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Fermionic path integral for exact enumeration of polygons on the simple cubic lattice
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Enumerating polygons on regular lattices is a classic problem in rigorous statistical mechanics. The goal of
enumerating polygons on the square lattice via fermionic path integration was achieved using a free-fermion
quadratic action in the late 1970s. Given that polygon edges only link two vertices, it is considered plausible, if
not natural, that an action of degree 2 in the Grassmann variables might suffice to enumerate lattice polygons in
any dimension. Nevertheless, on nonplanar lattices the problem has remained open for more than four decades.
Here, we derive the Grassmann action for exact enumeration of polygons on the simple cubic lattice. Moreover,
we prove that this action is not quadratic but quartic, corresponding to a model of interacting fermions.
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I. INTRODUCTION

An important problem in statistical mechanics and enu-
merative combinatorics concerns how to count certain kinds
of objects, such as polygons, polinominoes, and polycubes
of fixed size, on regular lattices [1]. Here, we address the
problem of exact enumeration of multipolygons, defined as
connected or disconnected undirected graphs whose edges
can link only nearest-neighbor lattice sites and all of whose
nodes have an even degree. A free-fermion quadratic Grass-
mann action for exact enumeration of two-dimensional (2D)
multipolygons on the square lattice has been known since the
late 1970s [2]. These results were subsequently published by
Samuel [3–5] in 1980 in a seminal trilogy of papers presenting
the fermionic path integral formulation of classical lattice spin
models. Many advances followed [6–18], yet for the next 42
years the analogous problem of finding the action for enu-
merating three-dimensional (3D) multipolygons had remained
unsolved, until now. Here, we derive the Grassmann action
for exact enumeration of multipolygons on the simple cubic
lattice.

Moreover, considering that an edge connects precisely two
vertices of a polygon and assuming that both vertices con-
tribute one Grassmann variable each to the edge terms of the
action, it follows that a quadratic Grassmann action should
suffice for polygon enumeration not only in two dimensions
but in any lattice dimension. The underlying intuition is rooted
in familiar commonplace observations, for example, if one
wishes to string together a bead necklace, it suffices to make
two attachment points per bead. Indeed, it is often assumed
that polygons on the cubic lattice should be enumerable with
a quadratic action. This conjecture, though plausible, is most
likely wrong. Overturning the conventional wisdom, we prove
that the action that enumerates polygons on the simple cubic
lattice is not quadratic but quartic—hence unsolvable via ex-
isting methods that rely on the usual Pfaffian methods that
apply to quadratic actions. We also show that, quite remark-
ably, the action for the cubic lattice is not polynomial in the
edge weights.

Our strategy is to exploit how the ferromagnetic 3D Ising
model can be formulated in two different ways. On the one
hand, it can be formulated in a low-temperature variable in
terms of the generating function of closed surfaces on the
simple cubic lattice [5]. On the other hand, it is also possible to
formulate the model in a high-temperature variable in terms of
the generating function of multipolygons. The latter approach
is more commonly used in statistical mechanics [19–22]. We
leverage the known [22] exact correspondence between the
two formulations and “work backwards,” thereby obtaining
the desired Grassmann action.

The high- and low-temperature formulations of the Ising
model are reviewed in Sec. II. A review of Grassmann
variables and Berezin integration is given in Sec. III. This
section also gives a detailed explanation of the Grassmann
actions for the 2D and 3D Ising model. Section IV presents
the results and advances and Sec. V concludes with a brief
discussion.

II. THE HIGH- AND LOW-TEMPERATURE
FORMULATIONS OF THE 3D ISING MODEL

The Hamiltonian of the isotropic ferromagnetic Ising
model with N classical spins with nearest-neighbor interac-
tions and zero external magnetic field is typically defined as
HN = −J

∑
〈i j〉 σiσ j , where the J is the isotropic coupling,

σi = ±1, and 〈i j〉 denotes the set of all pairs (i, j) of nearest-
neighbor spins on the chosen lattice. The total number of sites
is N = Ld for a system of linear size L on a d-dimensional grid
lattice. In what follows we restrict our attention to the cases
d = 2, 3 for the square and simple cubic lattices, respectively.
Although diverse boundary conditions can be used, we as-
sume periodic boundary conditions without loss of generality.
Indeed, it is well known that the thermodynamic limit of
the nearest-neighbor Ising model is independent of boundary
conditions. The canonical partition function is convention-
ally defined according to ZN (β ) = ∑

exp[−βHN ], where
β = 1/(kBT ) is the temperature parameter as usual and the
sum is over all possible spin configurations.
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Let K = βJ be the (adimensional) reduced temperature
parameter. For studying the behavior at low temperatures (i.e.,
high β), by convention [3,23] one uses the low-temperature
variable u = exp[−K] (although sometimes the square or
fourth power of this quantity is used instead [22]). On the
other hand, for studying the high-temperature behavior of
the model it is often preferable [19–22] to use the high-
temperature variable t = tanh[K]. For non-negative reduced
temperatures 0 � K � +∞, the low- and high-temperature
variables are uniquely given by each other, according to

u =
√

1−t
1+t ,

t = 1−u2

1+u2 .

In the high-temperature variable t , it is well known [19]
that the partition function can be expressed as

ZN = 2N (1 − t2)−Nd/2�N (t ), (1)

where �(t ) is the generating function for the number of
multipolygons of fixed length on the d-dimensional lattice.
Specifically, if we write �N as the expansion

�N (t ) =
Nd∑
n=0

antn,

then an is the number of multipolygons with n edges, with
the total number of all edges being Nd . Note that a0 = 1,
corresponding to the single empty graph. For clarity we repeat
here the textbook derivation of the Eq. (1). First, observe that
σiσ j = ±1, so that exp[−βHN ] is given by

exp
[
K

∑
σiσ j

]
=

∏
exp[Kσiσ j]

=
∏

cosh K + σiσ j sinh K

=
∏

(cosh K )(1 + σiσ jt ). (2)

Noting that cosh K = 1/
√

1 − t2 and that the total number of
terms in the product is equal to the number Nd of bonds, we
can write the partition function as

ZN = (1 − t2)−Nd/2
∑
σ1

∑
σ2

· · ·
∑
σN

∏
〈i j〉

(1 + σiσ jt ). (3)

Each σi is summed over ±1, so the only terms that survive
upon expanding the product are those with no odd powers of
any of the σi. Remaining even powers σ 2n

i contribute a factor
12n + (−1)2n = 2 for each of the N sites. The product is over
all possible nearest-neighbor “bonds,” hence

ZN = 2N (1 − t2)−Nd/2
∑

G∈M
tm(G), (4)

where m(G) is the number of edges of the graph G and M
is the set of all undirected unweighted graphs on the lattice
whose edges only link nearest-neighbor nodes and whose
nodes all have an even degree, with the unique empty graph
having m = 0. Equation (1) follows from (4) by observing that
these graphs G ∈ M are precisely what we have been calling
multipolygons. Feynman [19] referred to multipolygons as
“closed graphs” due to the fact that there are no dangling

edges or common sides, i.e., no nodes of degree 1 or 3. In
3D such multipolygons need not be planar.

Alternatively, we can express the partition function in
terms of the low-temperature variable u, by counting the num-
ber of magnetic domain wall configurations. Let �(u) be the
generating function for the number of domain wall configu-
rations of fixed size [23]. In 2D this will again correspond to
the number of multipolygons of fixed length (because the 2D
Ising model is self-dual). In contrast, in 3D magnetic domain
walls are closed surfaces on the dual lattice. Specifically, if we
write the expansion

�N (u) =
Nd∑
n=0

bnu2n,

then bn is the number of domain wall configurations of length
n (2D) or area n (3D). Taking into account the ground state
energy −NdJ , and a factor 2 arising from the twofold de-
generacy associated with each domain wall configuration, the
partition function is then given in terms of �N , as is well
known [23]:

ZN = 2u−Nd �N (u). (5)

Per-site partition function and the other generating func-
tions in the thermodynamic limit N → ∞ are defined as usual
according to Z = limN→∞ Z1/N

N , � = limN→∞ �
1/N
N , and � =

limN→∞ �
1/N
N .

Crucially, given �N one can obtain �N (and vice versa):

�N (t ) = 21−N (1 − t2)Nd/2u−Nd �N (u)

= 21−N (1 + t )Nd �N

(√
1 − t

1 + t

)
. (6)

In 2D, both � and � are explicitly known because of On-
sager’s solution [24]. But in 3D neither � nor � is explicitly
known. However, there are partial results in 3D. The fermionic
path integral for � has been known [5] since 1980. In contrast,
until now an analogous expression for � has been missing.
Our main contribution here is to obtain the fermionic path
integral for � for the simple cubic lattice, by using (6).

III. THE GRASSMANN ACTION FOR THE ISING MODEL

A. Grassmann variables and Berezin integration

The fermionic aspect of the 2D Ising model was already
implicitly apparent in the original works of Onsager and of
Kaufmann, as seen from their use of quaternion algebra [24]
and generators of the Pauli spin matrices [25]. A few decades
later, in 1964, Schultz, Mattis, and Lieb formally showed that
the 2D Ising model is equivalent to a free-fermion model [26],
by employing fermionic creation and annihilation operators
satisfying canonical anticommutation relations. It was only
in 1980 that the much more powerful fermionic path integral
formulation of the 2D Ising model was given [3] in terms of
Grassmann variables, i.e., fully anticommuting quantities.

Let ηi (i = 1, 2, . . . , N) be a set of Grassmann numbers
that satisfy

ηiη j + η jηi = 0. (7)
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In particular, such quantities are nilpotent, η2
i = 0. A general

power series in these N quantities, with real or complex co-
efficients, can thus only have 2N terms at most, so that the
Grassmann algebra thus generated has dimension 2N . Inte-
grals of Grassmann variables are known as Berezin integrals,
in honor of Berezin [27], who showed how to modify Feyn-
man’s (bosonic) path integrals to be applicable to fermions.
Berezin integration is a translationally invariant linear oper-
ation defined (in the standard convention used in physics)
according to ∫

ηidηi = 1, (8)∫
dηi = 0. (9)

Multiple integrals can be defined as iterated integrals. Let
dη be shorthand for dη1dη2 · · · dηN and η for the entire set
{η1, η2, . . . , ηN }. Consider a general function

f (η) = a0 +
N∑
i

aiηi +
N∑

i< j

ai jηiη j

+ · · · + a123...Nη1η2 · · · ηN . (10)

Then from the definition of Berezin integration we find∫
f (η)dη = a123...N . (11)

Hence, Berezin integrals can be used retain only those terms
that “saturate” the integral. Using the Lagrangian path inte-
gral formulation of Hamiltonian systems, a Berezin integral∫

eSdη of an exponentiated Grassmann action S can be used to
select states with specific properties, rendering it an extremely
powerful tool in exact enumeration problems.

We will also require the use of a key property of how
Berezin integrals transform under changes of variables. For
usual Riemann integrals

∫
f (x)dx over, say, the real R, a

change of variables x = ay with a ∈ R leads to dx = ady for
the differentials. However, for Grassmann variables x and y,
if x = ay with a ∈ R, then dx = dy/a because of (8). In other
words, the scaling is in the opposite sense. Let us apply such
scale transformations to the actions, considered as functionals
of the η. Let q Grassmann variables reside at each of N lattice
sites. Consider the result of the dilation ηi �→ ληi, for all qN
Grassmann variables. Let η′ = λη be the rescaled variables.
Then applying the rule for changing Grassmann variables, we
obtain

∫
dη eS(η) = ∫

dη′ eS[η′] = λ−qN
∫

dη eS[λη]. Taking the
qN th root of λ we thus get

λ

∫
dη eS(η) =

∫
dη eS[λ1/qN η]. (12)

This renormalization of the Grassmann variables will play a
central role in the derivation below of the exact Grassmann
action for 3D multipolygons.

B. 2D multipolygons

The original work of Samuel [3] included a remarkable
“one line” solution of the 2D Ising model, leading imme-
diately to Onsager’s solution [24] in less than a “a page of
algebra” [3]. The generating function for 2D multipolygons,

whose coefficients are the celebrated series found by Domb,
also easily follows (see also Ref. [28]). In notation similar to
that of Ref. [23], the action for the isotropic model can be
written as

S2D(η) = u2SL(η) + SC (η) + SM (η), (13)

SL(η) =
N∑

x∈L
[η+1(x)η−1(x + 1̂) + η+2(x)η−2(x + 2̂)], (14)

SM (η) =
N∑

x∈L
[η−1(x)η+1(x) + η−2(x)η+2(x)], (15)

SC (η) =
N∑

x∈L
[η+1(x)η−2(x) + η+2(x)η−1(x)

+ η+2(x)η+1(x) + η−2(x)η−1(x)]. (16)

The sums are over all sites of the dual lattice L of the magnetic
domain walls. The subscripts M, L, and C denote monomers,
lines, and corners [23]. Each line term is associated with a
single edge with weight u2 of a single segment of domain
wall. It can be checked by manual Berezin integration, for
any given configuration of lines, monomers, and corners, that
sites attached to one or three lines give zero contribution,
making the full Berezin integral vanish. Sites with two and
four attached line terms contribute with a factor u2 for each
line. Sites with no lines contribute −1 but such sites can
only ever appear in pairs, so for even N the factor can be
neglected. See Ref. [3] for a more complete discussion of the
sign changes due to anticommutation.

The Berezin integral of the (exponentiated) action (13)
thus enumerates multipolygons on the square lattice, thereby
counting all possible magnetic domain wall configurations of
the 2D Ising model. Hence,

�(u) = (−1)N
∫ N∏

x∈L
dη−1dη+1dη−2dη+2 exp[S2D]. (17)

We will write such expressions more compactly as

�(u) = (−1)N
∫

dη exp[S2D]. (18)

The partition function is then given by (5). In the literature
the factor (−1)N is usually omitted because N can be taken as
even and, moreover, it can be neglected in general when taking
the thermodynamic limit since limN→∞(−1)1/N = 1, but we
retain the sign for completeness. Fourier transformation and
the application of the well-known determinant formula for
Gaussian integrals immediately leads [3] to Onsager’s solu-
tion [not shown here; see Eq. (3.12) in Ref. [3]].

C. The action for the 3D Ising model

In 1980, Samuel also wrote down the analogous Grass-
mann action for the 3D Ising model [5]. However, this action
enumerates not multipolygons but rather closed surfaces. Let
η denote the set of 12N Grassmann variables η±ν (x, μ) fol-
lowing the notation of Ref. [23], where x is the site index
as before and μ is the edge index, with ±ν describing the
side of the edge where the variable resides. See Fig. 1 for the
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FIG. 1. Arrangement of the Grassmann variables on the (dual)
simple cubic lattice. The variables η±ν (x, μ) are indexed by the po-
sition x, by the type of edge μ, and by positive or negative directions
±ν. The three primitive translation vectors are denoted 1̂, 2̂, and 3̂.
For a different perspective of the same arrangement, see Fig. 6 of
Ref. [23].

arrangement of the Grassmann variables. Then the action for
the isotropic Ising model can be written as

S3D(η, u) = u2 S4(η) + S2(η), (19)

where

S4(η) =
N∑
x

{η+2(x, 3)η−2(x + 2̂, 3)η+3(x, 2)η−3(x + 3̂, 2)

+ η+1(x, 3)η−1(x + 1̂, 3)η+3(x, 1)η−3(x + 3̂, 1).

+ η+1(x, 2)η−1(x + 1̂, 2)η+2(x, 1)η−2(x + 2̂, 1)},
(20)

S2(η) =
N∑
x

3∑
μ=1

3∑
ν,ρ 
=μ
ν<ρ

{η+ν (x, μ)η−ρ (x, μ)

+ η+ρ (x, μ)η+ν (x, μ) + η+ρ (x, μ)η−ν (x, μ)

+ η−ρ (x, μ)η−ν (x, μ) + η−ν (x, μ)η+ν (x, μ)

+ η−ρ (x, μ)η+ρ (x, μ)}. (21)

The quartic “plaquette” terms u2S4 and the quadratic “hinge”
terms S2 above correspond to the terms SP(η) and SE (η) +
SM (η), respectively, in Ref. [23].

As with the 2D action, it is easy to see that this action
enumerates closed surfaces, as follows. Edges with one or
three attached plaquettes give contribution zero and render the
full Berezin integral zero. Edges with two or four attached pla-
quettes contribute with a factor u2 for each plaquette. Edges
with no plaquette give a factor of −1. Let dη be shorthand

according to

dη =
N∏
x

3∏
μ=1

3∏
ν 
=μ

dη−ν (x, μ)dη+ν (x, μ).

Then the partition function is given by (5) with

�N (u) = (−1)3N
∫

dη exp[S3D]. (22)

Since this action is not quadratic, it does not correspond
to a model of free fermions, but rather to a model of inter-
acting fermions. Moreover, Pfaffian and determinant formulas
cannot be used in the usual manner because the integrals
are not Gaussian. Nevertheless, over the decades significant
progress been made even without being able to obtain explicit
expressions and the Grassmannization research program has,
overall, been tremendously successful [6–18].

IV. THE QUARTIC ACTION FOR ENUMERATING
3D MULTIPOLYGONS

We now present our main results. In what follows, we
will use the action (19) as the starting point to arrive at the
analogous action for counting multipolygons on the simple
cubic lattice. Substituting (22) into (6) we get

�N (t ) = 21−N (1 + t )3N (−1)3N
∫

dη eS3D(η,u). (23)

Applying the rescaling (12) to (23) we arrive at our first result:

�N (t ) = (−1)3N
∫

dη eS3D[21/(12N )−1/12(1+t )1/4η,u].

Let S3DM denote the Grassmann action for exact enumeration
of multipolygons on the simple cubic lattice. Then the above
result can be written

�N (t ) = (−1)3N
∫

dη exp[S3DM], (24)

S3DM(η, t ) = S3D[21/(12N )−1/12(1 + t )1/4η, u]. (25)

Of particular interest in statistical mechanics are the ther-
modynamic limits of various quantities, such as partition
functions and generating functions. Using (19) and taking the
limit N → ∞, (25) simplifies to

S3DM(η, t ) = (1 + t )1/2

6
√

2
S2(η) + (1 − t )

3
√

2
S4(η), (26)

with S2 and S4 given by (21) and (20), respectively.
Finally, the claim that S3DM in (26) is quartic follows im-

mediately from observing that S4 by definition (20) is quartic
in the Grassmann variables. Whereas quadratic actions corre-
spond to free-fermion models, quartic actions are associated
with (typically unsolved) models of interacting fermions. The
known singularity at t = tc of �(t ) for the simple cubic lattice
bears an important relation to string and gauge field theories
[9]. Indeed, it is possible to represent the continuum limit
of the 3D Ising model in terms of a fermion string theory
[29–31].
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Note that S3DM is not polynomial in the edge weight t ,
because Eq. (26) contains a square root term that leads to a
nonterminating binomial power series in t . Hence, on the cu-
bic lattice there are no well-defined polynomial “edge terms”
in the action, in contrast to the action S2D for the square lattice,
which has the edge terms SL in (13). Planar and nonplanar
polygons are very different indeed.

Nevertheless, note that upon expansion of the correspond-
ing exponential and subsequent saturation of the Berezin
integral, all surviving terms have an even number of quadratic
terms contributing, such that the square root completely
vanishes and the dependence on t is again polynomial.
Indeed, every plaquette contributes (1 − t )/ 3

√
2 and every

“missing plaquette” contributes precisely (1 + t )/ 3
√

2 in the
thermodyamic limit.

V. DISCUSSION AND CONCLUSION

In summary, we have solved the 42-year-old problem of
finding the Grassmann action for exact enumeration of poly-
gons on the simple cubic lattice. The Grassmann action for
enumerating multipolygons on the cubic lattice is quartic, not
quadratic, and has a remarkable nonpolynomial dependence
on the edge weight t . The significance of these results is that,
on the simple cubic lattice, enumerating multipolygons is of

the same order of difficulty as enumerating closed surfaces—
not easier.

Nevertheless, it should be emphasized that there is no rea-
son at all to expect this action to be unique. In the 2D case it
is possible to give a constructive proof of this nonuniqueness,
using the Pfaffian or determinant formulas for the Gaussian
integrals. In the 3D case the question is not so clear. Absent
a mathematical proof, we cannot in principle completely rule
out the existence of a different—possibly even quadratic—
action that performs the same enumeration, however unlikely
this may seem. These and similar issues merit further investi-
gation.

Finally, we note that the results presented here suggest that
Grassmann actions can be found for polygon enumeration on
diverse other regular lattices. We have preliminary results gen-
eralizing the above results to other nonplanar lattices, which
we hope to publish when time permits.
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