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Recent advances in material synthesis made it possible to realize two-dimensional monolayers of candidate
materials for a quantum spin liquid (QSL) such as α-RuCl3, 1T-TaSe2, and 1T-TaS2. In this work, we propose
an experimental setup that exploits nonlocal electrical probes to gain information on the transport properties of
a gapless QSL. The proposed setup is a spinon-mediated drag experiment: a current is injected in one of the
two layers and a voltage is measured on the second metallic film. The overall momentum transfer mechanism
is a two-step process mediated by Kondo interaction between the local moments in the quantum spin liquid and
the spins of the electrons. In the limit of negligible momentum relaxed within the QSL layer, we calculate the
drag relaxation rate for Kitaev, Z2, and U(1) QSLs using Aslamazov-Larkin diagrams. We find, however, that
the case of dominant momentum relaxation within the QSL layer is far more relevant and thus develop a model
based on the Boltzmann kinetic equation to describe the proposed setup. Within this framework we calculate
the low-temperature scaling behavior of the drag resistivity, both for U(1) and Z2 QSLs with Fermi surfaces.
In some regimes we find a crossover in the temperature scaling that is different between the Z2 and U(1) QSL
because of the non-Fermi-liquid nature of the latter, which reflects itself both in altered kinematic constraints
for the momentum transfer as well as in the qualitative aspects of momentum relaxation within the QSL layer.
Our findings suggest that parameters of the system can be tuned to make the spinon-mediated drag a significant
fraction of the total transresistance.
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I. INTRODUCTION

Quantum spin liquids (QSLs) [1–3] have enjoyed increased
interest in the past years. Theoretically, one major driv-
ing force is the fascination with topological quantum states
of matter [4] with strong entanglement, which are math-
ematically equivalent to certain topological quantum error
correction codes proposed in quantum information theory
[5,6]. What are equally important are the advances in materi-
als science and synthesis. Among the QSL candidate materials
which were most actively discussed in recent years, particular
attention is devoted to exfoliable materials such as the Ki-
taev candidate [7–10] α-RuCl3 as well as the transition-metal
dichalcogenides [11–14] 1T-TaS2 and 1T-TaSe2.

The study of monolayers and few layers of these van
der Waals QSL candidate materials benefits from a vari-
ety of advantages: first, in the monolayer limit, interlayer
valence bonds cannot form, thereby precluding the stabiliza-
tion of topologically trivial interlayer valence bond solids;
second, the principle of van der Waals LEGO [15] allows
to combine the functionality of two-dimensional (2D) QSL
sheets with superconductors, semiconductors, and metals in
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a single device and, as an example, α-RuCl3 on graphene
devices was reported in the literature [16]. Moreover, the
stacking of van der Waals materials also allows to artificially
create 2D QSL materials, for example, in twisted transition-
metal-dichalcogenide heterostructures [17,18]. Third, the
functionality of van der Waals heterostructures also allows
for unprecedented experimental techniques to probe QSL
behavior. These include tunneling spectroscopy, as studied
theoretically [19–25] and experimentally [26,27] in different
setups. Moreover, anyonic interference experiments to detect
the topological order in the QSL state were proposed by in-
terfacing them with quantum Hall and superconducting states
[28,29]. It appears plausible that this wide variety of advan-
tages may thus counteract the main drawback of thin films,
namely, that standard bulk probes, such as neutron scattering
[11,30,31] experiments, are inefficient in the monolayer or
few-layer limit.

Motivated by the need for probing 2D QSL materials, in
this paper we propose a spinon-induced drag experiment in
which instead of a dielectric separating two metallic films, as
in a Coulomb drag [32] experiment, we interpose a QSL mate-
rial to mediate the interaction [see Fig. 1(a)]. In the limit when
no momentum is deposited in the QSL layer, we calculate the
temperature dependence of the nonlocal drag resistivity using
standard Aslamazov-Larkin diagrams for three examples of
gapless QSL states, including Kitaev QSLs and Z2 as well
as U(1) QSLs with a spinon Fermi surface. Additionally, in
the presence of a spinon Fermi surface, we also employ a
Boltzmann-like framework, in which momentum relaxation
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FIG. 1. (a) Experimental setup under consideration: a QSL sheet
is interposed between two metallic layers, a current is applied in
the upper layer, and a voltage is measured in the lower layer.
(b) Schematic representation of momentum transfer between the
QSL layers and the metallic leads: momentum transfer is a two-step
process. (c) Summary of main results [see Eqs. (17a), (18a), (32a),
(33a), (35), and (37) for details and discussion], i.e., the temperature
dependence of drag in different regimes of experimentally tunable
parameters, temperature T , and density n in the metallic leads de-
picted for the three different types of QSLs under consideration. The
area shaded in purple determines the regime T > EF which is beyond
the range of applicability of our model.

inside the QSL layer is accounted for. Our study is thus appli-
cable to the quantum states proposed for α-RuCl3 (Kitaev-like
Z2 QSL with Dirac nodes) and the 1T-TaS2 family (for which
there are experimental signatures of U(1) QSL with a spinon
Fermi surface [26,27]).

The standard mechanism of momentum transfer between
the layers mediated by Coulomb interaction results in a tem-
perature dependent drag rate (defined in Sec. II A) [32]: τ−1

D =
C(T 2/EF ) min(1, Td/T ), where Td = vF /d and EF , vF , and
d are the Fermi energy, Fermi velocity, and distance be-
tween the conducting layers (here and in what follows and
we set h̄ = 1 = kB), and T is the temperature at which the
experiment is performed. The dimensionless interaction pa-
rameter C ∼ r−2

s (kF d )−4 (expressed in terms of rs ∼ e2/vF εr

and Fermi wave vector kF ) controls the magnitude of the
effect. It is sensitive to the external screening and dielectric
environment encoded in εr . Drag due to exchange of bosons
other than photons was considered in the literature before, in-
cluding phonon-mediated drag [33,34]. The most extensively
studied example of drag resistance in the case of non-Fermi
liquids (nFLs) corresponds to the mutual friction between
two copies of quantum Hall liquids at half filling. In this

case Chern-Simons field theories of fermions coupled to the
gauge field and also complementary hydrodynamic ideas find
their powerful applications [35–38]. Spinon contributions to
the Coulomb drag of nFLs [39,40] and within moiré bilayer
systems [41] were also considered, as well as a variety of
(nonlocal) transport probes of spinons [42–47]. However, to
the best of our knowledge, a spinon-mediated drag experiment
as a probe of QSL physics has not been proposed before.

To conclude this Introduction, we recall that in contrast to
Z2 QSLs, the gauge field in U(1) QSLs is always strongly
coupled to the spinons and large-N methods are commonly
used to access this nontrivial physics [48–52]. In the case of a
spinon Fermi surface, a nFL phase arises which displays sim-
ilar behavior as electrons at a nematic quantum critical point
[53–57], in particular a single-particle lifetime τ ∼ ε−2/3 and
a momentum relaxation time τ2 ∼ T −4/3, where ε is the en-
ergy of the excitation and T the temperature. At the same time,
the nontrivial power laws induced by gauge field fluctuations
cancel in the polarization operator (i.e., the structure factor) in
the low-energy long-wavelength limit [48,49,51,52,55] such
that we find little difference between the Z2 and U(1) QSL
in the regime when no momentum is deposited into the QSL
layer.

In the opposite limit, where momentum is lost in the
QSL layer, Z2 and U(1) QSLs differ. In order to employ
a Boltzmann-like approach to the drag resistivity across
the U(1) QSL we follow a technique originally due to
Prange and Kadanoff [58–63] (see also Appendix B 1), noting
that the retarded spinon self-energy �R(k, ε) is indepen-
dent of the modulus of the momentum k. Then the spectral
weight A(k, ε) becomes a peaked function of |k| and can
be used to define a pseudodistribution function f (k̂, ε).
Within the Keldysh technique, we derive the coupling of the
Boltzmann-like equation describing the insulating QSL to the
conventional Boltzmann equations describing the conducting
layers.

This paper is organized as follows. In Sec. II we describe
the experimental setup of a spinon-induced drag experi-
ment, offer a phenomenological perspective, and introduce the
model for microscopic calculations. In Sec. III we use known
results from Aslamazov-Larkin diagrammatics to calculate
the drag relaxation rate for the Kitaev QSL, and for Z2 as
well as U(1) QSLs with Fermi surface. Section IV is devoted
to the limit of momentum being relaxed inside the QSL and
we present the derivation and solution of the system of cou-
pled Boltzmann equations. We conclude with a discussion
and outlook and relegate important technical details to two
Appendixes.

II. MODEL AND EXPERIMENTAL SETUP

A. Spinon-mediated drag

The proposed setup is designed to measure spinon-
mediated drag between two conducting two-dimensional
electron systems. A layer of a QSL material is interposed
between two metallic layers and a current j3 is passed through
the active metallic layer (layer 3). The spins of the free elec-
trons Kondo-couple with the local moments constituting the
QSL material (layer 2), which then couple to the spins of the
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free electrons in the second metallic layer, also referred to
as “passive” layer 1, thus inducing an electric field E1. The
proportionality constant between the field and current is the
definition of drag conductivity,

j3 = σDE1. (1)

Inverting the conductivity matrix,

σ̂ =
(

σ1 σD

σD σ3

)
, (2)

one recovers the definition for the drag rate [32]:

1

τD
� n3e2

m1

σD

σ1σ3
. (3)

Here ni is the carrier density in layer i = 1, 3, m1 is the
electron’s effective mass in layer 1, e is the electric charge,
and σ1,3 the conductivities of the metallic layers. This formula
remains valid no matter the mechanism originating the drag
current.

To gain insight into the problem, we briefly reiterate a sim-
ple Drude-like treatment based on the coupled equations of
motion

v̇1 = −v1

τ1
− v1 − v2

τT
− e

m1
E1, (4)

v̇2 = −v2

τ2
− v2 − v1

τT
− v2 − v3

τT
, (5)

v̇3 = −v3

τ3
− v3 − v2

τT
. (6)

Here, the momentum relaxation rates within each layer are
denoted τ1,2,3 and the rate of momentum transfer is τT . For
simplicity we assume parabolic bands in all layers. Here, and
in most of the main text, we consider a symmetric setup
with equivalent layers 1,3, while details on nonsymmetric
setups are relegated to the Appendixes. Solving the system
of Eqs. (6) we find the drag rate in the limit τ1 = τ3 � τT to
be

1

τD
= τ2

τT (τT + 2τ2)
. (7)

While this formula is phenomenologically valuable in the
following discussion of limits, the remainder of the paper is
devoted to the microscopic calculation of 1/τD. The com-
petition between the interlayer scattering and the intralayer
scattering gives rise to two regimes:

(i) For τT � τ2 the momentum is quasi-instantaneously
transferred from metallic layers to the QSL and from the latter
to the second metal. The final result for 1/τD is independent
of 1/τ2; since intralayer relaxation is unimportant there is
no need for the description that makes use of the Boltzmann
equation approach in the QSL layer. The microscopic theory
for this regime is presented in Sec. III.

(ii) For τT � τ2, the momentum transferred to the spinons
relaxes before being transferred to the second lead. To ac-
count for these relaxation effects in the presence of a spinon
Fermi surface, we employ a quantum Boltzmann equation (see
Sec. IV).

We highlight that regimes (i) and (ii) correspond to the
limits τD � τ2 and τD � τ2, respectively.

B. Models of QSLs

In this section, we briefly summarize the models for the
QSL state which we use. First, we consider QSL states with
spinon Fermi surface.

As mentioned above, a QSL comes in with the emergence
of gauge fields. Theoretically the most prominent example
of a QSL with spinon Fermi surface is a U(1) QSL, where
the gauge degrees of freedom, described by the fields aμ =
(a0, a), have their own Maxwellian dynamics and couple to
the spin degrees of freedom

Ŝa = ψ†
σ σ a

σσ ′ψσ ′ , (8)

where ψσ are fermionic spinons, the σ as describe the spin, and
we use Einstein summation convention. As we will shortly ex-
plain, we consider σ a to be SU(N) generators. The interacting
action for such a system is [60,64]

S f =
N∑

σ=1

∫
x
ψ̄σ (x)

[
i∂t + a0√

N
+ 1

2m f

(
∇ + i

a√
N

)2
]
ψσ (x).

(9)
Given the absence of an expansion control parameter as

α = 1
137 in QED, we use a large-N expansion to deal with

Eq. (9). Strictly speaking, a large-N expansion yields reli-
able results only when taken along with a small-ε expansion
[51,52], where ε appears in the free action of the gauge boson

SMW =
∫

dk dω
|k|ε+1

e2
|a(k, ω)|2, (10)

with the limits { 1
N , ε} → 0 in a way that the product Nε is

constant. Despite this, following a common wisdom [65] that
the dynamics of the spinons is not affected by the double
expansion, we use the large-N limit directly for ε = 0.

As mentioned in the Introduction, the U(1) QSL with
Fermi surface forms a nFL. It is important to point out that the
polarization operator and thus the spin susceptibility for the
U(1) QSL for small q and ω retains its low-energy behavior
due to mutual cancellation between vertex and self-energy
corrections [48,49,51,52,55].

We compare the nFL of the U(1) QSL with a Fermi surface
to the case of Z2 QSLs with a Fermi surface. In this case
gauge fields are gapped and can be disregarded at lowest
energies. The spinons form a Fermi liquid, and for simplicity
of comparison to the U(1) case, we stick to the case with
parabolic spinon dispersion and a spin representation as in
Eq. (8). While the case of Z2 QSLs with a Fermi surface is
discussed much less in the literature, it does appear in certain
exactly soluble models [66,67].

Finally, we also calculate the drag relaxation time in a Ki-
taev spin liquid with no Fermi surface. Despite the low-energy
Majorana spinon excitations, the low-energy spin response is
gapped [68] in the integrable Kitaev limit. However, taking
into account integrability breaking Heisenberg and symmetric
superexchange interactions the retarded spin-spin correlation
function is gapless and given by [69]

CR(q, ω) = CK

√
(vF2q)2 − (ω + i0+)2, (11)

where CK is a constant of dimension 1/(energy × length)2.
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C. Microscopic QSL-metal coupling

The interlayer momentum and energy transfer is micro-
scopically encoded in the Kondo coupling between the local
moments of the quantum magnet and the spins of the free
electrons,

H = JK

2N

∑
x

Ŝa(x) · (c†
σ3

(x)σ a
σ3,σ4

cσ4 (x)
)
, (12)

where c and c† are the annihilation and creation operators
for the electrons in the metal and JK is the Kondo coupling
constant.

In the case of QSLs with a Fermi surface the effective
coupling of spinons and electrons for the continuum model
is

H = JK

2N

∫
x

(
ψ†

σ1
(x)σ a

σ1,σ2
ψσ2 (x)

)(
c†
σ3

(x)σ a
σ3,σ4

cσ4 (x)
)
. (13)

Here, JK ∼ JK a2, with a being the lattice spacing, and the
subscripts σi are spin indices and we use the large-N expan-
sion for our calculations, so σi = 1, . . . , N and the generators
of SU(N) have the property tr[σ aσ b] = 2δab.

D. Momentum relaxation in QSLs with a Fermi surface

Before continuing with the microscopic calculation of
the drag current, we summarize below the expected low-
temperature behavior of the momentum relaxation rate 1/τ2

in QSLs with spinon Fermi surface.
For the Z2 QSL with a Fermi surface, for small ω and q the

situation is similar to that of a Fermi liquid [70]. In a clean,
interacting Fermi liquid on a lattice, umklapp scattering is
the leading momentum relaxation channel. In the presence of
impurities, the low-temperature relaxation time is temperature
independent; therefore,

1

τ2
∝

{
T 0, impurity-dominated scattering
T 2, umklapp-dominated scattering.

(14)

In contrast, for the nFL U(1) QSL with a Fermi surface,
the spinons interact with gapless gauge bosons. If the gauge
bosons are assumed to form a thermal bath [60], which can
serve as a sink of energy and momentum, then the relaxation
happens via the momentum transferred from the spinons to the
gauge bosons. Clearly, this requires that the gauge bosons are
an open quantum system, which thermalizes faster than the
rate of returning the energy and momentum to the spinons. If
the overall system of spinons and gauge bosons is approxi-
mately closed, and thus momentum conserving, spinon-gauge
boson interactions have to be supplemented by umklapp and
impurity scattering. It was shown [65] that if umklapp scat-
tering is dominant, and there is weak impurity scattering,
the momentum relaxation rate is qualitatively different with
respect to the case of scattering with thermal gauge bosons.
We summarize the two different situations described above,
and additionally quote the result for impurity scattering:

1

τ2
∝

⎧⎨
⎩

T 0, impurity scattering
T 4/3, gauge boson scattering
T, umklapp scattering.

(15)

FIG. 2. Temperature dependence of the relaxation rate in the
regimes of (a) fast spinons and (b) slow spinons in a Z2 Kitaev
QSL. In the case of fast spinons there is no crossover temperature
below the Fermi temperature because in (b) the line ω = 2vF2q never
crosses the shaded area of particle-hole continuum. In contrast, for
slow spinons, such a crossover takes place. The gray shaded area in-
dicates the domain where real processes contribute to the momentum
exchange.

III. THEORY WITHOUT MOMENTUM RELAXATION
IN THE QSL LAYER

In the case of τ−1
D � τ−1

2 with no momentum relaxation
within the QSL layer the drag rate is calculated with the
formula [32,71]

1

τD
= 1

p2
F1m1

∫ ∞

0

dω/T

sinh2(ω/2T )

×
∫ ∞

0
dq q3|C(q, ω)|2Im[�1(q, ω)]2. (16)

For simplicity, we concentrate on the case of metallic layers
with equal scattering rate, mass, and Fermi energy, and polar-
ization operator �1(q, ω) = �3(q, ω).

For the standard Coulomb drag, C(q, ω) can be approx-
imated by the electrostatic potential between a point charge
on the active layer and a point charge of the passive layer. In
the present case it is proportional to the spin-spin correlation
function with additional factor J2

K/N .
The support for the integration in Eq. (16) is given by

domain of the imaginary parts of the polarization operator
of metallic layers. As we explain in more details below
(cf. Figs. 2, 4, and 5), there are combinations of the pa-
rameters {vFi, pFi} for i = 1, 2, 3, and of the soft frequency
cutoff, introduced by the temperature T through the factor
1/ sinh2 (ω/2T ) in Eq. (16), that create regimes in which

014425-4



DRAG RESISTANCE MEDIATED BY QUANTUM SPIN … PHYSICAL REVIEW B 108, 014425 (2023)

temperature scaling of the drag rate is qualitatively different.
These regimes and the corresponding temperature scaling are
very different in the cases of spinon-induced and Coulomb
drag. In the next paragraphs we calculate the drag relaxation
rate separately for a Z2 Kitaev QSL and both for a Z2 and a
U(1) QSL together.

A. Z2 QSL with Dirac excitations (Kitaev QSL)

In the case of Kitaev QSLs we apply the formula from
Eq. (16) with the spin correlator as in Eq. (11). As illustrated
in Fig. 2 there are two qualitatively different regimes, namely,
vF2 > vF1 (fast spinons) and vF2 < vF1 (slow spinons). The
support of Im[CR(q, ω)] at ω > vF2q, which is indicative of
the continuum of particle-hole excitations about the Dirac
point, overlaps with the particle-hole continuum ω < vF1q
of the Fermi-liquid-like metallic bands only in the sec-
ond case. This situation allows for a crossover temperature
TC � 2vF2 pF1, above which the relative contribution of real
processes dominates over virtual quantum processes [see
Figs. 2(b) and 2(d)]. As shown in Appendix A 2, in the limit
of fast spinons we find

1

τD
� 1

τNC,K
0

(
T

EF1

)2

log

(
EF1

T

)
, (17a)

with

1

τNC,K
0

= 4

3

(
J2

K

N

)2

(CKνF1)2T 2
C EF1. (17b)

The result of Eq. (17a) is shown in Fig. 2(a). In the limit of
slow spinons we find instead

1

τD
� 1

τC,K
0

(
T

TC

)2

max

[
1,

(
T

TC

)2
]

log

(
EF1

T

)
(18a)

and

1

τC,K
0

=
(

TC

EF1

)2 1

τNC,K
0

. (18b)

The result of Eq. (18a) is shown in Fig. 2(c).

B. Z2 and U(1) QSLs with a Fermi surface

We now turn to the situation of QSLs with a Fermi surface.
As already mentioned in Sec. II B, in the case of spinons
coupled to a Z2 gapped gauge field, the dynamical spin-spin
correlation function retains the Fermi-liquid-like behavior of
the Lindhard function [48,49,51,52,55]. It is a more nontrivial
fact that even for U(1) spin liquids the dynamical spin-spin
correlation function is Fermi-liquid-like for small ω and q.
As such, using the Aslamazov-Larkin diagrammatic approach
given by Eq. (16), U(1) and Z2 QSLs can mostly be treated on
an equal footing.

As in the Kitaev QSL there are two regimes, i.e., the limit
of fast spinons (vF2 > vF1) and the limit of slow spinons
(vF2 < vF1). In each of these two cases, one may distinguish
the case of small (pF2 < pF1) or large (pF2 > pF1) spinon
Fermi surface. The kinematic constraints for these cases are
also illustrated in Fig. 4 below.

For Z2 and U(1) QSLs a crossover temperature scale,
TC � 2vmin pmin � EF1,2, appears due to kinematic constraints

in the cases of slow spinons with large Fermi surface (see
Fig. 4). We found that in the limit of fast spinons

1

τD
�

(
J2

K

N

)2 (2νF2νF1)2

EF1
T 2 log

(
EF1

T

)
, (19)

while in the limit of slow spinons

1

τD
� 1

4

(
J2

K

N

)2 (νF1νF2)2

EF1
T 2 log

(
EF1

T

)
(20)

for T < TC , and

1

τD
�

(
J2

K

N

)2 (2νF2νF1)2

EF1
T 2 log

(
EF1

T

)
(21)

for T > TC . Several comments are in order in relation to the
results presented in this section. First, the term log ( EF1

T ) ap-
pears as a finite-temperature regularization of the divergence
at the edge of the integration domain. Generically it appears
in the lifetime of 2D Fermi liquids and also for phonon-
mediated drag [33,34]. Second, the application of the above
results to the case of U(1) QSLs is valid only for spinons
with large Fermi surface. In the opposite case, the momentum
integral extends beyond the limit of q � pF2 for which the
spin-correlation function is known to take a Fermi liquid form.
Third, for both U(1) and Z2 QSLs we find that 1/τD � 1/τ2

under realistic conditions [see the dashed lines in Figs. 4(a),
4(c), 4(e), 4(g), 5(a), and 5(c)]. A posteriori it is thus evident
that the physically relevant drag rate should be obtained in
the limit of fast momentum relaxation, which is treated using
Boltzmann transport theory in the next section.

IV. THEORY WITH MOMENTUM RELAXATION
IN THE QSL LAYER

A. General formalism

In this section, we present the effective Boltzmann treat-
ment to account for intralayer momentum relaxation in QSLs
with a Fermi surface. Within this formalism there are three
coupled equations that describe how momentum is relaxed
in a two-step process from the passive layer to the active
layer [see Fig. 1(b)]. We are interested in the stationary state
in which the applied electric field in layer 1 generates a
current that dissipates momentum within this layer due to
temperature-independent impurity scattering (assumed to be
dominant) and transfers momentum to the QSL, which relaxes
momentum within itself and transfers momentum to the sec-
ond metallic sheet. We assume the linear response regime to
be valid (small fields applied, small deviations from equilib-
rium). This setup is described by the system of equations

−eE1 · ∂ f eq
1

∂p1
= −δ f1

τ1
+Icoll

2→1; (22a)

0 = −δ f2

τ2
+ Icoll

1→2 + Icoll
3→2; (22b)

0 = −δ f3

τ3
+ Icoll

2→3. (22c)

Here, f1,3 = f1,3(p) are the distribution functions in the
metallic layers, and f2 = f2(p) [ f2 = f2( p̂, ω)] is the distri-
bution function (pseudodistribution function) in the QSL in
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FIG. 3. Self-energy diagram associated with the Kondo interac-
tion between layers (dashed lines). Using the standard derivation of
the Boltzmann equation from the Keldysh technique, this diagram
leads to Eq. (24), involving an O(J2

K ) rate, describing the transfer of
energy and momentum between metallic and QSL layers.

the case of a Z2 [U (1)] QSL with a spinon Fermi surface.
We treat intralayer momentum relaxation in the relaxation
time approximation, where δ fi = fi − f eq

i with i = 1, 2, 3. In
our treatment the momentum relaxation rate within each layer
including the QSL is an external phenomenological parameter
that allows for the description in the variety of physical situa-
tions described in Eqs. (14) and (15). The additional collision
integrals Icoll

j→i(pi ) account for the transfer of momentum be-
tween the layers and give rise to the drag resistivity. They are
treated beyond relaxation time approximation and are derived
in the next section. Linearizing the distribution function we
can write the drag current as

j3 = − e

m3

∫
d2 p3

(2π )2
δ f3(p3)p3. (23)

Thus, the solution of Eqs. (22) and (23) leads to the calculation
of 1/τD.

B. Collision integral of the momentum transfer

In this section, we summarize the calculation of the col-
lision integral describing the momentum transfer between
adjacent layers, leaving details to Appendix B 1. Using
the Kondo coupling, Eq. (13), the Dyson equation in the
Schwinger-Keldysh formalism, and a gradient expansion,
the leading self-energy contribution due to Kondo coupling,
Fig. 3, leads to

Icoll
j→i = J2

K

N

∫
(d pi′ )(d p j )(d p j′ )δ(Pi + Pj − Pi′ − Pj′ )

× {
f eq
i f eq

j

[
1 − f eq

i′
][

1 − f eq
j′
]
(ψi + ψ j − ψi′ − ψ j′ )

}
.

(24)

In this expression we have absorbed a constant of order unity
into JK , and employed the linearization of the Boltzmann
equation using

δ fi = f eq
i

(
1 − f eq

i

)
ψi. (25)

The meaning of the Pi entering the three-dimensional δ

function enforcing energy and momentum conservation is ex-
plained below. For the nonlinearized expression, see Eq. (B7)
of Appendix B.

It is important to stress several points concerning the nota-
tion and the fundamental distinction between a Fermi liquid
and a nFL. For the metal layer and the Z2 QSL∫

(d p)(· · · ) =
∫

d2 p

(2π )2
(· · · ), f eq

i = f eq(εpi ),

ψi = ψ (pi ). (26)

Consequently, the energy-momentum three-vector is Pi =
(pi, εpi ). In contrast, for the U(1) QSL layer, because of the
compromised definition of quasiparticles,∫

(d p)(· · · ) = ν

∫
dε〈· · · 〉p̂, f eq

i = f (εi ),

ψi = ψ ( p̂i, εi ), (27)

where ν = m2/2π is the density of states per spin and pi =
pF2 p̂i is implied everywhere, so that Pi = (pF2 p̂i, εi ), in this
case.

C. General solution for the drag rate

The system of Eqs. (22) and (23) can be manipulated
to derive a general formula for the drag conductivity (see
Appendix B 2 for details):

1

τD
= − (2π )5

n1n3

τ2

2T

(
J2

K

N

)2 ∫
dQdQ′(q · Ê1)(q′ · Ê1)

× Im
[
�R

3 (Q)
]
Im

[
�R

1 (Q′)
]
I2(Q, Q′)

sinh
(

ω
2T

)
sinh

(
ω′
2T

)
sinh

(
ω+ω′

2T

) , (28)

with Q = (q, ω) and dQ = d2q
(2π )2

dω
2π

, and we have defined

I2(Q, Q′) =
∫

(d p2)(d p2′ )(d p2′′ )δ(3)(P2′′ − P2′ + Q)

× δ(3)(P2′′ − P2 − Q′)( f2 − f2′ ). (29)

Apart from the behavior of τ2, the integral I2(Q, Q′) encodes
the main difference between the Z2 and the U(1) QSL.

D. Z2 QSL with Fermi surface

In the case of the Z2 QSL with the Fermi surface we
calculate the object I2(Q, Q′) to be

〈I2(Q, Q′)(q · Ê1)(q′ · Ê1)〉q̂,q̂′

= −4T sinh
(

ω+ω′
2T

)
(2π )6ωω′EF2

(
ω + q2

2m2

)(
ω′ + q′2

2m2

)
×Im

[
�R

2 (q, ω)
]
Im

[
�R

2 (q′, ω′)
]
, (30)

which holds in the regime

ω

vF

(
1 + T

2EF

)
< q <

(
2pF − ω

vF

)(
1 − T

2EF

)
(31)

that defines the dominant contribution to the integrals entering
the drag rate.

The insertion of Eq. (30) into the general formula for the
drag rate, Eq. (28), implies that the domain of integration
over Q, Q′ is bounded by the overlap of particle-hole continua
in both metallic and QSL Fermi liquids (see Fig. 4). Physi-
cally, this means that only real scattering processes between
particle-hole pairs of adjacent layers allow for momentum
transfer. As a consequence, the combinations of the param-
eters pFi and vFi give rise to four regimes that we indicate
formally by the Cartesian product (vF1 > vF2, vF1 < vF2) ×
(pF1 > pF2, pF1 < pF2). This is analogous to the regimes in-
troduced in Sec. III B, but in contrast to the present discussion,
we considered there the limit of absent momentum relaxation
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FIG. 4. Temperature dependence of the spinon-mediated drag in Z2 QSLs, Eqs. (32a) and (33a), and regions of kinematic constraints
for the momentum transfer. The combination of Fermi velocities and momenta of spinons and electrons leads to four regimes [particle-hole
continua in the metallic lead (QSL) are shaded light blue (dark purple)]. Panels (b) and (h) are symmetric under the exchange 1 ↔ 2 and differ
from each other only for the value of τ

C,Z2
0 , whose definition is generally given by Eq. (33b) and TC = 2vmin pmin. Finally, panels (b) and (c) are

symmetric (for 1 ↔ 2) and only differ for the value of τ
NC,Z2
0 defined in Eq. (32b). From the dashed line in panels (a), (c), (e), and (g) we can

also see that the condition τ−1
2 � τ−1

D is always satisfied, meaning that the Boltzmann approach to the problem is justified.

in the QSL and thereby also included virtual particle-hole
excitations in the QSL.

We first discuss the limit (vF1 > vF2 ∧ pF1 > pF2) ∨
(vF1 < vF2 ∧ pF1 < pF2), corresponding to Figs. 4(d) and
4(f). As we assume the low-temperature degenerate Fermi gas
limit of either the metallic plates or the QSL, the minimal
Fermi energy Emin = min(EF1, EF2) bounds the temperature
limiting the energy integration. Hence, the drag rate in the
symmetric case is

1

τD
= 1

τ
NC,Z2
0

(
T

Emin

)2

, (32a)

with

1

τ
NC,Z2
0

=
(

J2
K

N

)2( E2
min

EF1EF2

)
ν2 p4

min

v2
F1

, (32b)

as shown in Figs. 4(c) and 4(e).
We discuss next the regimes (vF1 > vF2 ∧ pF2 < pF1) ∨

(vF1 < vF2 ∧ pF1 > pF2). As shown in Figs. 4(b) and
4(h) the crossover temperature TC � 2vmin pmin [with vmin =
min(vF1, vF2) and pmin = min(pF1, pF2)] emerges. For T <

TC , the frequency integration is bounded by T , while the
overlap of particle-hole continua limits the ω integral at TC

for TC < T . Importantly, the crossover temperature scale is

below Emin and thus relevant for the regime of applicability of
our theory. The drag rate in these regimes is thus

1

τD
= 1

τ
C,Z2
0

(
T

TC

)2

min

[
1,

(
TC

T

)2
]
, (33a)

with

1

τ
C,Z2
0

=
(

Emin

TC

)2 1

τ
NC,Z2
0

. (33b)

These results are plotted in Figs. 4(a) and 4(g). In Eqs. (32a)
and (33a) we used τ−1

2 = T 2/EF2.

E. U(1) QSL with Fermi surface

In the case of the U(1) QSL we find

〈I2(Q, Q′)(q · Ê1)(q′ · Ê1)〉q̂,q̂

= − ν3
2

π p2
F2

(ω + ω′)
θ (2pF2 − q)q√

(2pF2)2 − q2

θ (2pF2 − q′)q′√
(2pF2)2 − q′2 .

(34)

Insertion of Eq. (34) into Eq. (28) leads to the general
equation for the drag rate in the case of the U(1) QSL. As
opposed to the Z2 case, Eq. (30), Eq. (34) only contains a
sharp momentum cutoff θ (2pF2 − q) that is a consequence
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FIG. 5. Temperature dependence of the spinon-mediated drag in
U(1) QSLs, per Eqs. (35)–(37), and kinematic constraints for the
momentum transfer. Panels (a) and (c) also illustrate that τ−1

2 � τ−1
D ,

meaning that momentum relaxation in the QSL is faster than inter-
layer momentum transfer. The latter underpins applicability of the
semiclassical Boltzmann approach.

of the fact that for these pseudo-quasiparticles the momen-
tum is pinned on the Fermi surface but there is no bound in
the frequency integrals over ω, ω′. This is a consequence of
the diffuse nature of the fermionic spectral weight in a nFL
with self-energy � ∼ ε2/3, which allows for real scattering
processes even when energy conservation would be violated
in a Fermi liquid with sharp quasiparticles.

The altered kinematic constraints (see Fig. 5) for the
nFL lead to qualitatively different regimes and behaviors of
τ−1

D (T ), because in this case the velocity vF2 does not play any
role. We can therefore distinguish two limits: (i) pF2 > pF1, in
which case, as shown in Fig. 5(b), the ω integration is bounded
by T < EF1, and there is no other relevant energy scale, and
(ii) the limit pF2 < pF1, in which case the integration can be
bounded by the domain integration.

In the symmetric regime for pF2 � pF1 the drag rate is
found in the form

1

τD
= 1

τ
NC,U (1)
0

(
T

EF1

) 8
3

, (35)

with

1

τ
NC,U (1)
0

=
(

J2
K

N

)2
ν1ν3ν

3
2

p2
F2

E4
F1

T 2
C

(
EF2

EF1

)1/3

. (36)

This result is plotted in Fig. 5(a). In the limit of pF2 � pF1 the
temperature dependence depends on a crossover temperature

TC = 2vF1 pF, and the relaxation rate is given by

1

τD
= 1

τ
C,U (1)
0

(
T

TC

) 8
3

min

(
1,

TC

T

)2

, (37)

where the prefactor is given by

1

τ
C,U (1)
0

= 1

τ
NC,U (1)
0

(
pF1

pF2

)2( TC

EF1

) 14
3

. (38)

In Eq. (32a) and in Eq. (33a) we used τ−1
2 = EF2(T/EF2)4/3.

Both for the Z2 and U(1) QSLs the results are valid up to a
constant prefactor that we reabsorbed in the definition of τ2.

V. SUMMARY, DISCUSSION, AND OUTLOOK

In summary, we have derived the spinon-mediated induced
drag rate for heterostructures as displayed in Fig. 1(a) for a
three types of QSLs: the Kitaev QSL beyond the integrable
limit, the Z2 QSL with a Fermi surface, and the U(1) QSL
with a Fermi surface. We have distinguished the situation of
the slow momentum relaxation within the QSL layer (as com-
pared to the drag rate) from the situation of fast momentum
relaxation. In the first case, we have derived the drag rate us-
ing Aslamazov-Larkin diagrammatics, while we employed a
Boltzmann-like description for the second case. We conclude
that the latter limit appears experimentally more realistic (see
dashed curves in Figs. 4 and 5). The semiclassical Boltzmann
approach assumes the Fermi wavelength to be short as com-
pared to the mean free path, which is directly applicable only
to QSLs with a Fermi surface in a proper range of parameters.
In contrast to earlier studies [42–47], the transport phenomena
discussed here are purely electrical, and do not rely on the spin
injection through spin-orbit interaction in the leads.

We now summarize and discuss main results as displayed
in Figs. 1(b) (for graphene) and 6 [for 2D electron gases
(2DEGs) with parabolic dispersion] as a function of ex-
perimentally tunable parameters, namely, temperature and
chargecarrier density n ∼ p2

F1 in the metallic leads. The dif-
ference between the two figures is due to the independence
(square-root dependence) of the Fermi velocity on the carrier
density in graphene (in a 2DEG with parabolic dispersion).
Note that in all our Boltzmann calculations we assumed a
quadratic dispersion both for the metallic layers and for the
QSL layer. However, as previously discussed, the results most
crucially depend on the Fermi-liquid-like particle-hole con-
tinua of the metallic leads. At small momenta excitations,
these are the same for graphene or 2DEGs with parabolic
dispersion. Therefore, our calculations are expected to qual-
itatively describe metallic layers made of doped graphene as
well (see also Sec. II A).

Except for the Kitaev QSL, our approach assumes a de-
generate Fermi gas T � EF both for the metallic leads and
the spinons. The purple region in all the panels in Figs. 1(b)
and 6 is beyond this assumption. The remaining areas of the
parameter space contain characteristic crossover temperature
scales, above which the power exponent of the temperature
dependence of the drag rate changes. This is illustrated by
means of the color coding in Figs. 1(b) and 6 and a conse-
quence of the kinematic constraints of energy and momentum
transfer.
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FIG. 6. The scaling behavior of τ−1
D as a function of tempera-

ture and charge carriers in the metallic layers and in the symmetric
regime, in the case of the metallic plates having a parabolic disper-
sion. Only the results for the Z2 and U(1) QSLs with a Fermi surface
are reported because the notion of m2 does not exist in the context of
a Kitaev QSL.

Specifically, in the case of the Kitaev QSL, a crossover in
temperature occurs, TC = 2vF2 pF1, below the red region in the
case of slow spinons (vF2 < vF1). In a Z2 QSL with a Fermi
surface there is a crossover temperature TC = 2vmin pmin in
both the cases of fast and slow spinons. Note that for graphene
leads, Fig. 1(b), in the case of fast spinons TC = 2vF1 pF2, so
that the characteristic crossover temperature is not a function
of density n. Finally, for the U(1) QSL with a Fermi surface
the drag relaxation time has a crossover temperature TC =
2vF1 pF2 only in the limit of fast spinons. We stress that this is
a characteristic difference as compared to the case of the Z2

QSL and ultimately a consequence of the smeared fermionic
spectral weight due to the non-Fermi-liquid behavior of the
U(1) QSL. Another key distinction of the U(1) QSL are
the fractional powers in the temperature dependence, which
reflect the momentum relaxation rate 1/τ2 ∼ T 4/3 inside
the QSL.

We conclude with a discussion of experimental conse-
quences of this study. First, as in all 2DEG double layers,
Coulomb interaction provides the leading mechanism for drag
current generation. A way to experimentally suppress the con-
tribution of Coulomb interaction without affecting the spinon
drag contribution is to embed the heterostructure in the en-
vironment of a strong dielectric, such as SrTiO3, which is
often employed experimentally for gating purposes. Similarly,
atomically proximate metallic top and back gates suppress
the Coulomb effects. Second, the spinon-mediated drag is a
fourth-order effect in Kondo coupling JK and thus naively
small in amplitude. However, the reference energy scale de-
termining the drag rate is given by a combination of EF1

and the microscopic energy scale of the QSL, J . While the

former can be reduced by gating whereby the spinon-induced
drag increases, the ratio JK/J determines whether the het-
erostructure is in a topologically ordered, fractionalized Fermi
liquid [72] (FL∗) with small Fermi surface (small JK/J) or a
Kondo-screened phase of a topologically trivial Fermi liquid
(FL) with large Fermi surface (large JK/J). Importantly, also
the second regime appears experimentally realistic [16].

We conclude with a speculation about the behavior of the
drag rate as a function of JK/J as the FL∗-to-FL transition
is approached and hypothesize that the 1/τD ∼ J4

K increase
levels off at the transition and gives way to a regime of perfect
drag, akin to the situation of perfect drag in the presence of an
exciton condensate [73]. Indeed, the mean-field description of
the Kondo-screened phase implies that only the symmetrized
wave function of electrons of layers 1 and 3 form the FL with
large Fermi surface, while the antisymmetric wave function
of electrons constitutes an independent band with small Fermi
surface. The homogeneous dc field E1 does not allow for
interband coupling and has support in both bands; the same
is true for the current operator j3. By consequence, electrons
in both bands are accelerated and equally contribute to drag
and transport current, ultimately leading to the perfect drag
phenomenon (same local and nonlocal conductances). It will
be an interesting problem for the future to study this effect
in more detail, as well as the impact of magnetic field on the
spinon-mediated drag.
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APPENDIX A: LIMIT OF ABSENT MOMENTUM
RELAXATION WITHIN QSL LAYER:

ASLAMAZOV-LARKIN DIAGRAM

In this Appendix, we present details complementing dis-
cussion in Sec. III. As argued in the main text, when the
condition τ−1

2 � τ−1
D is satisfied, τ−1

D is analogous to the
Coulomb drag one [32], as determined by the Aslamazov-
Larkin diagram [see Eq. (16)].

In the case of a QSL with a Fermi surface and for small ω

and q, the spin correlation function is proportional to the free
electron polarization operator

�R
i (q, ω) =

∫
(dk)

f eq(εk ) − f eq(εk+q)

εk − εk+q − ω + i0+ , (A1)

with εk = |k|2/2m − EFi, EFi being the Fermi energy, with
f eq being the Fermi-Dirac equilibrium distribution function.

1. Properties of the polarization operator

Despite the strong-coupling nature and the nFL behavior of
the U(1) QSL, it is still possible to show that for small ω and
q the polarization operator for the Z2 and the U(1) QSLs are
essentially the same as the free electron polarization operator
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[48]. Furthermore, if �R(q, ω)T =0,EF =E is a smooth function
in an interval with a width of δE � T around E = EF , we
can use the zero-temperature expression of the polarization
operator also in the finite-temperature situation. At zero tem-
perature, T = 0, the polarization operator is [74]

Im[�R(q, ω)] = − ν
m

q2
{θ ((vF q)2 − ω2

−)
√

(vF q)2 − ω2−

− θ ((vF q)2 − ω2
+)

√
(vF q)2 − ω2+},

Re[�R(q, ω)] = − ν

{
1 + ν

m

q2
{sign(ω−)θ (ω2

− − (vF q)2)

×
√

ω2− − (vF q)2 − sign(ω+)θ

× (ω2
+ − (vF q)2)

√
ω2+ − (vF q)2}

}
, (A2)

where ω± = (ω ± q2

2m ) and ν is the density of states at the
Fermi surface. To define quantitatively the applicability con-
dition of T → 0 expressions one turns to the imaginary part of
the finite-temperature polarization operator that can be written
as follows:

Im[�R(q, ω)] = −ν
m

q2

∫ +∞

−∞
dE

(
∂ f eq

∂E

)

×
{√

(vF q)2 − ω2− + 2q2

m
(E − EF )

−
√

(vFq)2 − ω2+ + 2q2

m
(E − EF )

}
. (A3)

Here, it is assumed that the argument of the square roots is
positive (otherwise the expression vanishes per definition).

We now comment on the role of temperature in determin-
ing the boundaries of the integral support. We note that the
term (vF q)2 − ω2

± would vanish in proximity of the bound-
ary of the support of the imaginary part of the polarization
operator. The only term that keeps the square root smooth is
2q2

m (E − EF ) which is bounded by T , so that Eq. (A2) will
always be valid provided that the condition

(vF q)2 − ω2
± >

2q2

m
T (A4)

is satisfied. This leads to a restriction in the integration over
q given by Eq. (31). This integration domain is represented in
blue in Fig. 7. It should be pointed out that in this regime the
expansion of �T =0(q, ω) coincides with �T �=0(q, ω). Also
�R

T =0(q, ω) can be expanded if ω2
± � (vF q)2 −→ |ω±| �

vF q. This condition is less restrictive than Eq. (A4), so
since we limit the integration in this domain, we can expand
Im[�R(q, ω)] to obtain

Im[�R(q, ω)] � νω√
(vF q)2 − (

ω2 + ( q2

2m

)2) , (A5)

where we have dropped the subscript T = 0 because from
now on we will deal only with the T = 0 polarization oper-
ator. The expression is valid for the whole integration regime,
and especially for the QSL we will make large use of the
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=
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+
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=
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=
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=

-v
F,

1q
+

4
 E

F,
1

q/pF,1

1.0

1.0

2.0

2.0 1.0 2.0

1.0 2.0

ω
=

v F,
1
q

 1
- 

T
2

E
F,

1

1
+

 
T 2
E

F,
1

ω
=

-v
F,

1q
+

4
 E

F,
1

ω
=

v F,
1
q

 1
- 

T
2

E
F,

1

1
+

 
T 2
E

F,
1

ω
=
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FIG. 7. Integration domain used for integrals in Eq. (16) (light
blue shading). Solid lines are given by Eq. (31). The areas in purple
are discarded; their contributions are higher orders of T

EF
. [(a), (b)]

Z2 QSL with a Fermi surface in the cases of fast and slow spinons,
respectively. As shown in (b), in the case of slow spinons there is
a crossover in the behavior of |CR(q, ω)|. The same considerations
hold true for the Kitaev QSL [(c), (d)] with a difference for the
crossover of the spin correlation function over the line ω = vF2q.

approximation q � pF that leads to

�R(q, ω) � ν

(
1 + i

ω√
(vF q)2 − ω2

)
. (A6)

2. Z2 QSL with Dirac excitations (Kitaev QSL)

We rewrite Eq. (16) as

1

τD
=

(
J2

K

N

)2 1

p2
F1mT

∫ ∞

0

dω

sinh2
(

ω
2T

) Iq(ω) (A7)

and consider separately limits of slow and fast spinons as
discussed in the main text.

a. Limit of fast spinons

We start with the case vF2 > vF1 in which Iq(ω) = INC
q (ω),

INC
q (ω)=

∫
dqq3

(
(ν1ω)2

(vF1q)2 − ( q2

2m

)2 − ω2

)
C2

K ((vF2q)2−ω2)

= (CKν1)2
(
ω2v2

F2I1 − ω4I2
)
, (A8)
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where the NC stands for noncrossover, indicating that the
crossover line is outside of the integration domain, and

I1 =
∫ − ω

vF1
(1− T

2EF1
)+2pF1(1− T

2EF1
)

ω
vF1

(1+ T
2EF1

)

dqq5

(vF1q)2 − ( q2

2m

)2 − ω2
,

(A9)

I2 =
∫ − ω

vF1
(1− T

2EF1
)+2pF1(1− T

2EF1
)

ω
vF1

(1+ T
2EF1

)

dqq3

(vF1q)2 − ( q2

2m

)2 − ω2
.

(A10)

The integral I1 can be evaluated to be

I1 = 8p2
F1m2

[
log

(
EF1

T

)
− 1 − log

(
1 + ω

2T

)]
, (A11)

while the integral I2 can be calculated to be

I2 = 2m2

[
log

(
EF1

T

)
− log

(
1 + ω

2T

)]
. (A12)

Integration over ω of Eq. (A8) yields the results presented in
Eqs. (17a) and (17b) and shown in Fig. 2(a).

b. Limit of slow spinons

We turn now to the regime in which vF2 < vF1 which
contains a typical crossover temperature TC = 2vF2 pF2 and
frequency

ωC = TC

(
1 − T

2EF1

)
(A13)

[see Fig. 7(d)]. The ω integral appears exactly in the same
form as Eq. (A7), but this time we write

IC
q = C2

K [ω4I3 + ω2I4], (A14)

with

I3 =
∫ ω

v2

ω
vF1

(1+ T
2EF1

)

dq q3

(vF1q)2 − ( q2

2m

)2 − ω2

−
∫ (2pF1− ω

vF1
)(1− T

2EF1
)

ω
v2

dq q3

(vF1q)2 − ( q2

2m

)2 − ω2

= 2m2

{
log

(
T

EF1

)
− 2 log

(
1 −

(
ω

TC

)2)

+ log

(
1 + ω

2T

)}
, (A15)

and

I4 =
∫ (2pF1− ω

vF1
)(1− T

2EF1
)

ω
v2

dq q5v2
F2

(vF1q)2 − ( q2

2m )2 − ω2

−
∫ ω

v2

ω
vF1

(1+ T
2EF1

)

dq q5v2
F2

(vF1q)2 − ( q2

2m

)2 − ω2

= −2m2T 2
C

{(
1 −

(
ω

TC

)2
)

− 2 log

(
1 −

(
ω

TC

)2)

+ log

(
1 − ω

2T

)
+ log

(
T

EF1

)}
. (A16)

We separately study the case T < TC and the case T > TC . In
the first case the integration is bounded by T and we find

1

τD
� 4

(
J2

K

N

)2 (CKν1)2

EF1
T 2

C T 2 log

(
EF1

T

)
. (A17)

In the opposite case, T > TC , the ω integral splits into two,

1

τD
= 1

τ
(1)
D

+ 1

τ
(2)
D

, (A18)

where we can define

1

τ
(1)
D

=
(

J2
K

N

)2 ∫ TC (1− T
2EF1

)

0

dω

sinh2
(

ω
2T

) IC
q (ω), (A19)

where IC
q (ω) is defined as in Eq. (A14), while

1

τ
(2)
D

=
(

J2
K

N

)2 ∫ T

TC

dω

sinh2
(

ω
2T

) INC
q (ω), (A20)

with INC
q (ω) defined as in Eq. (A8) but with a minus sign in

front. We find that

1

τ
(1)
D

�
(

J2
K

N

)2 16

3

(CKν1)2

EF1
(TC )3T log

(
EF1

T

)
, (A21)

and

1

τ
(2)
D

� 4

(
J2

K

N

)2 (CKν1)2

EF1
T 4 log

(
EF1

T

)
. (A22)

In the T/TC � 1 limit 1
τ

(1)
D

� 1
τ

(2)
D

; therefore, 1
τD

� 1
τ

(2)
D

. Our

results are summarized in Eqs. (18a) and (18b) and shown in
of Figs. 2(c) and 2(d).

3. QSL with Fermi surface [Z2 and U(1)]

As in the case of the Kitaev QSL, we distinguish the sit-
uation of slow and fast spinons. For vF2 > vF1 both the real
and the imaginary parts of the QSL polarization operator con-
tribute, while for vF2 < vF1 there is a region 0 < q < ω

vF2
(1 +

T
2EF1

), in which only the real part contributes, and ω
vF2

(1 +
T

2EF1
) < q < − ω

vF1
(1 − T

2EF1
) + 2pF1(1 − T

2EF1
), in which both

real and imaginary parts contribute to the QSL polarization
operator (see Fig. 7).

a. Limit of fast spinons

For vF2 > vF1, Eq. (16) becomes

1

τD
=

(
J2

K

N

)2 1

p2
F mT

∫ ∞

0
dω

ω2

sinh2
(

ω
2T

)
×

∫
dqq3 (ν2vF2q)2

(vF2q)2 − ω2

ν2
1

(vF1q)2 − (
ω2 + ( q2

2m

)2) ,
(A23)
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which is only valid if pF2 � pF1. Paying attention to the
integration limits explicitly expressed in Eq. (31), and ap-
proximating ω2 sinh−2 ( ω

2T ) � (2T )2θ (T − ω), this leads to
the relaxation time reported in the main text in Eq. (19).

b. Limit of slow spinons

Now we turn to the case vF2 < vF1 for which Eq. (16) can
then be written as

1

τD
=

(
J2

K

N

)2 (2T )2

p2
F1mT

∫ T

0
dω

{
I (A)
q + I (B)

q

}
, (A24)

with

I (A)
q =

∫ ω
vF2

(1+ T
2EF1

)

ω
vF1

(1+ T
2EF1

)

dqq3(ν1ν2)2

(vF1q)2 − (
ω2 + ( q2

2m

)2) , (A25)

I (B)
q =

∫ (2pF1− ω
vF1

)(1− T
2EF1

)

ω
vF2

(1+ T
2EF1

)

dqq3(ν2vF2q)2

(vF2q)2 − ω2

× ν2
1

(vF1q)2 − (
ω2 + ( q2

2m

)2) . (A26)

In the presence of a Fermi surface, the crossover temperature
is TC = 2vF2 pF1. We find that

I (A)
q + I (B)

q = 2(ν2ν1m)2

{
log

(
1 −

(
ω

TC

)2
)

+ 1

16

1

1 − (
ω
TC

)2

[
log

(
EF1

T

)
− log

(
1 + ω

2T

)

+ log

(
1 −

(
ω

TC

)2)]}
. (A27)

Therefore, we found that the integral in Eq. (A24) has the form
of Eq. (20) for T < ωC . We can argue that this is consistent
with a smooth crossover from vF2 > vF1 to vF2 < vF1. In the
case of T > TC the ω integral again splits into two, allowing
the definition of the scattering rate as

1

τD
= 1

τ
(1)
D

+ 1

τ
(2)
D

, (A28)

where we can define

1

τ
(1)
D

=
(

J2
K

N

)2 1

p2
F1mT

∫ TC

0

dω ω2

sinh2
(

ω
2T

) IC
q (ω), (A29)

where IC
q (ω) = I (A)

q + I (B)
q , and

1

τ
(2)
D

=
(

J2
K

N

)2 1

p2
F1mT

∫ T

TC

dω ω2

sinh2
(

ω
2T

) INC
q (ω), (A30)

with

INC
q =

∫ − ω
vF1

+2pF1(1− T
2EF1

)

ω
vF1

(1+ T
2EF1

)
dq

(ν1ν2)2q3

(vF1q)2 − ( q2

2m

)2 − ω2
. (A31)

We thus find

1

τ
(1)
D

�
(

J2
K

N

)2 (ν2ν1)2

EF1

TC

T
T 2

(
6 log

(
EF1

T

)
− 340

)
,

(A32)

and

1

τ
(2)
D

� (2ν2ν1)2

EF1
T 2 log

(
EF1

T

)
. (A33)

Because of the suppressing term (TC/T ), we conclude that
1
τD

� 1
τ

(2)
D

, as declared in Eq. (21).

APPENDIX B: THEORY WITH MOMENTUM
RELAXATION WITHIN QSL LAYER

In this Appendix we present details on the calculation of
the drag resistivity in the case when momentum is relaxed
within the QSL layer. We focus on the situation of a spinon
Fermi surface.

1. Collision integral from metal-QSL coupling

In this section, we present details on the derivation of
the collision integral accounting for the interlayer momentum
transfer (see Sec. IV B of the main text). This calculation
is based on the Kondo interaction Hamiltonian describing
the coupling between spinons and the electrons in the metal,
Eq. (12). This Hamiltonian gives rise to a term in the self-
energy of the spinon �̂(p) [p = (p, ε)] as displayed in Fig. 3
and enters the Keldysh component of the Dyson equation,
leading to [75]

−i
([

GR
i

]−1 ◦ Fi − Fi ◦ [
GA

i

]−1) = Icoll
i (B1)

with “◦” denoting the concatenation of operators and “off-
shell” collision integral

Icoll
i (p) = i

[
�K

i(p) − (
�R

i (p) − �A
i (p)

)
FKi(p)

]
. (B2)

Here the subscript i denotes that this collision integral will en-
ter the Boltzmann equation of layer i (i = 2 for spinons); the
superscripts K , R, and A stand for the Keldysh, retarded, and
advanced components of the spinon self-energy, respectively;
and Fi(p, ω) is related to the (quasi)distribution function [see
Eq. (B5) below].

The self-energy components are

�K
i (p) =

(
J2

K

2N

)∫
dq dk dk′GR−A

i (q)GR−A
j (k)GR−A

j (k′)

× {Fi(q)(Fj (k)Fj (k
′) − 1) − (Fj (k) − Fj (k

′))

× δ(p + k′ − q − k), (B3)

where GR−A = GR − GA is the difference of retarded and ad-
vanced Green’s functions and

(�R−A)i(p)Fi(p) =
(

J2
K

2N

)∫
dqdkdk′GR−A

i (q)GR−A
j (k)

× GR−A
j (k′){Fi(p)(Fj (k)Fj (k

′) − 1)

+ Fi(p)Fj (q)(Fj (k
′) − Fj (k))}

× δ(p + k′ − q − k). (B4)

Here, Gi(k, ω) is the dressed Green’s function in layer i. The
integration is defined as

∫
d p = 1

2π

∫
(d p)dω.

014425-12



DRAG RESISTANCE MEDIATED BY QUANTUM SPIN … PHYSICAL REVIEW B 108, 014425 (2023)

The on-shell distribution function is defined as

2 fi − 1 =
{∫ dξ

2π

(
GR

i − GA
i

)
(p)Fi(p), i = 2 and U(1) QSL∫

dε
2π

(
GR

i − GA
i

)
(p)Fi(p) else.

(B5)
Here, f2 = f2(ε, p̂) is implied for layer 2 in the case of the
U(1) QSL and fi = fi(p) in all other cases. To derive the “on-

shell” collision integral (Icoll
i ), we need to multiply by GR−A

i
2π

and perform an additional external integration over ξ [in the
case i = 2 and for a U(1) QSL] or ε (in all other cases):

Icoll
i→ j =

{∫ dξ

2π

(
GR

i − GA
i

)
(p)Icoll

i (p), i = 2 and U(1) QSL∫
dε
2π

(
GR

i − GA
i

)
(p)Icoll

i (p) else.
(B6)

Finally, using Eqs. (B2)–(B6) we obtain the collision integral

Icoll
j→i(pi ) = (2π )3 J2

K

N

∫
(d pi′ )(d p j )(d p j′ )

× δ(pi + p j − pi′ − p j′ )

× δ(εi + ε j − εi′ − ε j′ )

×{ f (pi′ ) f (p j′ )[1 − f (pi )][1 − f (p j )]

− f (pi ) f (p j )[1 − f (pi′ )][1 − f (p j′ )]}. (B7)

This collision integral describes the momentum and energy
transferred from layer j to i due to Kondo coupling. We
stress that it is valid both for a Z2 and a U(1) QSL assuming
that the measure of integration is interpreted accordingly [see
Eqs. (26) and (27)]. Using the linear expansion about the
equilibrium distribution function, Eq. (25), this concludes the
derivation of Eq. (24) of the main text. A factor of (2π )3 is
reabsorbed into JK in the rest of the paper concerning the
Boltzmann approach.

2. General solution for drag rate

We proceed to solve the system of equations (22) to calcu-
late the drag current defined in Eq. (23). We remark that to the
leading order in JK

ψ1 ∼ O
(
J0

K

) −→ ψ2 ∼ O
(
J2

K

) −→ ψ3 ∼ O
(
J4

K

)
. (B8)

As the first step, we plug Eq. (22c) into Eq. (23) and obtain

j3 = −e τ3

m3

∫
(d p3)Icoll

2→3 p3. (B9)

Using Eq. (24) and the solution of Eq. (22a),

ψ1 = −e
1

m1T
τ1E1 · p1, (B10)

the drag current can be written as

j3 = − e τ3

2m3

J2
K

N

∫
(d p2)(d p2′ )(d p3)(d p3′ )(p3 − p3′ )

× δ(3)(P2 + P3 − P2′ − P3′ ) f2 f3 f̃2′ f̃3′ (ψ2 − ψ2′ ),
(B11)

where we have used the symmetry properties of the collision
integral to write the term p3 − p3′ .

At the next step, we determine ψ2 from Eq. (22b). The sum
of the two collision integrals can be written as

f2 f̃2ψ2 = τ2
(
Icoll
1→2 + Icoll

3→2

)
� J2

Kτ2

N

∫
(d p2′′ )(d p1)(d p1′ ) f2 f1 f̃2′′ f̃1′ (ψ1 − ψ1′ )

× δ(3)(P2 + P1 − P2′′ − P1′ ), (B12)

in which we have neglected the higher orders in JK . We can
use the symmetry properties of j3 and write

j3 = − e τ3

m3

J2
K

N

∫
(d p2)(d p2′ )(d p3)(d p3′ )(p3 − p3′ )

× δ(3)(P2 + P3 − P2′ − P3′ ) f2 f3 f̃2′ f̃3′ψ2. (B13)

Subsequently we use Eq. (B12) and the relations

δ(3)(P2 + P3 − P2′ − P3′ )=
∫

dQ(2π )3δ(3)(P3 − P3′ − Q)

× δ(3)(P2 − P2′ + Q),

δ(3)(P2 + P1 − P2′′ − P1′ )=
∫

dQ′(2π )3δ(3)(P2 − P2′′ − Q′)

× δ(3)(P1 − P1′ + Q′), (B14)

to rewrite the current in the following way:

j3 = λ

∫
dQ dQ′

∫
d{(p)}(p3 − p3′ )(p1 − p1′ ) · E1

× δ(3)(P3 − P3′ − Q)δ(3)(P2′′ − P2′ + Q)

× δ(3)(P2′′ − P2 − Q′)δ(3)(P1′ − P1 + Q′)

× ( f3 f̃3′ )( f1 f̃1′ )( f2 f̃2′ ), (B15)

where the coefficient is defined as λ = −e2 τ1τ2τ3
m1m3T (2π )10( J2

K
N )2

and we used the shorthand notation for the integration mea-
sure d{(p)}. We make use of the identity

fp f̃p′ = fp − fp′

1 − e(εp−εp′ )/T (B16)

and the energy-conserving δ functions to get

j3 = − e2 τ1τ2τ3

2m1m3T

(
J2

K

N

)2

(2π )4

×
∫

dQdQ′ Im
[
�R

3 (Q)
]
Im

[
�R

1 (Q′)
]
I2(Q, Q′)

sinh
(

ω
2T

)
sinh

(
ω′
2T

)
sinh

(
ω+ω′

2T

) q(q′ · E1),

(B17)

where we have used the definition in Eq. (29) of the main text.
The expression in Eq. (B17) is valid both for the Z2 and the
U(1) QSL and the origin of Eq. (28) of the main text.

3. Z2 QSL: Fermi liquid behavior

Here we calculate I2(Q, Q′) for the Z2 QSL. We take
into account also the integration over q̂ and q̂′, so evaluating
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the object

〈I2(Q, Q′)(�q · Ê1)(�q′ · Ê1)〉q̂,q̂′

=
∫

d2 p′′
2

(2π )2
〈(�q · Ê1)δ(ω+

q − v′′
2 · q)〉q̂

× 〈(�q · Ê1)δ(ω′−
q′ − v′′

2 · q′)〉q′

× (
f
(
εp′′

2
− ω′) − f

(
εp′′

2
+ ω

))〉
q̂,q̂′ , (B18)

where we have defined ω±
q = ω ± q2

2m2
. We calculate the ob-

ject

〈(q · Ê1)δ(v′′
2 · q − ω±

q )〉q̂ = p̂′′
2 · Ê1

πv′′
2

ω±
q√

(v′′
2 q)2 − ω±2

q

,

(B19)
and use the approximation

f (εp′′
2
− ω′) − f (εp′′

2
+ ω)

�︸︷︷︸
ω,ω′�T

2T δ

(
ε + ω − ω′

2

)
sinh

(
ω + ω′

2T

)
. (B20)

Recalling the operative expression for the polarization opera-
tor (A5) and that ω � EF1 we can write

〈I2(Q, Q′(�q · Ê1)(�q′ · Ê1))〉q̂,q̂′

= −4T sinh
(

ω+ω′
2T

)
(2π )6ωω′EF2

ω+
q ω+

q′ Im�R
2 (q, ω)Im�R

2 (q′, ω′).

(B21)

The drag conductivity can be then concisely expressed as

σD = e2

(
J2

K

N

)2
τ1τ2τ3

2πm1m2m3 p2
F2

I12I32, (B22)

where we have defined

Ii3 =
∫

dqdω
q2

ω sinh
(

ω
2T

) Im�R
i (q, ω)Im�R

2 (q, ω). (B23)

We recognize the existence of four regimes for Ii2 (i = 1, 3):
( vF2

vFi
> 1, vF2

vFi
< 1) × ( pF2

pFi
> 1,

pF2

pFi
< 1). We start with the

limit ( vFi
vF2

> 1 ∧ pFi

pF2
> 1) ∨ ( vFi

vF2
< 1 ∧ pFi

pF2
< 1). In this limit

the Fermi energy of either the metallic plates or the QSL
bounds the energy integration as shown in Figs. 4(d) and 4(f).
We find that

Ii2 =
(

T

π

)2
νiν2

vFivF2
4p2

min, (B24)

and, using Eq. (B23), we find

σD

e2
=

(
J2

K

N

)2 2τ1τ2τ3 p4
minT 4

π5m1m2m3 p2
F2

(
ν1ν2

vF1vF2

)2

. (B25)

The results for the drag rate in the symmetric case are pre-
sented in Eqs. (32a) and (32b), and shown in Figs. 4(c)
and 4(e).

We now explore the regime in which ( vFi
vF2

> 1 ∧ pFi

pF2
<

1) ∨ ( vFi
vF2

< 1 ∧ pFi

pF2
> 1). As shown in Figs. 4(b) and 4(h), we

can define a crossover temperature TC = 2vmin pmin. We find

that

Ii2 = 4νiν2 p2
minT 2

π2vFivF2
min

(
1,

TC

T

)
. (B26)

Squaring the term Ii2, where we now take vF1 = vF3, pF1 =
pF3, and using Eq. (B23), we obtain

σD

e2
=

(
J2

K

N

)2
τ1τ2τ3

2π8EF2

T 4 p4
min

v2
F1v

2
F2

min

(
1,

TC

T

)2

, (B27)

hence in the symmetric case we obtain the results presented in
Eqs. (33a) and (32b), and plotted in Figs. 4(a) and 4(g).

4. U(1) QSL: Non-Fermi-liquid behavior

Analogously to the Z2 case, we need to solve Eq. (B17)
for a U(1) QSL, so we first need to calculate the quantity
I2(Q, Q′). Using the definitions (27) we can write

I2(Q, Q′) = ν3
2

∫
d p̂2d p̂2′d p̂2′′dε2dε2′dε2′′

× δ(2)(pF2 p̂2′′ − pF2 p̂2′ + q)

× δ(2)(pF2 p̂2′′ − pF2 p̂2 − q′)

× δ(ε2′′ − ε2′ + ω)δ(ε2′′ − ε2 − ω′)

× ( f (ε2) − f (ε2′ )). (B28)

Integrating out δ(ε2′′ − ε2 − ω′)δ(ε2′′ − ε2′ + ω) and integrat-
ing in dε2 we find

I2(Q, Q′) = ν3
2 (ω + ω′)

∫
d p̂2d p̂2′d p̂2′′δ(2)(pF2 p̂2′′

− pF2 p̂2′ + q) × δ(2)(pF2 p̂2′′ − pF2 p̂2 − q′).
(B29)

We use the relation
∫

d p̂ = 2π
pF

∫
dpδ(|p| − pF ) for the inte-

grations over d p̂2′ and d p̂2′′ to rewrite Eq. (B29) as

I2(Q, Q′) = ν3
2

(
2π

pF2

)2

(ω + ω′)

×
∫

d p2′′δ(|pF2 p̂2′′ + q| − pF2)

× δ(|pF2 p̂2′′ − q′| − pF2). (B30)

It can be shown that

〈I2(Q, Q′)(q · Ê1)(q′ · Ê1)〉q̂,q̂

= − ν3
2

π p2
F2

(ω + ω′)
θ (2pF2 − q)q√

(2pF2)2 − q2

θ (2pF2 − q′)q′√
(2pF2)2 − q′2 ,

(B31)

so that the expression used to calculate the drag conductivity
is

σD = ς

∫
(ω + ω′)dqdq′dωdω′

sinh
(

ω
2T

)
sinh

(
ω′
2T

)
sinh

(
ω+ω′

2T

)
× q2 Im

[
�R

3 (q, ω)
]√

(2pF2)2 − q2

q′2 Im
[
�R

1 (q′, ω′)
]√

(2pF2)2 − q′2 , (B32)

where the integration over the modulus of the exchanged
momenta is restricted to 0 < q < 2pF2 and the integration
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in the frequencies takes has the domain −∞ < ω < ∞. The
prefactor is

ς = e2

8π3

(
J2

K

N

)2
ν3

2

T

τ1τ2τ3

m1m3 p2
F2

. (B33)

a. Limit of small spinon Fermi momentum

For {pF1,F3} � pF2 we use Eq. (A6) for the polarization
operator. We write σD as

σD = ςC(T, pF1, pF2, pF3) (B34)

and we only focus on the C(T, pF1, pF2, pF3) term. To extract
a first analytical estimate we approximate the function of ω

and ω′ like

ω + ω′

sinh
(

ω
2T

)
sinh

(
ω′
2T

)
sinh

(
ω+ω′

2T

)
� 8T

ω̄ω̄′ θ (T − ω)θ (T − ω′)θ (T − (ω + ω′)), (B35)

where ω̄ = ω
T . From Eqs. (B32) and (B35) we obtain

C(T, pF1, pF2, pF3) = 32T 3
∫ 1

0
dω̄

∫ 1−ω̄

0
dω̄′ 1

ω̄ω̄′

×
∫∫ 2pF2

0
dqdq′ q

2 Im
[
�R

3 (q, ω)
]√

(2pF2)2 − q2

× q′2 Im
[
�R

1 (q′, ω′)
]√

(2pF2)2 − q′2 . (B36)

With little manipulation one can write

C(T, TC1, TC3) = 32T 5ν1ν3(2pF2)4
∫ 1

0
dω̄

∫ 1−ω̄

0
dω̄′

×
∫ 1

0
dq̄

∫ 1

0
dq̄′ q̄2√

1 − q̄2

q̄′2√
1 − q′2

× θ
( TC3

T q̄ − ω̄
)√( TC3

T

)2
q̄2 − ω̄2

θ ( TC1
T q̄ − ω̄′)√( TC1

T

)2
q̄′2 − ω̄′2

,

(B37)

with TCi = 2vF2 pi. Integrating in q and q′ we find

C(T, TC1, TC3) = 32T 5

TC1TC3
(2pF2)4ν1ν3

∫ 1

0
dω̄

∫ 1−ω̄

0
dω̄′

× θ

[
1 − ω̄

(
T

TC3

)]
θ

[
1 − ω̄′

(
T

TC1

)]

× E

[
1 − ω

(
T

TC3

)2
]

E

[
1 − ω′

(
T

TC1

)2
]
,

(B38)

with E (x) being the elliptic integral of the second kind. There
are two regimes that need to be discussed, T � TC1,3 and
T � TC1,3, distinguished by the fact that for T > TC1,3 the
energy integral is bounded by TC and not T . The integration
domain in ω, ω′ is (0, TC3) × (0, TC1) and the ω, ω′ depen-
dence is factorized, yielding

C(T, TC1, TC3) = 32T 5

TC1TC3
(2pF2)4ν1ν3

× min

(
1,

TC1

T

)
min

(
1,

TC3

T

)
. (B39)

So we find that the drag relaxation rate in the nonsymmetric
regime is

1

τ
(U (1),C)
D

= 8

π4

(ν2)3

EF1vF1vF3

(
J2

K

N

)2

τ2T 4

× min

(
1,

TC1

T

)
min

(
1,

TC3

T

)
. (B40)

In the symmetric regime the results are the ones presented in
Eqs. (37) and (38) of the main text, and plotted in Fig. 5(c).

b. Limit of large spinon Fermi momentum

For pF2 > pF1 we write the term C(T, pF1, pF2, pF3) de-
fined in Eq. (B34) as

C(T, pF1, pF2, pF3)

= 32T 5ν1ν3

∫ 1

0
dω̄

∫ 1−ω̄

0
dω̄′

×
(∫ ω

2v3
(1− T

EF3
)+2pF3(1− T

EF3
)

ω
2v3

(1+ T
EF3

)
dqI (q, vF3, m3)

)

×
(∫ ω′

2vF1
(1− T

EF3
)+2pF1(1− T

EF3
)

ω′
2vF1

(1+ T
EF3

)
dqI (q, vF1, m1)

)
, (B41)

where the integrand of the two momenta integrals is defined
as

I (q, vFi, mi ) = q2√
(2pF2)2 − q2

√
(vFiq)2 − ω2 − ( q2

2mi

)2
.

(B42)

We calculated C(T, pF1, pF2, pF3) to be

C(T, pF1, pF2, pF3) = (32)2ν1ν3m1m3
EF3

TC3

EF1

TC1
T 5. (B43)

The drag relaxation rate in the nonsymmetric case yields

1

τD
= 128

π2

ν3
2ν1ν3

p2
F2

(
J2

K

N

)2
EF3

TC1TC3
T 4τ2. (B44)

In the symmetric regime Eq. (B44) becomes Eq. (35) of the
main text, as it is plotted in Fig. 5(a).
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