = −m × (m × p), (10)

bdl = m × p (11)

results in the same magnetization dynamics as the original
spin accumulation. Inserting (7) into (2) relates the torque
coefficients with the coefficients of the effective spin accu-
mulation:

τfl = − Jsd

h̄Ms
sfl, (12)

τdl = − Jsd

h̄Ms
sdl. (13)

The advantage of this might not be clear right away, but
in MTJs the coefficients sfl and sdl obtained from the fully
coherent free-electron model do not depend on the relative
orientation of mRL and mFL, as long as the bias voltage Vb is
fixed [24,25]. Instead, they are constant with respect to the an-
gle between the two magnetization directions. Consequently,
it is not necessary to compute the spin accumulation in every
time step of the LLG integration, as long as the voltage does
not change.

The macrospin simulations presented in this work were
achieved with scipy.integrate.ode using an implicit solver
based on the explicit form of the LLG:

∂m(Vb)

∂t
= − γ

1 + α2
m ×

{
Heff + 1

γ
[ατdl(Vb) − τfl(Vb)]p

}

− αγ

1 + α2
m ×

[
m ×

{
Heff − 1

γ

[
1

α
τdl(Vb)

+ τfl(Vb)

]
p

}]
. (14)

We will investigate the switching dynamics of two MTJ stacks
with an out-of-plane uniaxial anisotropy. Both stacks are of
the same general structure. The reference system is a synthetic
antiferromagnet that consists of two coupled magnetic layers,
the hard layer and the reference layer, separated by a nonmag-
netic (NM) spacer layer. The layers are stacked along the z
direction, and the reference layer is followed up first by an
insulating layer and then the free layer.

To model the stacks, the effective field Heff = Haniso +
H IEX in Eq. (1) contains contributions from the uniaxial
anisotropy and the interlayer exchange coupling in the form
of a bias field acting on the reference layer. This bias field
accounts for the coupling of the reference system to the hard
layer as part of an antiferromagnetic reference system, without
modeling the hard layer explicitly. Thus the field associated
with the interlayer exchange coupling constant AIEX is always
directed along ẑ:

H IEX = AIEX

JsLRL
ẑ. (15)
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FIG. 1. The simulations account for the reference layer (RL)
being antiferromagnetically coupled to a static hard layer (HL) only
by introducing a bias exchange field within the reference layer. In
neither the transport calculations nor the magnetization dynamics
calculations, the hard layer is modeled explicitly. The barrier region
is labeled as B, the nonmagnetic leads are labeled as left (L) and right
(R) to be consistent with the literature [20].

Here LRL is the thickness of the reference layer. This reduction
of the scope of the simulation is shown in Fig. 1.

The uniaxial anisotropy in the magnetic layers is oriented
along the out-of-plane axis, i.e., the z axis:

Haniso = 2Ku

Js
(m · ẑ)ẑ. (16)

Since the stray field is not included in the simulations ex-
plicitly, the values stated in Table I resemble an effective
anisotropy. The value for the free-layer anisotropy correspond
to critical switching fields of μ0Hc ≈ 20 mT and 17 mT for
stacks A and B, respectively. Experimental studies that went
into consideration for this work report values from ≈10 mT
[15,26] to about 2.3 mT [6].

The two stacks differ only in the choice of the parame-
ter values used for the magnetization dynamics calculations
and the free-electron model. These parameters are stated in
Tables I and II, respectively. Theoretical studies of the free-
electron model in MTJs showed that the behavior of the torque
components as a function of the bias voltage depends strongly
on the parameters used [13,24], and as we will see, they can
be chosen so that qualitative differences in the behavior of the
dampinglike torque component for stacks A and B lead to two
distinct mechanisms of writing errors.

TABLE I. Parameters of the stacks used for the time integration
of Eq. (1). AIEX is the interlayer exchange coupling constant of the
synthetic antiferromagnet, Js = μ0Ms is the saturation polarization,
and Ku the uniaxial anisotropy.

ID AIEX (J/m2) Js,RL (T) Js,FL (T) Ku,RL (J/m3) Ku,FL (J/m3)

A 4 × 10−4 1.3 1 1.2 × 104 8 × 103

B 4 × 10−4 1.2 1.2 1.6 × 104 8 × 103

In Ref. [21], Datta et al. presented a set of parameters for
a three-domain model with semi-infinite ferromagnetic leads
that yield a TMR behavior similar to experimental findings
for MgO- and Al2O3-based MTJs with Fe leads. In doing
so, Datta et al. treated the effective mass and barrier height
as system parameters that also account for impurities and
interface effects rather than as true material parameters. The
values that characterize the two stacks A and B in this work
(Table II) were chosen to lie in the general vicinity to the
values stated in Ref. [21] but differ enough to result in an
additional change of the dampinglike torque for stack B which
is not present in stack A for Vb � 1 V.

B. Calculation of the spin accumulation

The spin accumulation is obtained from a fully coher-
ent free-electron model with open-boundary conditions. This
approach is justified mainly by the similarity of �1 bands
in bcc Fe and Co to the free-electron dispersion [24,27].
The calculations can be performed on the basis of a single-
particle Hamiltonian that accounts for five domains, indexed
by a variable m taking the values L (the semi-infinite
nonmagnetic left lead), RL (the reference layer), B (the
insulating barrier region), FL (the free layer), and R (the
semi-infinite nonmagnetic right lead). Alternatively, the ef-
fects of the NM/FM interfaces can be excluded by accounting
for only three domains in the model Hamiltonian: the ref-
erence layer, the barrier region, and the free layer with the
two ferromagnetic layers assumed to be semi-infinite in the
context of the coherent transport calculations. The discrete
form of the Hamiltonian with spatially varying effective
mass m∗ [28],

Ĥ (z) = − h̄2

2m∗(z)

[
∂2

∂x2
+ ∂2

∂y2

]
− h̄2

2

∂

∂z

(
1

m∗(z)

∂

∂z

)
+Û (z),

(17)

on a one-dimensional finite-difference mesh with N sam-
ple points indexed by i or j and discretization length a is
given by

Hi j (k⊥) =

⎧⎪⎨
⎪⎩

hm(k⊥) + viI2 i = j

−tmI2 j = i ± 1

02,2 else

(18)

for points lying within the domain m, and by

Hi j (k⊥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[hm(k⊥) + hn(k⊥)]/2 + viI2 i = j

−tmI2 j = i − 1

−tnI2 j = i + 1

02,2 else

(19)

on the interfaces between the domains m and n [21]. Note that
all entries are 2 × 2 matrices. I2 denotes the 2 × 2 identity
matrix, 02,2 is a zero matrix of the same size, and

tm = h̄2

2m∗
ma2

(20)
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TABLE II. Parameters of the stacks required to obtain the spin accumulation from the NEGF formalism. U↑ and U↓ are the potential
energies for spin-up and spin-down electrons in the ferromagnetic materials, respectively. LRL, LB, and LFL are the thickness of the reference
layer, the insulating barrier region, and the free layer, respectively. Within the barrier region, the potential energy is UB and the effective
electron mass is m∗

B. Everywhere else, the effective mass is m∗
C. The listed parameters are required by the Eqs. (20), (21) via (22) and (23), and

by (31).

ID LRL (nm) LB (nm) LFL (nm) U↑ (eV) U↓ (eV) UB (eV) m∗
B/me m∗

C/me

A 1.1 0.7 0.9 −2.2 −0.1 1.5 0.4 0.8
B 1.1 0.8 1.2 −2.5 −0.2 1.0 0.6 0.9

is the hopping energy. The onsite energy

hm(k⊥) =
(

Um + 2tm + h̄2k2
⊥

2m∗
m

)
I2 − Jm

2
mm · σ (21)

accounts for the mean potential Um and the splitting of the
potential energy Jm along the direction of the mean local mag-
netization mm as well as momentum components k⊥ that are
perpendicular to the net current direction, i.e., the ẑ direction
and thus parallel to the interfaces. The term is constructed
utilizing the Pauli matrix vector σ = (σx, σy, σz )T. Within
the ferromagnetic domains, the relations of the spin-up and
spin-down potentials U↑ and U↓ with the mean and spin-split
potentials are given by

UFM = (U↓ + U↑)/2, (22)

Jsd = U↓ − U↑. (23)

The bias voltage Vb applied to the stack is assumed to vary
only within the barrier domain, assumed to extend from z = 0
to z = LB, with LB being the thickness of the insulating layer.
Therefore it changes the potential landscape of the stack ac-
cording to

vi =

⎧⎪⎪⎨
⎪⎪⎩

−eVb/2 zi � 0

eVb zi/LB − eVb/2 0 < zi < LB

eVb/2 LB � zi

. (24)

The bias voltage is related to the shift in the chemical poten-
tials by

eVb = μR − μL (25)

and is thus the shift between the occupation functions

fm(ε) = 1

exp{β(ε − μm)} + 1
(26)

in the left and right leads.

1. The nonequilibrium Green’s function formalism

We will now see how the spin accumulation can be cal-
culated using the nonequilibrium Green’s function formalism
(NEGF), based on the work presented in Refs. [13,21,23,29].
Assuming open-boundary conditions, the retarded Green’s
function is

GR(ε, k⊥) = [εI2N − H (k⊥) − 
R(ε, k⊥)]−1. (27)

The self-energy 
R function is


R
i j (ε, k⊥) =

⎧⎪⎨
⎪⎩

−tc exp (ikL,‖a)I2 (i = j = 0)

−tc exp (ikR,‖a)I2 (i = j = N − 1)

02,2 else

(28)

in the case of nonmagnetic leads, or in the case of semi-infinite
FM leads, the slightly more complicated spin-dependent
version


R
i j (ε, k⊥) =

⎧⎪⎨
⎪⎩


R
RL(ε, k⊥) (i = j = 0)


R
FL(ε, k⊥) (i = j = N − 1)

02,2 else

, (29)

with


R
m(ε, k⊥) = −tmR(mm)

[
exp (ik↑

ma) 0

0 exp (ik↓
ma)

]
R(mm)†.

(30)

Here R(n̂) is the rotation matrix from the z direction to n̂. The
wave number parallel to the net-transport direction is given by

kσ
m,‖ =

√
2m∗

m

h̄2

(
ε − U σ

m

) − k2
⊥. (31)

The in-scattering function (33) or (32) is obtained from anti-
Hermitian part of (28) or (29), respectively, and is weighted
by the occupation functions of the left and right lead, which
are just the Fermi-Dirac distribution shifted by ∓Vb/2:


in
i j (ε, k⊥) =

⎧⎪⎪⎨
⎪⎪⎩

fL(ε)2tc sin(kL,‖a)I2 i = j = 0

fR(ε)2tc sin(kR,‖a)I2 j = i = N − 1

02,2 else

(32)

in the case of nonmagnetic leads or


in
i j (ε, ε‖) =

⎧⎪⎨
⎪⎩

i fRL(ε)
(

R

RL(ε‖) − 

R†
RL(ε‖)

)
i = j = 0

i fFL(ε)
(

R

FL(ε‖) − 

R†
FL(ε‖)

)
j = i = N − 1

02,2 else

(33)

in the case of ferromagnetic leads. The full nonequilibrium
Green’s function is

Gn(ε) = D2D(ε)
∫

GR(ε, k⊥)
in(ε, k⊥)GR†(ε, k⊥)dk⊥,

(34)
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with D2D(ε) being the two-dimensional density of states. The
diagonal elements of Eq. (34) are the local densities such that

sk (zi ) = − μB

2πa

∫
Trσ

[
Gn

ii(ε)σk
]
dε (35)

yields the spin accumulation [23,24].

2. Equivalence to solutions obtained
from the Schrödinger equation

The nonequilibrium Green’s function is a sort of correla-
tion function with its entries being [29]

Gn
i j

σσ ′ = 2πa
∑
σ ′′

∑
k

ψ
σ (σ ′′ )
k (zi )ψ

σ (σ ′′ )
k (z j ), (36)

where the sums are over electrons k entering the problem
region from the left and the right lead and both incident spin
states. Here we adopted the notation from [30] and indicate the
incident spin state in parentheses. For the case of completely
coherent transport, it is relatively straightforward to show the
equivalence of solving (27) and then evaluating (34) to solving
the time-independent Schrödinger equation,

[ε − Ĥ (z)]|ψ (σ )
k (z)〉 = 0 (37)

with

∣∣ψ (σ )
k (z)

〉 =
[
ψ

↑(σ )
k (z)

ψ
↓(σ )
k (z)

]
(38)

numerically or analytically [24], and doing so is very instruc-
tive to understand the formalism used.

Let us focus on an electron entering from the left nonmag-
netic lead in the spin-up state. If one was going to solve the
Schrödinger equation analytically, the ansatz in the left lead
would be

ψ
↑(↑)
L (z)|z∈L = AL[eik↑

L x + r↑e−k↑
L x], (39)

ψ
↓(↑)
L (z)|z∈L = r↓e−k↓

L x, (40)

and

ψ
↑(↑)
L (z)|z∈R = u↑eik↑

Rx, (41)

ψ
↓(↑)
L (z)|z∈R = u↓eik↓

Rx, (42)

in the right lead. We are now going to determine the open-
boundary conditions. In an effort to keep the notation in the
following argumentation clean, the indices specifying the in-
cident lead and wave number are dropped.

For electrons entering from the left, only an outgoing wave
has to be accounted for on the right boundary. Since the

boundary conditions should allow for an unobstructed prop-
agation outwards of the problem region into a homogeneous
semi-infinite lead, the equation at the boundary node N − 1,

tR|ψN−2〉 + (εI2 − hR)|ψN−1〉 + tR|ψN 〉 = 0, (43)

can be simplified with

|ψN 〉 = eikRa|ψN−1〉 (44)

to

tR|ψN−2〉 + [(ε + tReikRa)I2 − hR]|ψN−1〉 = 0. (45)

Equation (44) is justified since in the region of the right lead,
the wave function is of the form (41).

The situation at the left boundary involves not only an out-
going reflected part of the wave function but also the incident
wave in the spin-up component, and we therefore not only
need the equation centered on node 0,

tL|ψ−2〉 + (εI2 − hL)|ψ−1〉 + tL|ψ0〉 = 0, (46)

but also on node −1,

tL|ψ−1〉 + (εI2 − hL)|ψ0〉 + tL|ψ1〉 = 0, (47)

to eliminate the additional unknown. To do so one requires the
tight-binding relation

(ε − h) = −t (eika + e−ika). (48)

After some calculations presented in the Appendix, one ob-
tains

tLAL(1 − ei2kLa) + tLψ
↑
0 eikLa + (ε − hL)ψ↑

0 + tLψ
↑
1 = 0

(49)

for the spin-up component at the left boundary. This equa-
tion contains a term equivalent to the one obtained for the right
boundary, but also an additional source term

S = −tLAL(1 − ei2kLa). (50)

The spin-down component can be treated like the spin-up
component at the right boundary, and thus the equation for
the left boundary can be written as

[(ε + tLeikLa)I2 − hL]|ψ0〉 + tL|ψ1〉 =
[

S
0

]
, (51)

and the full problem for electrons entering from the left in
the spin-up state is therefore stated by the system of equa-
tions (52):

[(ε + tLeikLa)I2 − H00]|ψ0〉 − H01|ψ1〉 =
[

S
0

]

−Hi i−1|ψi−1〉 + (εI2 − Hii )|ψi〉 − Hi i+1|ψi+1〉 = 0, 1 � i � N − 2 (52)

−HN−1 N−2|ψN−2〉 + [(ε + tReikRa)I2 − HN−1 N−1]|ψN−1〉 = 0.

The solution of this tridiagonal system together with the one
for electrons entering from the right and for both incident spin

states yields the same spin accumulation as the one obtained
from the nonequilibrium Green’s function formalism. This
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equivalence of the two approaches can be shown by starting
from the integrand of (34):

Gn
i j =

N−1∑
k=0

N−1∑
l=0

GR
ik


in
klG

A
l j (53)

=
N−1∑
k=0

GR
ik

[

Lδk0GA

0 j + 
Rδk N−1GA
N−1 j

]
(54)

= GR
i0
LGA

0 j + GR
i N−1
RGA

N−1 j (55)

= GR
i0
LGR

j0 + GR
i N−1
RGR

j N−1. (56)

The first part is the contribution of electrons entering from
the left. Here, the only relevant part of GR is its first column,
which is the solution to a subproblem of (27):

N−1∑
j=0

[
εδi j − Hi j − 
R

i j

]
GR

j0 = δi0I2. (57)

This can be compared to the system of equations (52), which
can be rewritten as

N−1∑
j=0

[
εδi j − Hi j − 
R

i j

]|ψ (↑)
j 〉 =

[
S
0

]
δi0, (58)

and the first column of the retarded Green’s function is related
to the wave function of an electron entering from the left by

GR
j0 S = [|ψ (↑)

j 〉, |ψ (↓)
j 〉], (59)

which is not surprising, since Sδi0 could be viewed as a source
term and convolution with the problem’s Green’s function
should therefore yield the full solution of the problem.

Judging from (36), (56), and (59), the in-scattering ma-
trix is proportional to the square norm of the source term
(50), which in turn is proportional to the square norm of
the incoming wave function’s amplitude |AL|2. Plugging in
the one-dimensional density of states times the occupation
function for |AL|2 and knowing that the derivative of (48) is

h̄ν = 2at sin(ka) (60)

yields the square norm of the source term,

|S|2 = t2
L|AL|2(1 − ei2ka)(1 − e−i2ka) (61)

= t2
L f (ε)

m∗

2π h̄2k
(1 − ei2ka)(1 − e−i2ka) (62)

= t2
L f (ε)

1

2π h̄ν
4 sin2(ka) (63)

= 1

2πa
2tL f (ε) sin (ka), (64)

and shows the equivalence of the solution of the tridiagonal
system and the nonequilibrium Green’s function formalism
as well as the validity of (36). This argumentation can also
be adopted for magnetic leads by having a spin-dependent
wave number and density of states and rotating the self-energy
matrices 
R and the source term according to the local mag-
netization direction [31].

FIG. 2. The voltage dependence of the TMR effect for both
stacks, considering the effects of the NM/FM interfaces (NM leads)
and omitting them (FM leads). The curves were obtained solely from
the free-electron model for fixed parallel and antiparallel configura-
tions of mRL and mFL.

III. RESULTS

We will now compare the transport properties of the two
stacks A and B. Figure 2 shows the voltage dependence of
the TMR of stack A and B obtained from the NEGF using a
Hamiltonian with five domains with NM leads and a three-
domain Hamiltonian with semi-infinite FM leads.

Similarly, the voltage dependence for the averaged fieldlike
and dampinglike torque acting on the free layer of both stacks
is shown in Fig. 3 for both types of Hamiltonian. The field
components were calculated for mRL ‖ x̂ and mFL ‖ ẑ. Since
that means that θ = ∠mRL, mFL = π/2, the torque compo-
nents are related to the field components by τdl = −γ Hdl(θ =
π/2) and τfl = −γ Hfl(θ = π/2). While the field components
Hfl and Hdl depend on the angle θ between mRL and mFL,
the torque components τfl and τdl are constants for a fixed

FIG. 3. Average values of Hfl and Hdl acting on the magnetiza-
tion of the free layer for mRL ⊥ mFL. For stack B the dampinglike
component has an additional sign reversal around 0.75 V.
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FIG. 4. Simulation of the STT-induced switching behavior of
stack A for (a) a five-domain Hamiltonian with NM leads and (b) a
three-domain Hamiltonian with FM leads. The hysteresis includes
back-hopping that appears as a dynamic effect. The free-layer out-
of-plane component was sampled after first applying the indicated
voltage for 60 ns and then letting the system relax for 30 ns. After
the reference layer is fully relaxed, mz = 1 corresponds to the low-
resistance state and mz = −1 to the high-resistance state.

value of the bias voltage. Figure 3 shows a trend reversal
of the dampinglike component for stack B that results in an
additional change of sign around 0.8 V in the case of the
five-domain Hamiltonian and around 0.75 V in the case of
the three-domain Hamiltonian. It is noteworthy that while the
inclusion of reflexions from the FM/NM interfaces results in
vastly different TMR curves with an unexpected nonmono-
tonic behavior for stack B, the number of domains included
into the device Hamiltonian does not result in a qualitative
change in the torque component voltage dependence.

However, the additional change of sign of the dampinglike
torque for stack B leads to very different switching behavior
compared to the one observed for stack A. This can be seen
by comparing the respective M-V hysteresis curves of stacks
A and B in Figs. 4 and 5, respectively.

The data shown in Figs. 4 and 5 was obtained in the follow-
ing way: First a bias voltage Vb was applied for 60 ns. During
this time, the STT acts on both the reference and the free layer
of the stack. Next the voltage was cut off and the system was
allowed to relax for a time frame of 30 ns, after which mFL

was sampled. These data points are indicated by markers. The
procedure was then repeated with the next voltage value, start-
ing from the lowest voltage Vb,min and increasing it from step
to step up to a maximum value Vb,max. Then, after reaching
this maximum value, the voltage was decreased in the same
manner back to the starting value Vb,min.

Values of the free-layer out-of-plane component equal to 1
correspond to the low-resistance state, while values equal to
−1 correspond to the high-resistance state. After the system
is fully relaxed, these states are indeed well defined, since the
exchange coupling acting on the reference layer will always
let its magnetization relax into the positive z direction.

The hysteresis of stack A depicted in Fig. 4 features what
is usually referred to as back-hopping on the positive-voltage

FIG. 5. Simulation of the STT-induced switching behavior of
stack B for (a) a five-domain Hamiltonian with NM leads and (b) a
three-domain Hamiltonian with FM leads. Due to the additional
change of sign of the dampinglike torque component, the hysteresis
includes a second loop on the positive-voltage branch. The data was
obtained in the same manner as in the data depicted in Fig. 4.

branch (P → AP switching). For voltages Vb � 0.6 V, the
sampled free-layer magnetization starts switching between the
parallel and antiparallel state in a seemingly random fashion,
reminiscent of the back-hopping measured in [10]. As we
will see later, the back-hopping in our simulations is due to
the reference layer itself changing direction when subjected
to large enough torques in a dynamic process outlined with
similar numerical methods in [16,17].

Comparison with Fig. 5 reveals that stack B behaves very
differently. The additional change in sign of the dampinglike
torque component gives rise to a complete second hysteresis
loop, as we have already argued in a previous work [25] and
akin to measurements shown in Ref. [19]. This apparent simi-
larity does not necessarily indicate that the second loop seen in
Ref. [19] arises from a quadratic dampinglike term, however.
In their time-resolved measurements, Devolder et al. found
the MRAM cell to first switch as intended from the P to the
AP state, but then in a second switching event it switches back
into a low-resistance state. They found this state to relax back
into the AP state as soon as the bias voltage was removed. The
magnetization reversal seen in Fig. 5 is, however, stable and
is not entered by a P → AP → P transition at a single voltage
but in a hysteretic manner. From their analysis, Devolder et al.
concluded that the back-hopping observed by them is due
to the destabilization of the reference system, although the
expected back-and-forth switching did not occur.

We are now focusing on the dynamic effect leading to the
back-hopping in Fig. 4. For positive voltages, the STT aims
to have the free-layer magnetization aligned antiparallel with
the magnetization of the reference layer. However, the torque
acting on the reference layer tries to align its magnetization
parallel with the free-layer magnetization. While the system
is in its parallel state, this means that the reference layer is
indeed stabilized by the STT, but as soon as the free layer
is switched to its antiparallel configuration, the contrary is
the case. Preferably for most applications, anisotropy and
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FIG. 6. Cyclic process of back-hopping due to switching of
the reference layer. Large arrows indicate the magnetization of the
layers, while the small arrows indicate the energetically preferred
direction due to STT.

interlayer exchange would keep the reference system stable,
but the torque acting on the reference layer in stack A at large
voltages outweighs these stabilizing field contributions. The
consequence is what can be thought of as a cyclic process
[18] as depicted in Fig. 6. First, the system is in its parallel
configuration and the reference layer is stabilized along the
positive z direction. The free layer is then switched from
parallel to antiparallel by the STT, destabilizing the reference
layer. In turn, the reference layer switches to the negative z
direction so that its magnetization is parallel to the free-layer
magnetization again, mirroring the original state.

Figure 7 shows the dynamics of the out-of-plane magne-
tization components for both layers in stack A at 0.7 and
0.8 V, and can be easily compared to the process illustrated
in Fig. 6. Additionally, a three-dimensional animation that
shows the first full cycle of the back-hopping seen in Fig. 7(b)
can be found in the Supplemental Material [32]. Since the
dampinglike torque for stack A is a monotone function of
the bias voltage within the considered voltage interval, the
precessional switching dynamics of both mFL and mRL be-
come faster when the voltage is increased. Similarly, Fig. 8
shows the effect of the Gilbert damping parameter α on the
back-hopping. Figure 8 indicates that a smaller value of the
damping parameter allows for a faster switching dynamics and
reduces the voltage limit for the back-hopping effect to occur.

The gray areas in Figs. 7 and 8 indicate time intervals
in which cutting off the voltage would result in “correct”
switching, i.e., a free-layer magnetization that relaxes into
the negative z direction, if mRL and mFL would be uncoupled
when no voltage is applied. However, the fieldlike torque in
Fig. 3 does not vanish at zero bias voltage and therefore acts
effectively as a form of interlayer coupling.

In contrast to the free layer, the reference layer always
relaxes in the positive z direction, since the bias interlayer
exchange coupling is the dominant field contribution over
the anisotropy field and the interlayer coupling exerted by
the fieldlike torque term. Thus a measurement would indeed
always yield the low-resistance (P) state when the free layer
relaxed into the positive z direction and the high-resistance

FIG. 7. Dynamics of the out-of-plane component of free and
reference layer for stack A at Vb = 0.7 V and Vb = 0.8 V. Gray
regions mark time intervals in which cutting of the voltage spon-
taneously would lead to successful P → AP switching if the two
magnetizations were uncoupled. This is because the reference-layer
magnetization always relaxes back into the positive out-of-plane
direction, i.e., the positive z direction, due to the interlayer-exchange
coupling to the remaining reference system. Consequently, a free-
layer magnetization that relaxed into the positive z direction would
therefore result in the low-resistance P state, while a free-layer mag-
netization that has relaxed into the negative z direction would result
in the high-resistance state.

(AP) state when the free layer relaxed into the negative z
direction.

Since the final state of the free layer is thus determined by
the time the voltage is applied, it might appear to be somewhat
random. Assuming that the actual time the voltage is applied
is distributed around a mean value μ, one can calculate the

FIG. 8. Dynamics of the out-of-plane magnetization component
of the free and reference layer for stack A at Vb = 0.6 V for two
different values of the damping parameter. (a) For α = 0.05, which
is the value used to obtain the hysteresis curves in this work, the
back-hopping effect starts to occur slightly below Vb = 0.6 V. (b) A
smaller damping parameter reduces the voltage limit for the back-
hopping.
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FIG. 9. Approximated P → AP switching probability for stack
A, assuming the switching pulse duration is distributed according to
a rectangular distribution with μ = 18 ns and L = 4 ns (blue circles
for NM leads, green squares for FM leads) and a Gaussian distribu-
tion with μ = 18 ns and σ = 4 ns (orange downward triangles for
NM leads and red upward triangles for FM leads).

switching probability by convolution of the signal

s(t ) =
{

1 mz,FL(t ) > 0

0 else
(65)

with the distribution function. Note that the background col-
oring of Fig. 7 does conform to the signal function (65). The
approximated P → AP switching probability of stack A ob-
tained for a Gaussian distribution as well as for a rectangular
distribution can be found in Fig. 9. It shows a sudden reduction
of the success rate for voltages above 0.55 V with a further
decrease for higher values of Vb as a result of the quicker
oscillation of mRL and mFL. The exact form of the pronounced
nonmonotonic behavior seen in Fig. 9 depends strongly on the
mean value and is due to the similar length of the distribution
and the binary pulses of the signal (65).

IV. CONCLUSION

In this work we investigated two possible origins of the
back-hopping effect—the first being the destabilization and
possible switching of the reference layer due to the STT acting
on it, and the second one being an additional sign reversal
of the dampinglike torque term for large voltages due to its
quadratic nature. Both were modeled and investigated with
stack A showing the dynamic effect of cyclic reference and
free-layer switching, while the second sign reversal of the
dampinglike torque for stack B leads to a second hysteresis
loop. This implies that in experiments where the back-hopping
appears as chaotic back-and-forth switching between the
high- and low-resistance state, it cannot be attributed to an
additional change of sign of the dampinglike torque, as this
characteristic would yield a complete second hysteresis loop
instead.

If the back-hopping is then because of the dynamic process
described here or in Refs. [16–18], one should note that in

the case of separated pulses for reading and writing, the
reference layer would rotate back into the direction favored
by the interlayer exchange coupling (assuming that it is large
enough to overcome the effective anisotropy) after the writing
pulse ended. This means that the high- and low-resistance
states would still correspond to well-defined configurations.
Meanwhile, measuring the resistance for the writing current
would lead to data with a more ambiguous state of the
reference layer. Still, one should remember that the P and
AP resistances could differ depending on the direction of the
reference layer relative to the magnetization of the remaining
hard layer stack [19].
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APPENDIX

Our aim is to show how the tridiagonal system (52) for
electrons entering from the left lead in the spin-up state is
obtained in detail. Specifically, this means to determine the
concrete form of the open-boundary conditions.

If the problem region was not restricted to a region close
to the actual device, the discrete form of the Schrödinger
equation would read

tm|ψn−1〉 + (εI2 − hm)|ψn〉 + tm|ψn+1〉 = 0, m ∈ {L, R}
(A1)

for every node n located within the homogeneous semi-infinite
nonmagnetic wires. Within these wires, Eqs. (39)–(42) are
the components of solutions to the Schrödinger equation. We
are not going to reiterate how the right boundary condition
is calculated, since this is fully covered in the main text.
However, for the spin-up component at the left boundary, we
have to eliminate the coefficient of the reflected part r, which
we will detail now.

By plugging the ansatz (39) into the equation for node
n = −1 we can calculate the reflected amplitude:

tLψ
↑
−2 + (ε − hL)ψ↑

−1 + tLψ
↑
0 = 0, (A2)

tLAL[e−ikLa + reikLa] + (ε − hL)AL[1 + r] + tLψ
↑
0 = 0,

(A3)

tLALe−ikLa + rAL[tLeikLa + (ε − hL)]

+ (ε − hL)AL + tLψ
↑
0 = 0, (A4)

rAL[tLeikLa + (ε − hL)] = −tLALe−ikLa − (ε − hL)AL − tLψ
↑
0 ,

(A5)

rAL = −tLALe−ikLa − (ε − hL)AL − tLψ
↑
0

tLeikLa + (ε − hL)
. (A6)
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This reflected amplitude can be rewritten as

rA = −ALei2kLa + ψ0 eikLa, (A7)

utilizing the tight-binding dispersion (48). We look now at the
next equation, centered on the left boundary node n = 0, and
plug in the above coefficient:

tLψ
↑
−1 + (ε − hL)ψ↑

0 + tLψ
↑
1 = 0, (A8)

tLAL[1 + r] + (ε − hL)ψ↑
0 + tLψ

↑
1 = 0, (A9)

tL[AL − ALei2kLa + ψ
↑
0 eikLa] + (ε − hL)ψ↑

0 + tLψ
↑
1 = 0,

(A10)

tLAL(1 − ei2kLa) + tLψ
↑
0 eikLa + (ε − hL)ψ↑

0 + tLψ
↑
1 = 0.

(A11)

By identifying −tLAL(1 − ei2kLa) as a source term, we obtain
the set of equations (52) for electrons entering from the left.
The same can be done for electrons entering the problem
region from the right lead.
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