PHYSICAL REVIEW B 108, 014426 (2023)

Exact quantum ground state of a two-dimensional quasicrystalline antiferromagnet
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We present the exact dimer ground state of a quantum antiferromagnet defined on a quasicrystal constructed
from the bronze-mean hexagonal quasicrystal. A coupling isotropy on the first- and second-neighbor bonds
is sufficient to stabilize a product state of singlets on the third-neighbor bonds. We also provide a systematic
approach for constructing additional crystals, quasicrystals, and amorphous structures that can sustain an exact

dimer ground state.
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I. INTRODUCTION

The quantum antiferromagnets on two-dimensional frus-
trated lattices have been a focus of condensed matter research
for decades [1,2]. Owing to the noncommutativity of quan-
tum spin operators and the frustrated magnetic interactions,
it is often impossible to find an analytic solution to these
systems’ ground states. So, while dealing with these sys-
tems, one usually analyzes the possible ground states allowed
by the point- and space-group symmetries of the underlying
lattices to gain qualitative understandings or to perform ad-
vanced numerical investigations [3—5]; in all these analyses,
the lattice translations play a pivotal role. With the appearance
and increasing number of quasicrystalline materials [6—10],
however, it became apparent that the spin systems may not
always be periodic [11], leading the frustrated quasicrystals
to frequently realize exotic ground states, such as spin glasses
[8,12—14], which are hard to decipher due to the unavailability
of lattice periodicity.

From our experience with crystalline quantum magnets,
we may infer that the leading-edge knowledge for under-
standing complex spin systems is often provided by exactly
solvable models. Shastry and Sutherland proposed the first
such exactly solvable model in two dimensions (2D) [15]. The
Shastry-Sutherland model (SSM), defined on a lattice of uni-
form tiling, was found to exhibit an exact dimer singlet ground
state. Though such exact dimer ground states are limited only
to two 2D lattices with uniform tiling [16] [the maple-leaf
model (MLM) is the other one], they have widely served as
crystallization seeds for several theoretical and experimental
advancements. Despite the importance, such exact solutions
in quasicrystals are very limited [17,18], although there have
been an extensive number of works on quasicrystalline spin
systems [19-24], due to the complexity of the aperiodicity.

In this paper, we propose a model defined on a
two-dimensional quasicrystal that admits an exact dimer
ground state. We first construct the quasicrystal from the
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bronze-mean hexagonal quasicrystal (BMHQ) [25], via site
and bond depletion. Next, we include a subset of third-
neighbor couplings. By demonstrating that this model has an
exact dimer ground state, a product state of dimer singlets,
we then assess its stability. In the end, we introduce a generic
method, that equally applies to crystals, quasicrystals, and
amorphous systems, which creates further models bearing
exact dimer ground states.

II. MODEL

To construct our model, which hosts an exact dimer state,
we start with the BMHQ [25] (see Fig. 1), which is closely
related to the celebrated Penrose tiling [26] and the Ammann-
Beenker tiling [27], in a sense, as their inflation ratios are
all metallic ratios—for the BMHQ it is the bronze ratio,
and for the other two, it is the golden and silver ratio, re-
spectively. The BMHQ consists of three different tiles: small
equilateral triangles (edge length s), big equilateral triangles
(edge length /), and s x [ rectangles. A sixfold-symmetric
irregular dodecagon constructed of six copies of each tile is
the elementary motif of BMHQ. The discussion in Ref. [16]
makes it apparent that the BMHQ is incapable of support-
ing an exact dimer eigenstate if we place a spin on every
vertex (site) and couple them pairwise via Heisenberg ex-
change interactions (bonds). To host an exact dimer state,
the system must satisfy a necessary, but not sufficient, con-
dition of having an odd coordination number, which is not
the case for BMHQ. Therefore, we perform the following.
We deplete all sites shared by six adjacent large triangles,
and all bonds shared by two triangles. As a result, we get a
different quasicrystal (depicted in Fig. 1), consisting of the
six tiles: hexagons (edge length /), small rhombi (edge length
s), large thombi (edge length /), small triangles (edge length
s), large triangles (edge length s), and s x [ rectangles. Lastly,
we add half of the third-neighbor couplings, i.e., one diagonal
of each rectangle, such that every site is only part of one
diagonal interaction. Note that there are two sets of diago-
nal bonds one can choose from; both are adequate for our

purpose.
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FIG. 1. The construction of model-X from bronze-mean hexagonal quasicrystal: First, we deplete all vertices that are shared by six big
triangles to generate the hexagonal tiles. Next, we deplete the connections shared by two triangles, constructing the two rhombus tiles. On
the resulting tiling, we place a spin on each vertex, and the connection between the vertices, which now connects a pair of spins, acts as the
bonds. The bonds are of two different lengths, namely s and /, shown by dashed orange and dotted blue lines. We assume an equal Heisenberg
coupling of strength J' on both these bonds. We further add a subset of the third-neighbor interactions, shown by thick green lines, with an
exchange interaction of strength of J. We call the resulting spin model “model-X.” The singlets (light purple ellipses) reside on J bonds. As
the J’ couplings do not contribute to the energy, this product state of singlets is an eigenstate of (2).

We now define a Heisenberg spin Hamiltonian on this
quasicrystal as

H:JYZ§k'§l+JIZ§k'§m+JdZ§I'§m- (1)
(k) ((km)) (Im)

Here, S; denotes the su(2) spin-S operator at site Z, and (k/),
((km)), and (Im) run over orange dashed, blue dotted, and
thick green bonds, respectively (Fig. 1). Here, we only discuss
the special case J; = J and J; = J; = J' of (1),

HX=J/Z§k'§l+-]/2§k'§m+-12§l'§m (2)
(k) ((km)) (Im)

(henceforth referred to as model-X), which can admit an exact
dimer ground state.

III. QUANTUM GROUND STATE

The exact dimer ground state of model-X can be obtained
by following the same procedure as in Refs. [15,16]. First, we
recast (2) into a sum over the interacting spins on the right-
angled triangles as

7&—Z<a+¥mﬂ§ﬁ ....... """" +JW>L

For this, we have distributed the interactions JS’I . §m on the
thick green bonds in Fig. 1 equally between the two triangles
that share this bond. Thus, these triangles now have three
different colored bond interactions, and the Hamiltonian for
each, in general, reads as

5 o 5 o J. o
ha =J/Sk-Sl+J/Sk-Sm+§SI'Sm. 4

The triangular decomposition of (2), in a sense, sculpts the
model into a frustration-free form [15,28-30], as the ground

state minimizes the energy of each /.. Note that if there are
N spins in our model, there will be N such right-angled trian-
gles, and N/2 thick green bonds.

When J/2 > J', the ground state of h, is a spin-singlet
forming on the green bond, which we denote by |[Im]).
Now, the parity of the singlet causes the first two terms in
(4) to cancel each other’s contribution to the energy of a
triangle, i.e.,

'S - S+ 'Sk - S)llim]) = 0.

Therefore, we can construct a product state of |[/m]) which
covers the entire system as

) = [ [Itm) ()

(Im)

(see Fig. 1 where we overlay |¢¥) on model-X). Again, due
to the parity of the |[Im])’s, the first two terms of (2) do not
contribute to the energy of the full system or renormalize (5),
thus, making it an exact eigenstate of model-X with an energy
density, which is independent of J', given by

SIS +1
S8+,
2

If the ground state energy of (4) is ex, then (6) sets an upper
bound for the ground state energy of the entire system, i.e.,
E,/N = ep, the equality of which holds when J is greater
than a lower bound J,, and |v) is the ground state. For spin-
1/2, J, can be easily computed to be 2J’, and can likewise
be obtained for other spins [31]. Note that the variational
principle-based analysis that we have performed thus far, does
not prevent |Y) from being the ground state for J < J,, only
it cannot be shown analytically. The critical J., such that for
Jp > J > J. the exact dimer state is the ground state of the sys-
tem, can only be obtained numerically [16,32—-34], which we
attempt next.

E/N =— (6)
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TABLE I. A comparison of the stability of the exact dimer
ground state in different models. For J > J., the exact dimer states
of the corresponding models become their ground state. For MLM,
Ref. [34] finds J,./J" = 1.45.

J. ) Refs.
MLM 1.35 Ref. [16]
Model-Y 1.45(1) This work
SSM 1.48 Refs. [32,33]
Model-X 1.49(1) This work

IV. STABILITY OF THE EXACT DIMER PHASE

Due to the aperiodicity and frustration, model-X is im-
pregnable by most numerical techniques in their status quo.
Therefore, we resort to the robust density matrix renormal-
ization group (DMRG) approach to obtain an estimate of
J./J' [35]. We perform our DMRG calculations on a 144-site
spin-1/2 cluster (refer to Appendix A for more details) using
the ITENSOR library [36]. The critical J./J’ found from our
calculations is shown in Table I. The phase transitions out of
the dimer phase in both SSM and MLM have been found to
be first order in nature [32-34]. One may wonder if the ape-
riodicity for model-X can change this nature or if the system
can form domains of exact dimer and nondimer states. This
seems implausible because when a local dimer state switches
to a nondimer state, the system’s structure causes the dimers
nearby to experience local nonuniform effective fields that
force them to also become nondimer states. As a result, a chain
reaction spreads across the whole system, thereby destroying
the product singlet state as a whole. Thus, we do not expect a
second-order phase transition out of the exact dimer phase in
model-X, which is confirmed by our DMRG calculations.

To gain further insights, we also compare our current dimer
phase’s stability with the same in SSM and MLM in Table I,
with intra- and interdimer coupling being J and J’, respec-
tively. We find model-X to have a comparatively less stable
exact dimer phase. To make a further comparison, we intro-
duce a lattice made out of the same tiles (except the triangles
of edge s) as model-X, shown in Fig. 2 (henceforth called
model-Y). Model-Y also admits a product singlet ground state
on the J dimers. Here, we again take a 144-site spin cluster
and perform DMRG calculations to study the stability of its
exact dimer phase. The result is shown in Table I. A compari-
son of the number of triangular and quadrangular tiles makes
it apparent that magnetic frustrations in model-X and model-Y
are more than SSM but less than MLM. As the frustration im-
pacts the exact dimer phase’s stability [16], one can anticipate
that J. for model-X and model-Y both will fall somewhere
between the same for SSM and MLM. Model-Y exhibits this,
but model-X does not. The most likely explanation could be
that the DMRG results on a finite section of quasicrystal,
where the local structure might severely affect the exact dimer
state, are very different from the results at the thermodynamic
limit, where such local effects are averaged out. However, we
cannot exclude the possibility that the system’s aperiodicity
might play a role in destabilizing the exact dimer state, even
at the thermodynamic limit. A thorough stability analysis of
the exact dimer phase is beyond the scope of this paper; via

Model-Y
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FIG. 2. Model-Y, defined on a lattice, is made out of the same
tiles as model-X. In model-Y, the dashed orange bonds have an
exchange interaction of strength J’, and the green bonds bear an
exchange interaction of strength J. Similar to model-X, model-Y can
also admit an exact singlet eigenstate with singlets on the J bonds,
which becomes a ground state of the system for J 2 1.45J.

1

our DMRG calculations, we only demonstrate that the exact
dimer state on this quasicrystal can be stable even for J < 2J'.

Though we do not investigate the models in detail beyond
their exact dimer ground state, we can anticipate the possibil-
ity that model-X and model-Y can have other novel phases in
the high frustration regime J < J, (similar to SSM and MLM
[32,34,37—-40]). This makes both our models worthy of further
investigations, e.g., the nature of these additional phases and
the phase transitions which might feature the exotic decon-
fined criticality [37,39].

V. FURTHER POSSIBILITIES

We have introduced model-X, defined on one quasicrystal,
which admits an exact dimer ground state. However, the ques-
tion remains: Are there other quasicrystals with exact dimer
ground states? The answer is yes, and we are now going to
outline how to construct a specific class of such systems, i.e.,
with a coordination number five. It is also possible to construct
such systems with any odd (homogeneous and mixed) coordi-
nation numbers. Since the prescription we present here applies
to graphs, it is suitable for all types of systems—crystalline,
quasicrystalline, and amorphous. We begin with a planar
graph where each vertex is connected to four other vertices
(see Fig. 3). In the next step, the connections are all decorated
by adding a new vertex (the solid circles in Fig. 3). These
new vertices will be our actual sites carrying the spins. After
that, one applies a generalized version of the star-triangle-type
transformation (we refer to it as the x-[J transformation) to
decimate the original vertices and form connections between
the new vertices. In our spin model these new connections act
as interdimer bonds. At this point, we have produced a graph
where each vertex is part of two generalized quadrangles. In
our final step, we connect one diagonal of each quadrangle,
which serves as our dimer bond, while ensuring that any two
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FIG. 3. A general scheme for obtaining a model with an exact dimer ground state from a graph where each vertex has four connections.
First, we decorate the connections with new vertices (marked by solid circles), which is followed by a generalized star-triangle-type
transformation to decimate all the old vertices. From there, one can generate two possible graphs by connecting a subset of the diagonals
of the newly generated quadrangles (keeping in mind that no site can be part of two diagonals), both of which can host an exact dimer state.

dimers do not share a site. Thus, we construct a system that
can host an exact dimer ground state, which is the product
state of singlets on the dimer bonds, and the proof is similar
to SSM [15], MLM [16], and model-X. In the simplest case,
one assigns equal strength to all interdimer couplings. All the
intradimer couplings also have equal strength but are different
from the interdimer couplings. However, more complex mod-
els can also be defined on such a graph that allows exact dimer
states. Note that the last step can result in two independent
graphs (see the last panel of Fig. 3), both ideal for our purpose.

Taking the square and the kagome lattice as examples of
four coordinated lattices, and then following our procedure,
one obtains the SSM and the MLM, respectively. To con-
struct such quasicrystals and amorphous systems, however,
the initial difficulty is to acquire a system with coordination
number 4 on which our prescription can be implemented.
This is simple for amorphous systems. One can draw random
straight lines on a plane and, in general, this would result in a
system that has a coordination number of 4 when one consid-
ers the intersections as vertices and the line segments between
them as edges. For quasicrystals, one can start with an existing
quasicrystal made up of quadrangles, e.g., the Penrose rhomb
tiling [26,27], place a vertex in the middle of each tile (the
dual lattice [41]), and then connect all pairs of vertices if their
corresponding tiles share an edge, and thus one can obtain a
four-coordinated quasicrystal (refer to Appendix C for more
details).

VI. CONCLUSION AND OUTLOOK

We have introduced model-X, which is defined on a
quasicrystal made out of hexagons, rhombi, triangles, and
rectangles, and studied its exact dimer ground state. We also
created a crystal using the same tiles and did similar studies
on that as well. Finally, we laid out a general scheme for
constructing crystals, quasicrystals, and amorphous systems,
that can admit an exact dimer ground state.

Model-X opens up several questions which require fur-
ther investigations. First, one needs to understand how the
aperiodicity influences the stability of the dimer state (5).

Second would be the study of the nature of the other phases,
and the possible phase transitions in model-X, also with the
bond anisotropy J; 7% J;. The third is the investigation of
model-X in a finite magnetic field. The lattice versions of
exact dimer models, e.g., the SSM and the MLM, show
a series of spin-density-wave and multitriplet bound-state
crystal-based magnetization plateaux [42—47], behind all of
which the lattice periodicity plays a pivotal role. One can
still speculate the formation of two and three triplet bound
states in model-X. However, how the aperiodicity of the model
would affect the magnetization process in this system is an
extremely tempting question. Lastly, a material realization of
model-X will be highly sought out, in general, similar to the
experimental realizations of SSM, which have played a central
role in numerous theoretical and experimental developments.
Additionally, our scheme for creating systems with exact
dimer ground states will significantly advance the study of
amorphous spin systems, a subject in which the exact solution
has just lately begun to emerge [48].
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APPENDIX A: DETAILS OF DMRG CALCULATIONS

Our DMRG calculations which are performed using the
ITENSOR library [36]. For both model-X and model-Y we
choose a 144-site cluster [see model-X in Fig. 4(a) and
model-Y in Fig. 4(b)] with an open boundary and perform 24
sweeps with a maximum bond dimension of 1024. The results,
i.e., the ground state energy and the spin-spin correlations on
a few selected bonds, are shown in Fig. 5, which shows a clear
first-order transition out of the exact dimer phase. It should be
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FIG. 4. (a) The 144-site model-X cluster used to perform the
DMRG calculations mentioned in the main text. (b) The 144-site
model-Y cluster used to perform the DMRG calculations mentioned
in the main text.

(b)
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da

noted that the exact dimer state is only short-range entangled,
and while doing DMRG, we have carefully indexed our sites
such that no dimer becomes long ranged due to the effective
mapping to a 1D problem. However, when the system exits
the exact dimer phase, the long-range entanglements would
start to develop. As DMRG suffers from a bias towards less
entangled states, it can slightly overestimated the stability of
the exact dimer state.

APPENDIX B: EXAMPLE OF AN AMORPHOUS SYSTEM
WITH EXACT GROUND STATE

Figure 6(a) shows a amorphous system with a exact dimer
ground state which is a product of singlets on the thick green
bonds. This is created by using the procedure explained in the
main text.

APPENDIX C: EXAMPLE OF A FOUR-COORDINATED
QUASICRYSTAL

In the main text we have mentioned that a four-coordinated
quasicrystal can be generated from an existing quasicrys-
tal made up of quadrangles, e.g., the Penrose rhomb tiling
[26,27]—one places a vertex in the middle of each quad-
rangular tile, and then connects all pairs of vertices if their
corresponding tiles share an edge. Figure 6(b) shows the
example of such a quasicrystal with coordination number 4
generated from the Penrose rhomb tiling. The method ex-
plained in the main text now can de directly used on the
system.

0.7 0.8
J )T

FIG. 5. The DMRG results for model-X: (a) the ground state energy per site and (b) the spin-spin correlations on selected bonds. (c) and
(d) are respectively the same for model-Y. The spin systems used for our calculations are depicted in Figs. 4(a) and 4(b). In both calculations

we have used a open boundary condition for a fair comparison.
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FIG. 6. (a) An example of a amorphous system with an exact ground state constructed via the prescription put forward in the main text. The
dashed lines are placed randomly on the plane to create an amorphous system with coordination number 4. (b) An example of a four-coordinated
quasicrystal (foreground) generated from Penrose rhomb tiling (background). The method explained in the main text now can be directly used

on this system to produce a model with an exact dimer eigenstate.
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