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We have developed a tensor network approach to the two-dimensional fully frustrated classical XY spin model
on the kagome lattice, and clarified the nature of the possible phase transitions of various topological excitations.
We find that the standard tensor network representation for the partition function does not work due to the
strong frustrations in the low-temperature limit. To avoid the direct truncation of the Boltzmann weight, based
on the duality transformation, we introduce a different representation to build the tensor network with local
tensors lying on the centers of the elementary triangles of the kagome lattice. Then the partition function is
expressed as a product of one-dimensional transfer matrix operators, whose eigenequation can be solved by the
variational uniform matrix product state algorithm accurately. The singularity of the entanglement entropy for
the one-dimensional quantum operator provides a stringent criterion for the possible phase transitions. Through
a systematic numerical analysis of thermodynamic properties and correlation functions in the thermodynamic
limit, we prove that the model exhibits a single Berezinskii-Kosterlitz-Thouless phase transition only, which
is driven by the unbinding of 1

3 fractional vortex-antivortex pairs determined at Tc � 0.075J1 accurately. The
absence of long-range order of chirality or quasi-long-range order of integer vortices has been verified in the
whole finite-temperature range. Thus, the long-standing controversy about the phase transitions in this fully
frustrated XY model on the kagome lattice is solved rigorously, which provides a plausible way to understand
the charge-6e superconducting phase observed experimentally in the two-dimensional kagome superconductors.
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I. INTRODUCTION

Various two-dimensional (2D) kagome lattice models have
attracted a lot of interest in the study of the interplay between
band topology, geometric frustrations, and strong correlations
in the past decades. Due to the special lattice geometry with
corner-sharing triangles, the kagome lattice features exotic
electronic structures, such as flat bands, van Hove singularity,
and nontrivial topology of Dirac cones [1–4]. The strongly
geometric frustrations can induce massive degenerate ground
states in kagome spin lattice models, providing one of the
most promising platforms to realize quantum spin liquids
[5–8]. In addition to these intriguing phenomena, the unusual
kagome superconductivity (SC) has recently been intensively
investigated in the family of quasi-2D materials AV3Sb5 (A =
K, Rb, Cs) (Refs. [9–13]). One of the exciting discoveries is
the possible vestigial charge-6e SC around the superconduct-
ing transition [14].

Different from the conventional SC described by the
Bardeen-Cooper-Schrieffer theory as condensation of charge-
2e Cooper pairs, the charge-4e or -6e SC can emerge as a
vestigial higher-order condensation of bound states of elec-
tron sextets above the critical temperature of charge-2e SC
(Refs. [15–28]). It seems that the charge-6e SC has a close
relation to certain types of pair density wave states on a hexag-
onal lattice [29]. The most important feature of the charge-6e
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SC is characterized by the fractional magnetic flux quantiza-
tion of h/6e. Despite the latest experimental progress, many
basic properties of charge-6e SC remain less well understood.
Some theoretical studies [26,30,31] have suggested that the
charge-6e SC may be resulted from the fluctuations of pair
density wave order. Nevertheless, the experimental realization
of such charge-6e SC has not been verified so far.

Despite the lack of direct physical origin and implication
of these remarkable observations, the crucial ingredient of
the underlying geometry frustrations provides an insightful
perspective to understand the charge-6e SC. The exotic quan-
tum phenomena of charge-6e SC can naturally be caused
by the effect of strong frustrations of the kagome geometry.
At the phenomenology level, a complex SC order parameter
can be expressed as |ψ (�r)|eiθ (�r). When the amplitude fluc-
tuations of |ψ (�r)| are frozen, the SC transition is governed
by the phase fluctuations of the Cooper pairs, and the es-
sential physics is described by a classical ferromagnetic XY
spin model [32–35]. However, in the presence of an exter-
nal magnetic field, the ferromagnetic coupling between the
nearest-neighbor (NN) XY spins may be tuned to be antiferro-
magnetic when each triangle of the kagome lattice has a π flux
[36,37], which becomes the fully frustrated XY spin model.
Such a model exhibits a large ground-state degeneracy and
fractional topological excitations because of the interference
on the underlying lattice topology [36–41].

For the 2D antiferromagnetic XY kagome lattice model,
apart from the global U(1) spin rotational degrees of freedom,
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FIG. 1. (a) The kagome lattice with antiferromagnetic nearest-
neighbor couplings. (b) Triangular plaquette with + and − chirality.

the frustration in each elementary triangle can induce the
chiral degrees of freedom. To minimize the energy of each
triangular plaquette, the orientation of the corresponding three
XY spins should be different from each other by an angle of
2π/3. In this way, when these three spins rotate clockwise
or anticlockwise, each plaquette can be ascribed a positive
or negative chirality, displayed in Fig. 1. In addition to the
degeneracy associated with U(1) symmetry, the ground state
has a finite residual entropy of 0.126kB per site, similar to
the three-state antiferromagnetic Potts model [42,43]. At low
temperatures, the fluctuations of chirality are so strong that the
phase angle between two spins separated by a long distance
can freely change by ±2π/3. This uncertainty in the phase
difference increases with distance and destroys the quasi-
long-range order (quasi-LRO) in the XY spins. The absence
of the quasi-LRO of the XY spins exp(iθ ) implies that the
phase coherence of the charge-2e SC is absent.

Although many theoretical conjectures were proposed,
there has not yet had a general consensus on the existence
of the phase with LRO arrangement of chirality at low tem-
peratures. Some studies [38,40] argued that the spin wave
fluctuations favor the LRO of the antiferromagnetic arrange-
ment of chirality for the neighboring triangular plaquettes and
the phase coherence between integer vortices survives, while
some other works [36,37,39,41] suggested that the chirality
is always disordered corresponding to the suppression of the
conventional charge-2e SC and the lowest-order quantity dis-
playing quasi-LRO is given by the exp(i3θ ) variables. Due
to the presence of strong frustrations and massive degeneracy
of the ground state, it reminds a challenging problem to clar-
ify the low-temperature phases of the antiferromagnetic XY
model on the kagome lattice.

The reason for the numerical difficulty is that the exci-
tations of different kinds of topological excitations (integer
vortices, 1

3 fractional vortices, domain walls, and kinks on
the domain walls) occur close to each other at rather low
transition temperatures of nearly 1

11 of the usual nonfrustrated
Berezinskii-Kosterlitz-Thouless (BKT) transition [36]. And
the traditional sampling methods often suffer from the finite-
size effects and a critical slowing down when approaching to
the low-temperature phase [41,44,45].

Fortunately, the recent developments in tensor network
(TN) methods have shed new light on the numerical study
of 2D classical frustrated spin systems [46–49]. It is found
that the construction of the TN representations of the partition
functions should be carried out with special care to encode
the underlying physics of all the ground-state configurations
at the level of local tensors. The convergence problem of the
contraction algorithms of TN can be overcome by suitable
Hamiltonian tessellations or split of U(1) spins. In this work,

we develop a peculiar TN approach to numerically solve the
antiferromagnetic XY model on kagome lattices.

Different from the discrete cases of Z2 spins [47,49] or the
fully frustrated XY spin model on a square lattice with a chiral
LRO ground state [48], the choice of the TN representations
for the fully frustrated kagome lattice model does not affect
the convergence of the contraction algorithms, but it does lead
to incorrect contraction values at low temperatures. We find
that the standard formulation is not always a good option
because the finite truncation of the Boltzmann weights fails to
represent the massive degeneracy of the ground states. Here
we have to introduce a special construction strategy based on
the duality transformations [39,50,51], and then the partition
function is transformed into an infinite 2D TN with local
tensors lying on the centers of the elementary triangles of the
original kagome lattice, which can be efficiently contracted by
a recently proposed TN algorithm under optimal variational
principles [52–54].

Once the proper implementation of TN representation is
achieved, it can be expressed in terms of a product of one-
dimensional (1D) transfer matrix operator. The singularity of
the entanglement entropy of this 1D quantum transfer operator
can be used to determine various phase transitions with good
accuracy [55]. The distinct advantage of the TN method is
that a stringent criterion can be used to distinguish various
phase transitions without identifying any order parameter a
priori. From the perspective of the quantum entanglement,
we determine the phase structure of the antiferromagnetic XY
model on the kagome lattices with clear evidence that only a
single phase transition takes place at Tc � 0.075J1. From the
analysis of the thermodynamic properties and the behavior of
XY spin correlation functions, we demonstrate the phase tran-
sition belongs to the BKT universality class [56–58] driven
by the unbinding of 1

3 fractional vortex-antivortex pairs. In
the absence of LRO in chirality, the low-temperature phase is
characterized by a quasi-LRO in the spin variable exp(i3θ ),
while the phase coherence of integer vortices is destroyed due
to the exponential decaying of the exp(iθ ) correlation func-
tions. The clarification of such a phase gives rise to a prototype
example, where the conventional charge-2e SC of the Cooper
pairs is suppressed, but an unusual form of charge-6e SC of
“Cooper sextuples” dominates.

The rest of the paper is organized as follows. In Sec. II,
we give an introduction of the 2D fully frustrated XY model
on the kagome lattice and the possible phase transitions. In
Sec. III, we develop a general framework of the TN method
for this fully frustrated model based on the crucial duality
transformation. In Sec. IV, we present the numerical results
for the determination of the finite-temperature phase diagram.
Finally, in Sec. V, we give our conclusions and future exten-
sions of our work.

II. MODEL HAMILTONIAN AND
TOPOLOGICAL EXCITATIONS

We start with the effective Ginzburg-Landau (GL) free-
energy density of superconductivity in an external gauge field

FGL = a|ψ |2 + b

2
|ψ |4 + 1

2m∗

∣∣∣∣
(

h̄

i
∇ − e∗

c
�A
)

ψ

∣∣∣∣2

, (1)
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where a, b are phenomenological expansion coefficients de-
pendent on the materials, m∗ = 2me and e∗ = 2e are the
effective mass and the charge of Cooper pairs, and the energy
of the inductive fields �B = ∇ × �A produced by the supercur-
rents are ignored [37]. The complex order parameter ψ (�r) =
〈c†

↑(�r)c†
↓(�r)〉 can be regarded as a wave function for the

Cooper pairs and expressed as ψ (�r) = |ψ (�r)|eiθ (�r). Since the
fluctuations of |ψ (�r)| can be ignored in the low-temperature
regime, we reduce the above GL free energy to a classi-
cal XY spin model on a 2D kagome lattice with the model
Hamiltonian [59]

H = −J1

∑
〈i j〉

cos(θi − θ j + Ai j ), (2)

where J1 = ns h̄2

m∗ is the coupling strength with the superfluid
density fixed as ns = |ψ (�r)|2, i and j enumerate the lattice
sites, θi can be regarded as classical XY spins associated
with each lattice site, and the summation is over all pairs
of the nearest neighbors. The frustration is induced by the
gauge field defined on the lattice bond satisfying Ai j = −Aji.
The gauge field is related to the vector potential by Ai j =
2π
�0

∫ �r j

�ri
d�l · �A, where �0 = h

2e is the flux quantum.
In the absence of external magnetic field, the effective

coupling is ferromagnetic and results in a conventional BKT
phase transition to the low-temperature state with power-law
correlations of the XY spins, corresponding to the charge-2e
SC. The corresponding physics of this transition has been well
established, which does not depend on the specifics of the lat-
tice structure. To introduce strong frustrations into this model,
we should have a Z2 gauge field, one-half quantum flux per
plaquette,

∑
〈i, j〉∈
 Ai j ≡ π (mod 2π ), where the summation

is taken around the perimeter of each elementary triangle.
Note that the direct physical origin of the gauge field in
realistic kagome SC materials is still unclear, which may be
resulted from the external magnetic fields [36,37,59].

Then the resulting model Hamiltonian is the antiferromag-
netic XY model on the kagome lattices defined by

H = J1

∑
〈i, j〉

cos(θi − θ j ), (3)

where each elementary triangular plaquette is frustrated due
to the antiferromagnetic interactions. To achieve the minimum
of the energy, the angle between each pair of nearest-neighbor
spins should be ±2π/3. In addition to the global U(1) ro-
tation of all spins related to the global invariance of the
Hamiltonian like the 2D classical XY model, the elemen-
tary triangular plaquette can be characterized by the chirality
σ = ±1. The positive and negative chiralities of the plaquette
are displayed in Fig. 1(b), corresponding to the anticlock-
wise and clockwise rotation of the spins, respectively. The
ground states of the antiferromagnetic XY model on a kagome
lattice present a massive accidental degeneracy described by
the three-state antiferromagnetic Potts model, which can also
be mapped onto a solid-on-solid model at its roughening
transition [43].

The accidental degeneracy of the ground state can be
reduced to U(1) × Z2 in the presence of next-to-nearest-

neighbors (NNN) interactions:

H = J1

∑
〈i, j〉

cos(θi − θ j ) + J2

∑
〈〈i, j〉〉

cos(θi − θ j ), (4)

where J2 is the coupling between NNN sites denoted by
〈〈i, j〉〉. For the antiferromagnetic NNN interaction (J2 > 0 ),
the spin pattern of the ground state has the same translational
period as the usual kagome lattices, which is called the “q = 0
state” shown in Fig. 2(a). For the ferromagnetic NNN interac-
tions (J2 < 0), the ground state of the spin pattern is called
the “

√
3 × √

3 state” with a regular alternation of positive and
negative chiralities. Such a pattern has a translational invariant
unit including three hexagons with a linear dimension

√
3

times larger than the unit cell of the original kagome lattice
as displayed in Fig. 2(b).

Although extensive studies were carried out for this anti-
ferromagnetic XY model on 2D kagome lattices in the past
decades, the nature of the phase transitions in the frustrated
model is still controversial [36–41] . The focus of the problem
is whether the degeneracy of the chiralities could be lifted
strongly enough to drive the system into a phase with LRO
arrangement of chirality. Some studies [38,40] proposed that
the spin wave fluctuations would favor the LRO of the an-
tiferromagnetic arrangement of chirality for the neighboring
triangular plaquettes (

√
3 × √

3 state) at low temperatures
through a mechanism called “order by disorder.”

Due to the U(1) × Z2 degeneracy, two kinds of topological
excitations are expected to exist: (i) linear defects as the do-
main walls separating two ground states of different chirality
patterns, (ii) pointlike defects as vortices or antivortices which
destroy the U(1) phase coherence. Figure 3(a) displays the
zero-energy domain walls separating the different

√
3 × √

3
patterns. Each segment of the domain wall separates two tri-
angular plaquettes with the same chirality and forms an angle
of 2π/3 between each other.

Moreover, possible fractional vortices with topological
charges of ± 1

3 can exist on the kinks on the domain walls,
where elementary links meet each other at a wrong angle not
equal to 2π/3. As displayed in Fig. 3(b), the kink separates the
domain wall into two segments. Since the chiralities should
be changed by the permutation of spin orientations within
the elementary triangles when going across the segments, a
discrepancy of 2π/3 is introduced on a string connecting the
kinks. The fractional vortices with the topological charge of
1
3 thus form at the centers of the hexagons as the terminals
of the string. Hence, the antiferromagnetic XY model on the
kagome lattice should go through at least two kinds of phase
transitions associated with the proliferation of the domain
walls and the unbinding of fractional vortex pairs.

On the contrary, some other works [36,37,39,41] suggested
that the chirality is always disordered with infinitely many
ground states and exp(i3θ ) is the lowest-order quantity show-
ing quasi-LRO. Instead of freezing into one specific pattern,
the system would move among all possible patterns with the
equilibrium probability given by the corresponding Boltz-
mann weights. Since the domain walls displayed in Fig. 3(a)
can freely be excited, the physical pictures should be clearer
by introducing the concept of excessive charges [60] rather
than drawing complicated domain wall configurations. In this
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FIG. 2. Two periodic patterns of chirality. Each pattern has an-
other Z2 degenerate state by switching the positive and negative
chiralities. The translational invariant units are represented by or-
ange parallelograms, respectively. (a) One of the two q = 0 patterns
with a ferromagnetic arrangement of chiralities. (b) One of the two√

3 × √
3 patterns with a regular alternation of positive and negative

chiralities.

way, the topological charges of vortices on the centers of the
hexagons can be defined by the chiralities of six surrounding
triangles

qh = 1

3

6∑
t=1

qt , (5)

FIG. 3. (a) Zero-energy domain walls (green, red, and blue lines)
separating two triangular plaquettes with the same chirality belong-
ing to different

√
3 × √

3 states. (b) Fractional vortices (orange
circle) appear at every point where elementary links forming a do-
main wall meet each other at a wrong angle not equal to 2π/3.
The kink introduces a string (dotted line) with a discrepancy of
2π/3 starting from the fractional vortex and terminating at another
fractional vortex (not shown).

where the charges qt = ± 1
2 correspond to chiralities σt = ±1,

and the factor 1
3 results from the fact that each triangle is

shared by three neighboring hexagons.
The relationships between the charges of vortices and the

local domain wall configurations are enumerated in Fig. 4.
Another set of minus vortex configurations can be obtained

014424-4



TENSOR NETWORK APPROACH TO THE FULLY … PHYSICAL REVIEW B 108, 014424 (2023)

FIG. 4. Topological charges of vortices corresponding to differ-
ent domain wall structures. Another set of minus vortices can be
obtained by inverting all the signs of chiralities. (a) Regular structure
with zero charges. (b) Zero-energy domain wall with zero charges.
(c) Intersection of two straight walls with zero charges. (d) Inter-
section of two walls with charge + 1

3 . (e) Domain wall of angle π

with charge + 1
3 . (f) Domain wall of angle π

6 with charge + 1
3 . (g)

Intersection of two walls with charge + 2
3 . (h) Intersection of three

straight walls with charge +1.

by inverting all the signs of chiralities on the triangles. It is
clear to see that the low-temperature phase allows the free ex-
citations of integer vortices of Figs. 4(a)–4(c) and 4(h), while
the fractional vortices shown in Figs. 4(d)–4(g) are bound in
pairs due to the higher-energy cost. As shown in Fig. 5, a pair
of ± 1

3 vortices is created by switching the chiralities of two
adjacent triangles. As the temperature increases, the fractional
vortices will unbind at the BKT transition corresponding to
the destruction of quasi-LRO in ei3θ .

III. TENSOR NETWORK THEORY

A. Problems in the standard representation

The partition function of a classical lattice model with local
interactions can be always represented as a contraction of TN
as a product of the transfer matrices on its original lattice [61]
or the dual lattice [62]. The standard construction of the TN
starts by putting a matrix on each bond accounting for the
Boltzmann weight of the neighboring interactions. Then the
local tensors can be obtained from suitable decompositions of
the local bond matrices. Although this paradigm is proven a
success in the studies of the classical ferromagnetic XY model
[63,64] and fully frustrated XY model on a square lattice with
careful splits of U(1) spins to encode the ground-state local
rules [46–49], it cannot be directly applied to the frustrated

FIG. 5. A pair of bound ± 1
3 vortices (red and blue circles) is

created by switching the chiralities of two adjacent triangles of one
of the degenerate minimum energy patterns.

FIG. 6. (a) The TN representation of the partition function with
interaction matrices on the links accounting for the Boltzmann
weight. (b) The TN representation of the partition function defined
on the original lattice. The translation invariant cluster is circled by
the red dotted line. (c) The split of the Kronecker delta functions
and the construction of the local O tensor. (d) The TN representation
of the partition function composed of uniform local O tensors.

XY kagome antiferromagnets, where a finite truncation of
the interaction matrices fails to accommodate the massive
degeneracy of the low-temperature phase.

To illustrate this problem, we first give the TN representa-
tion of the partition function from the generic approach. The
partition function on the original lattice is expressed as

Z =
∏

i

∫
dθi

2π

∏
〈i, j〉

W (θi, θ j ), (6)

where W (θi, θ j ) = e−βJ1 cos(θi−θ j ) can be viewed as infinite
interaction matrices with continuous U(1) indices, and β =
1/kBT is the inverse temperature with kB the Boltzmann con-
stant. The partition function is then cast into the TN as shown
in Fig. 6(a), where the integrations

∫
dθi/2π are denoted as

red dots and the matrix indices take the same values at the
joint points.

To transform the local tensors onto a discrete basis, we
employ the character decomposition

ex cos θ =
∞∑

n=−∞
In(x)einθ (7)

to decompose the interaction matrices as

W (θi, θ j ) =
∑

nl

Inl (−β )einl (θi−θ j ), (8)

where In(x) are the modified Bessel functions of the first kind.
The index nl lies on the bond l connecting NN sites with a
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FIG. 7. The free energy obtained from the contraction of the TN
constructed from direct truncations on the Boltzmann weight. The
bond dimension d denotes the upper limit of the Bessel function
expansions.

direction from i to j, which means nl = n(i, j) = −n( j,i). After
integrating out the U(1) phase degrees of freedom at each site,
we get the partition function shown in Fig. 6(b) in terms of the
TN representation,

Z =
∑
{nl }

∏
l

Inl (−β )
∏

i

δn1(i)+n2(i)+n3(i)+n4(i),0, (9)

where the conservation law of U(1) charges has been encoded
in the local δ tensors. To obtain a uniform TN and avoid
the splits of the spectrum tensors In with the negative fac-
tor (−1)n, we decompose the δ tensors, as two neighboring
triangles share only one corner. As shown in Fig. 6(c), we
split a bigger four-leg δ tensor into two smaller three-leg δ

tensors

n1 + n2 + n3 + n4 = 0 →
{

n1 + n2 + m = 0,

n3 + n4 + m = 0.
(10)

Then we group the inner tensors composing the transitional
invariant unit circled by the red dotted line in Fig. 6(b) into
a four-leg O tensor. Finally, the uniform TN displayed in
Fig. 6(d) is obtained as

Z = tTr
∏

s

Om3,m4
m1,m2

(s), (11)

where “tTr” means the tensor contraction over all auxiliary
links and s denotes the sites of the transitional invariant unit.

Unfortunately, such a construction does not work in the
low-temperature regime. Although the standard contraction
algorithms converge for the construction of TN without a
hitch, they lead to incorrect contraction results at low tempera-
tures. The contraction values are found to be highly dependent
on the truncation dimensions of the Boltzmann weight, i.e.,
the upper limit nmax of the Bessel function expansions In(−β ).
The bond dimension d of the I tensor in Fig. 6(b) is de-
fined as d = 2nmax + 1, where the index n runs in the range
{−nmax, . . . , nmax}. The free-energy density shown in Fig. 7 is
calculated directly from the partition function

f = − 1

βN
ln Z, (12)

FIG. 8. (a) The decompositions of nl at each kagome lattice bond
in terms of integer-valued currents ch and ct circulating on the centers
of elementary hexagons and triangles. (b) The TN consisting of local
Y tensors (purple triangles). The orange circles denote the hexagons
currents ch and the dashed box denotes the transitional invariant unit.
(c) The basis transformation from Y tensor to Ỹ tensor and the con-
struction of local Õ tensor by combining two neighboring Ỹ tensors.
(d) The TN representation of the partition function composed of
uniform local Õ tensors.

where N is the total number of sites on the original kagome
lattice under contraction. We find that the free energy always
displays an inflection point that shifts left with increasing
bond dimensions d . The singular point in the free-energy
density seems to indicate the occurrence of a first-order phase
transition, which turns out to be misleading seen in the fol-
lowing sections. The move of the inflection point stops around
T � 0.08J1 and the data below this temperature display strong
fluctuations upon increasing d thereafter.

In principle, the low-temperature physics should be cal-
culated with infinite bond dimension d because the Bessel
functions become In(β ) � 1 with β � 1. However, for nu-
merical calculations, a finite truncation on d is necessary.
The finite cutoff corresponds to the saturation of a maximal
number of NN bonds, which is far away from the true ground
state of infinite degeneracy due to the strong frustrations.
That is why the standard construction is not applicable in the
low-temperature regime.

B. Duality transformation

To avoid the direct truncation on Bessel function expansion
n, we propose a construction approach with the help of the
duality transformation [39,50,51]. As shown in Fig. 8(a), we
decompose n in terms of integer-valued currents circulating
on the centers of elementary hexagons and triangles

nl = ch + ct , (13)

where the arrows on the links denote the directions as-
signed to nl . The negative value of ch or ct means the
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reverse direction of the current against nl . In this way, the
conservation condition on each site n1 + n2 + n3 + n4 = 0
is satisfied automatically. And the partition function (9) is
transformed into

Z =
∑

{ch,ct }

∏
l

Ich+ct (−β ). (14)

Then the problem with finite truncations of the Bessel func-
tions can be bypassed by performing an infinite sum over the

triangle currents

Z =
∑
{ch}

∏
t

∞∑
ct =−∞

3∏
ht =1

Icht +ct (−β ), (15)

where ht = 1, 2, 3 denote three hexagons surrounding each
triangle t . Using the Fourier transformation

In(−β ) = 1

2π

∫ π

−π

dθ e−inθ e−β cos(θ ), (16)

we sum out the ct on each triangle and obtain

Yc1,c2,c3 =
∞∑

ct =−∞

3∏
h=1

Ich+ct (−β )

=
∞∑

ct =−∞

∫ π

−π

∫ π

−π

∫ π

−π

dφ1dφ2dφ3

(2π )3
exp

(
−

3∑
h=1

[i(ch + ct )φh + β cos φh]

)

=
∫ π

−π

∫ π

−π

dφ1dφ2

(2π )2
exp(−i[φ1(c1 − c3) + φ2(c2 − c3)] − β[cos φ1 + cos φ2 + cos(φ1 + φ2)]). (17)

Here Yc1,c2,c3 is referred to a six-rank tensor with indices c1, c2, and c3 displayed in Fig. 8(b), where the neighboring indices at
each corner of the triangle share the same ch.

Since the transition temperature is quite low [36], it is useful to consider the low-temperature limit (β � 1). Then the
integrand in (17) is saturated by the vicinity of the saddle points φh ∼ 2πσt

3 , where σt = ±1 is the chirality defined on the
triangles related to infinite ground states. Substituting the asymptotic formula

Yc1,c2,c3 ∝
∑

σt =±1

∫ π

−π

∫ π

−π

dφ1dφ2

(2π )2
exp

{
−i[φ1(c1 − c3) + φ2(c2 − c3)] − β

2

[(
φ1 − 2πσt

3

)2

+
(

φ2 − 2πσt

3

)2
]}

=
∑

σt =±1

exp

{
− i2πσt

3
(c1 + c2 + c3) − 1

3β
[(c1 − c3)2 + (c2 − c3)2 + (c3 − c1)2]

}
, (18)

back into the expression (15) and using the Poisson
summation formula

∞∑
c=−∞

δ(c̃ − c) =
∞∑

m=−∞
ei2πmc̃, (19)

we can write the partition function as

Z =
∑

{σt },{mh}

(∏
h

∫ ∞

−∞
dc̃h

) ∏
h

exp

[
− i2π

6∑
th=1

(
σth

3
+ mh

)
c̃h

− 1

3β

∑
〈h,h′〉

(c̃h − c̃h′ )2

]
, (20)

where c̃ are continuous currents and mh are integers defined
on the centers of the hexagons. In the low-temperature limit,
the integration over c̃ gives the conservation conditions of
chiralities surrounding each hexagon

6∑
th=1

σth ≡ 0 (mod 6), (21)

corresponding to the free excitations of integer vortices as
shown in Figs. 4(a)–4(c) and 4(h). The integer vortices can be
ignored because they are free to proliferate at all temperatures.

Actually, the partition function (20) can be regarded as a 2D
Coulomb gas with charges

Qh = 1

3

6∑
t=1

σt + mh, (22)

located at the centers of the hexagons, and the BKT transition
is driven the unbinding fractional vortices with most probable
charges of Qh = ± 1

3 .
Since the values of Yc1,c2,c3 in (17) are just dependent on the

difference of ch on the edges of the triangle, we can transform
the Y tensors onto a new basis

k1 = c1 − c2, k2 = c2 − c3, k3 = c3 − c1,

and obtain the three-rank local tensors

Ỹk1,k2,k3 = Yc1,c2,c3 (23)

as shown in Fig. 8(c). Finally, the transitional invariant local
tensor Õ is achieved by combining a pair of up and down
triangles of Ỹ tensors as

Õk3,k4
k1,k2

=
∑

k′
Ỹk1,k2,k′Ỹk4,k3,k′ . (24)
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FIG. 9. (a) Eigenequation for the fixed-point uniform MPS
|
(A)〉 of the 1D transfer operator T̂ . (b), (c) Eigenequations for
the left and right fixed-point eigenvectors of the channel operator
TÕ. (d) Expectation of a local operator calculated by contracting
the leading eigenvectors of the channel operators. (e) Two-point
correlation function represented by contracting a train of channel
operators.

And the uniform TN representation of the partition function
displayed in Fig. 8(d) is given by

Z = t Tr
∏

s

Õk3,k4
k1,k2

(s). (25)

From the asymptotic form (18), it is clear that the tensor
components of Ỹ decrease exponentially with increasing |ki|
(i = 1, 2, 3). Hence, we can truncate the series safely and ap-
proximate Õ with a finite bond dimension d̃ in high precision,
where d̃ = 2kmax + 1 with the index k ranging from −kmax to
kmax.

C. Evaluations of the physical quantities

The fundamental object for the calculation of the partition
function is the row-to-row transfer operator consisting of an
infinite train of Õ tensors

T̂ (β ) =
∑

...,s,p,q,...

Tr
[
. . . Õk3

k1
(s)Õk3

k1
(p)Õk3

k1
(q) . . .

]
, (26)

where s, p, q, . . . label different sites within a single row.
This operator can be regarded as the matrix product operator
(MPO) for 1D quantum spin chains of complicated interac-
tions with the correspondence

Ĥ1D = − 1

β
ln T̂ (β ). (27)

In the thermodynamic limit, the partition function is deter-
mined by the dominant eigenvalue of the transfer operator as

shown in Fig. 9(a):

T̂ (β )|
(A)〉 = �max|
(A)〉, (28)

where |
(A)〉 is the leading eigenvector represented by matrix
product states (MPS) made up of uniform local A tensors [52].
The local tensor Ak

α,β is a three-leg tensor with physical bond

dimension d̃ and auxiliary bond dimension D controlling the
accuracy of the approximation.

The fixed-point eigenequation can be accurately solved by
the variational uniform matrix product state (VUMPS) algo-
rithm [52–54], which provides an efficient variational scheme
to approximate the largest eigenvector |
(A)〉. During the
iteration of a set of optimized eigensolvers, we also obtain the
leading left and right eigenvectors of the channel operators.
The channel operators have a sandwich structure composed
of two local tensors of fixed-point MPS and the middle four-
leg local tensor. The channel operator related to A tensor is
defined by

TX =
∑
i, j

Āi ⊗ X i, j ⊗ Aj, (29)

and other channel operators are defined in a similar way. The
left and right fixed points of the channel operator TÕ are
obtained from the eigenequations

〈FL|TÕ = λ〈FL|, TÕ|FR〉 = λ|FR〉, (30)

as displayed in Figs. 9(b) and 9(c).
Once the fixed points are achieved, various physical quan-

tities can be accurately calculated in the TN language. The
entanglement properties can be detected via the Schmidt
decomposition of |
(A)〉 which bipartites the relevant 1D
quantum state of the MPO,

|
(A)〉 =
D∑

α,β=1

sαδα,β |
−∞,n
α

〉∣∣
n+1,∞
β

〉
. (31)

And the entanglement entropy [65] is determined directly
from the singular values sα as

SE = −
D∑

α=1

s2
α ln s2

α, (32)

in correspondence to the quantum entanglement measure.
Moreover, the expectation value of a local observable m(θi )

can be expressed as

m(θi ) = 1

Z

∏
s

∫
dθs

2π
e−βE ({θs})m(θi ), (33)

where E ({θs}) is the energy of the state under a given spin
configuration {θs}. For the observables in the form of m(θi ) =
eiqθi , it can be calculated by inserting the corresponding impu-
rity tensors into the original tensor network for the partition
function. The impurity tensor Mk3,k4

k1,k2
for the observable can

be simply constructed by changing the corresponding charge
conservation condition at site i into

4∑
l=1

nl = q, (34)
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which introduces imbalanced currents in the local tensor Ỹ
with the mapping Ỹk1,k2,k3 → Ỹk1+q,k2,k3 . Using the MPS fixed
point, the contraction of the TN containing the impurity ten-
sor is reduced to a trace of an infinite sequence of channel
operators,

〈m(θ )〉 = Tr (. . .TÕTÕTMTÕTÕ . . . ), (35)

which can be further squeezed into a contraction of a small
network as shown in Fig. 9(d),

〈m(θ )〉 = 〈FL|TM |FR〉 (36)

with the help of leading eigenvectors 〈FL| and |FR〉.
In the same way, the two-point correlation function be-

tween local observables defined by G(r) = 〈m(θ j )m(θ j+r )〉
can be evaluated by inserting two local impurity tensors into
the original TN. For the case of the spin-spin correlation
function, the evaluation of G(r) = 〈eiq(θ j−θ j+r )〉 is reduced to
a trace of a row of channel operators containing two impurity
tensors as shown in Fig. 9(e):

G(r) = 〈FL|TMj TO . . .TO︸ ︷︷ ︸
r−1

TMj+r |FR〉. (37)

IV. NUMERICAL RESULTS

In the previous sampling approaches the phase transitions
were determined by some kinds of order parameter like the
magnetization or Binder cumulant, where the corresponding
numerical results of the simulations displayed a strong de-
pendence on the system size [36,41] and a slow convergence
under large frustrations [37,44,45]. Within the TN framework,
we bring modern concepts of quantum entanglement to the
frustrated classical XY model on the kagome lattices by map-
ping the transfer matrix to a 1D quantum transfer operator.
The entanglement entropy of the fixed-point MPS for the 1D
quantum correspondence exhibits singularity at the critical
temperatures, which offers a sharp criterion to determine all
possible phase transitions in the thermodynamic limit, es-
pecially for the systems possessing U(1) and Z2 degrees of
freedom [25,48,66].

As shown in Fig. 10, the entanglement entropy SE de-
velops only one sharp singularity at the critical temperature
Tc � 0.075J1, which strongly indicates that a single phase
transition takes place at a rather low temperature. As displayed
in Fig. 10(a), the entanglement entropies remain unchanged
under different bond dimensions of the local Õ tensor from
d̃ = 41 to 47. The convergence of the entanglement entropy
demonstrates the success of this construction approach. More-
over, the peak positions are almost unchanged with different
MPS bond dimensions from D = 60 to 120 as shown in
Fig. 10(b). So we can accurately locate the transition tempera-
ture, which is in good agreement with theoretical expectations
[39,40] for the unbinding temperature of 1

3 vortex pairs

Tc ≈ π
√

3

72
J1 ≈ 0.075J1. (38)

Since the calculations are performed in the thermodynamic
limit, we directly determine the transition temperature of
the finite-size interpolation in the previous studies using
sampling methods [36]. The specific advantage of the TN

FIG. 10. (a) The entanglement entropy as a function of tempera-
ture under MPS bond dimension D = 100 and different MPO bond
dimensions. (b) The entanglement entropy as a function of temper-
ature under MPO bond dimension d̃ = 45 and different MPS bond
dimensions. (c) The entanglement entropy at low temperatures under
MPO bond dimension d̃ = 99 and MPS bond dimensions D = 100.

approach enables us to efficiently investigate the extremely
low-temperature regime that has never been reached before at
a small cost of increasing MPO bond dimensions. As shown
in Fig. 10(c), the entanglement entropy is smooth everywhere
at low temperatures, which demonstrates that there is no
evidence for the selection of a single ground state of chiral-
ity down to T ∼ 10−5J1. The temperature has reached low
enough to rule out the possibility of ordering in staggered chi-
rality, where the lower boundary of the transition temperature
was just estimated to T ∼ 10−4J1 [40].

For the sake of the possible periodic chirality pattern of√
3 × √

3 states, we also build the transfer operator with a
larger unit cell consisting of 3 × 3 clusters of Õ tensors. The
eigenequation for the enlarged translational unit can be solved
efficiently by the multiple lattice-site VUMPS algorithm [67].
We find that the lattice symmetry is not spontaneously broken
and all the results are the same as the case of the simplest unit
cell, which means the absence of the LRO of chirality.

Furthermore, we study the thermodynamic properties to
understand the essential physics of the phase transition. The
free energy per site can be calculated straightforwardly from
the variational MPS setup

f = − 1

3β
ln λ, (39)

where λ is the eigenvalue of the channel operators in (30) and
the coefficient 1

3 is due to the fact that each Õ tensor contains
three original kagome lattice sites. As displayed in Fig. 11(a),
it is clear that the free energy shows no signs of a first-order
phase transition as it is perfectly smooth everywhere. The
sharp contrast to the free energy in Fig. 7 obtained from the
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FIG. 11. The thermodynamic properties under different MPS
bond dimensions. (a) The free energy as a function of temperature.
(b) The internal energy as a function of temperature. (c) The specific
heat as a function of temperature.

standard construction of TN demonstrates the success of our
construction approach.

The internal energy density can be obtained from the real
part of the expectation value of the nearest-neighbor two-
angle observable

u = 2〈cos(θi − θi+1)〉 = 2 Re〈ei(θi−θi+1 )〉. (40)

As shown in Fig. 11(b), we find that there is no singularity
in the temperature dependence of the internal energy. As the
temperature approaches T → 0, the internal energy converges
to u(T ) → −1, which implies that the angle between the NN
spins becomes 2π/3 at the ground state. Also, the expectation
value of chirality can be calculated as

〈σ 〉 = 2

3
√

3

∑
〈i, j〉∈


sin(θi − θ j ) (41)

in the same way as the frustrated triangular lattices [68].
We find the expectation value of chirality equals zero with
Im〈ei(θi−θi+1 )〉 = 0 at all temperatures, which means the pres-
ence of strong fluctuations of chirality. Furthermore, the
specific heat can be derived directly from

CV = du

dT
, (42)

which develops a round bump around T = 0.095J1 higher
than the transition temperature determined from the entangle-
ment entropy, which is a characteristic feature for the BKT
transition. The smooth behavior of thermodynamic properties
rules out the possibility of the first-order transition from the
lifting of chirality degeneracy [40].

To further explore the nature of the phase transition, we cal-
culate the following two different correlation functions among

FIG. 12. A comparison between different correlation functions at
T = 0.07J1 below the BKT transition. (a) The correlation function
of the 1

3 fractional vortices exhibits a power-law decay. (b) The
correlation function of the integer vortices shows an exponential
decay.

integer vortices and fractional vortices:

Gθ (r) = 〈cos(θ j − θ j+r )〉,
G3θ (r) = 〈cos(3θ j − 3θ j+r )〉. (43)

A comparison between these two correlation functions in the
low-temperature phase is shown in Fig. 12. For a given tem-
perature of T = 0.07J1 < Tc, the correlation function G3θ (r)
displays a power-law behavior with distance but the cor-
relation function Gθ (r) decays exponentially, corresponding
to the presence of quasi-LRO of the fractional vortices and
antivortices. As the temperature increases above Tc, both cor-
relation functions behave in an exponential way, indicating
that the system goes into the disordered phase. It is interesting
to see that the correlation function Gθ (r) displays a dumped
oscillation in the short range in accordance with the

√
3 × √

3
pattern, but the fluctuation amplitude decays rapidly as shown
in Fig. 12(b). The exponential behavior in θ fields can be
explained by the free fluctuations of the system among dif-
ferent ground-state chirality patterns. Although the spin wave
fluctuations favor the short-range antiferromagnetic arrange-
ment of chiralities, they are too weak to lift the ground-state
degeneracy. The uncertainty of the phase difference of ±2π/3
increases with distance, which destroys the correlation in θ

fields in the long range.
Such a behavior clearly indicates that the integer vortices

can always excite freely, implying the absence of phase co-
herence between Cooper pairs at large distances. However,
the 1

3 fractional vortex pairs with quasi-LRO survive at low
temperatures, which can be regarded as the condensation of
Cooper sextuples. This phenomenon is just the characteristic
of the charge-6e superconductivity [14]. As the temperature
increases, the system goes into the normal phase through a
BKT transition driven by the dissociations of 1

3 vortices.

V. CONCLUSION AND OUTLOOK

Using the state-of-the-art TN methods, we have clarified
the nature of the critical phase and phase transition of the
fully frustrated classical XY model on 2D kagome lattice,
which provides a plausible origin to the charge-6e SC dis-
covered recently [14]. We find standard construction approach
of the TN for the partition function does not work due to
the strong frustrations of the kagome lattice. To solve the
issue of direct truncation of the Boltzmann weight, we have

014424-10



TENSOR NETWORK APPROACH TO THE FULLY … PHYSICAL REVIEW B 108, 014424 (2023)

FIG. 13. The schematic global phase diagram of the antiferro-
magnetic XY model with both NN and NNN interactions on a
kagome lattice defined by (4). The q = 0 and

√
3 × √

3 ordered
states denote the LRO of the ferromagnetic and antiferromagnetic
chirality pattern, respectively, accompanying the quasi-LRO in the
integer vortices. The FVP is the abbreviation for the fractional
vortex-antivortex paired phase, where the 1

3 fractional vortices are
bounded in pairs in the absence of integer vortex-antivortex pairing.
In the chiral phase, the phase coherence of either integer vortices
or fractional vortices is destroyed while the antiferromagnetic chiral
LRO survives. Free integer vortices exist in the disordered phase, the
chiral phase, and the FVP phase, while free fractional vortices can
appear in the disordered phase and chiral phase.

introduced a different method to build the TN based on duality
transformation. Then the partition function is expressed as a
product of 1D transfer matrix operators, whose eigenequation
is solved by the VUMPS algorithm accurately. The singularity
of the entanglement entropy for this 1D quantum correspon-
dence provides a stringent criterion for the temperature of
possible phase transitions. Through a systematic analysis of
thermodynamic properties and correlation functions in the
thermodynamic limit, a single BKT transition is confirmed,
which is driven by the unbinding of 1

3 fractional vortex-
antivortex pairs at Tc � 0.075J1. The absence of LRO of
chirality or phase coherence between integer vortices is ver-
ified at all temperatures. Thus, the long-standing controversy

about the phase transitions in the fully frustrated XY spin
model on a kagome lattice is solved. The low-temperature
phase of the model can be interpreted as the presence of
charge-6e SC but in the absence of the charge-2e SC.

An interesting open problem is to determine the full phase
diagram with both the NN and NNN interactions described
by (4). For both signs of the NNN interaction, the degeneracy
of the ground state is lifted to U(1) × Z2. The possible global
phase diagram is schematically described in Fig. 13. At low
temperatures, the antiferromagnetic NNN interaction (J2 > 0)
will drive the system into the q = 0 states with uniform chiral-
ity, while the ferromagnetic NNN interaction (J2 < 0) drives
the system into the

√
3 × √

3 ordered state with a finite stag-
gered chirality. The LRO of chirality allows the quasi-LRO
of the integer vortices corresponding to the phase coherence
of charge-2e SC. The phase transitions between the charge-2e
SC and charge-6e SC states could be driven by proliferations
of the low-energy domain walls, which was supposed to be
a first-order phase transition (the green lines) described by
a six-state model [40]. And the phase boundary between the
charge-6e SC state and the normal state still belongs to BKT
transition (the blue line) driven by unbinding of 1

3 fractional
vortex-antivortex pairs.

From the studies on the frustrated XY model on a tri-
angular or square lattice [48,69,70], we can expect that the
staggered chiral LRO may survive above the BKT transition
(the blue line) with an intermediate a chiral-ordered phase. In
this way, the boundary between the chiral-ordered phase and
disordered phase should be a second-order phase transition
(the red line). We believe that our TN approach should provide
a promising way to further investigate the fully frustrated
XY on the kagome lattice with both NN and NNN inter-
actions, giving rise to more interesting and fruitful insights
into the exotic phenomena in the kagome superconducting
materials.
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