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Efficient numerical methods are required for the design of optimized devices. In magnonics, the primary
computational tool is micromagnetic simulations, which solve the Landau-Lifshitz equation discretized in time
and space. However, their computational cost is high, and the complexity of their output hinders insight into
the physics of the simulated system, especially in the case of multimode propagating-wave-based devices. We
propose a finite-element modal method allowing an efficient solution of the scattering problem for dipole-
exchange spin waves propagating perpendicularly to the magnetization direction. The method gives direct access
to the scattering matrix of the whole system and its components. We extend the formula for the power carried by
a magnetostatic mode in the Damon-Eshbach configuration to the case with exchange, allowing the scattering
coefficients to be normalized to represent the fraction of the input power transferred to each output channel.
We apply the method to the analysis of spin wave scattering on a basic functional block of magnonic circuits,
consisting of a resonator dynamically coupled to a thin film. The results and the method are validated by
comparison with micromagnetic simulations.
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I. INTRODUCTION

In recent years, we have observed rapid progress in the
development of components for magnonic circuitry. Con-
duits for single-mode and multimode spin wave transfer
[1–5], phase control [6–9], spin wave valves [10], couplers
[11,12], resonators [13–15], transducers, diodes [16], and
logic gates [17,18] are only selected examples based on var-
ious physical principles. To understand the physics of the
spin wave phenomena behind the observed functionalities,
increase the effectiveness of their operation, and find their new
realizations, researchers need suitable models and numerical
methods.

The primary approach used in magnonics is micromag-
netism, where the nonlinear Landau-Lifshitz (LL) torque
equation is used to describe magnetization dynamics. It is usu-
ally solved in time and space with micromagnetic simulations
based on the continuum model [19,20]. These methods offer a
faithful description of the experimental realizations, including
nonlinear and temperature effects. There are two principal
implementations of micromagnetic solvers, one based on
the finite-difference method [21,22] and the second based
on the finite-element method [23]. However, micromagnetic
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simulations are time-consuming and require extensive com-
putational power. Their outputs are raw time- and space-
dependent data, and extensive postprocessing is necessary to
elucidate the physical mechanisms underlying complex mag-
netic systems. In addition, simulations of wave dynamics over
time require selecting a source of these waves; the obtained
spectrum is source dependent, and mode identification may
be ambiguous.

Other approaches are based on solving the LL equation in
the frequency domain and either wave-vector or real space;
they are commonly referred to as spectral methods. Spectral
methods enable calculation of the response of a magnetic
system to a time-harmonic excitation with high precision
and at a lower computational cost, though at the price of
approximations, one of which is linearization. An example
of a spectral method is the plane wave method, applicable
to systems with discrete translational symmetry. It was intro-
duced and used to calculate the band structure of bulk [24]
and thin-film magnonic crystals [25–27] as well as magnonic
quasicrystals [28,29]. In the latter case, full magnetic satura-
tion and homogeneity across the film thickness were assumed.
Here, the LL equation is transformed into an infinite set of
algebraic equations in the frequency and wave-vector domain.
The equations are indexed by the reciprocal lattice vectors.
The eigenproblem formed by the truncated system is solved
numerically with standard numerical routines.

The dynamical matrix method [30,31] overcomes some
limitations of the plane wave method. It uses the finite-
difference method to solve the LL equation formulated in
real space and linearized about the magnetization ground state
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FIG. 1. Steps required for the solution of a scattering problem
with the proposed modal method. Inputs and outputs are denoted
with parallelograms, and processes are denoted with rectangles.

derived from micromagnetic simulations. This is a powerful
method used to calculate normal modes in isolated nanoele-
ments [30] and thin-film magnonic crystals with nanoscale
periodicity [31]. However, the large matrices involved here
make the solution of the eigenproblem and analysis of the
normal modes time-consuming. Furthermore, the method
does not make it possible to study spin wave scattering
and transmission. An extension of the normal mode calcu-
lation method proposed in Ref. [32] allows damping and,
to some extent, nonlinear effects to be taken into account.
The resulting eigenproblem can be discretized either with
finite differences or finite elements [33]. However, these
methods do not encompass calculation of the transmission,
reflection, or scattering matrices for spin waves in nanoscale
objects.

In this paper, we develop an efficient finite-element modal
method to solve the scattering problem for dipole-exchange
spin waves propagating in a system composed of one or more
ferromagnetic layers or stripes magnetized perpendicularly to
the wave propagation direction. The proposed computational
procedure is outlined in Fig. 1. We decompose the system
into segments with a constant cross section and find the nor-
mal modes of each segment by solving the linearized LL
equation discretized with finite elements. We expand the dy-
namical components of the magnetization and magnetostatic
potential in each segment in the basis of its normal modes.
These expansions are tied together by imposing appropriate

boundary conditions on each interface. The resulting system
of linear equations is solved for the amplitudes of outgo-
ing (transmitted and reflected) modes produced by incoming
modes with known amplitudes. Optionally, the subset of these
equations associated with a particular interface can also be
solved for the scattering matrix of that interface. Interfacial
scattering matrices supply valuable information about the con-
tribution of individual scattering pathways to the output signal
and the role of particular normal modes excited within each
segment. This yields deeper insight into the physics of the
system under consideration and can help its designer optimize
its geometry for a specific application.

Another contribution of this paper is the generalization
of the Lorentz reciprocity theorem, the mode orthogonality
relations, and the formula for the power carried by propagat-
ing spin wave modes of a tangentially magnetized multilayer
to the case of dipole-exchange waves. These results enable
propagative normal modes used in field expansions to be nor-
malized to unit power, letting squared scattering coefficients
be identified with the power passed to the corresponding scat-
tering channels.

We use the proposed method to study the transmission and
reflection of spin waves on a ferromagnetic stripe coupled
with a ferromagnetic film. This system can be considered as a
basic building block of magnonic circuits possessing various
functionalities [10,13,14,16,34–38]. We elucidate the impor-
tant role played by pairs of modes with contrasting group
velocities supported by the bilayer formed by the film and
the stripe. The validity of the modal method is confirmed
by an excellent agreement of its predictions with results of
micromagnetic simulations.

The paper is organized as follows. In the next section, we
describe the finite-element modal method, discussing first the
determination of eigenmodes (Sec. II B) and then the mode-
matching equations (Sec. II C). In Sec. III and Appendix B
we derive the Lorentz reciprocity theorem, the mode orthog-
onality relations, and a formula for the power carried by
dipole-exchange spin waves in the Damon-Eshbach configu-
ration. In Sec. IV we use the proposed method to analyze the
scattering of spin waves propagating along a thin ferromag-
netic film on a resonant element placed in its vicinity. After
validating its predictions against results of micromagnetic
simulations, we feed the calculated mode propagation con-
stants and scattering coefficients into a semianalytical model
of the system under consideration, which allows us to explain
the physical origin of notable features visible in its reflection
and transmission spectra.

II. FINITE-ELEMENT MODAL METHOD

A. Introduction

We consider a system composed of ferromagnetic and non-
ferromagnetic materials. Its geometry is independent of the
y coordinate and piecewise constant along x. The system is
placed in an external static magnetic field oriented along the y
axis; this field is assumed to be sufficiently strong to saturate
all magnetic materials and orient their static magnetization
along y. An example of such a system is shown schematically
in Fig. 2.
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FIG. 2. An example system whose geometry satisfies the as-
sumptions made in Sec. II A. The system contains four segments with
uniform cross sections in the xy plane. FM, ferromagnetic.

In a modal method, each x-invariant region is treated
as a finite or semi-infinite segment of a waveguide with a
uniform cross section. The fields inside each segment are
expressed as a superposition of eigenmodes of the correspond-
ing waveguide. These eigenmode expansions are coupled
through boundary conditions imposed on the interfaces x = xi

(i = 2, 3, . . . , n, where n is the number of segments) sep-
arating adjacent segments; imposition of these conditions
produces a linear system of equations for the mode amplitudes
(excitation coefficients). Typically, the excitation coefficients
of modes incoming from the left and right are known, and
the quantities of interest, obtained by solving the system of
equations, are the coefficients of the outgoing modes in the
first and last segment.

B. Determination of waveguide eigenmodes

As stated above, the fields in each x-invariant segment of
the system are expanded in the eigenmodes, both propagative
and evanescent, of an x- and y-invariant waveguide whose
profile along z matches that of the segment. These eigenmodes
are determined numerically using the finite-element method.
The waveguide is governed by the Gauss law for magnetism
(applicable everywhere),

∇ · B = 0, (1)

and the LL equation with a Gilbert damping term (Ref. [39],
Sec. 3.8 therein; applicable only in the ferromagnetic layers),

∂t M = γμ0M × Heff + α

MS
M × ∂t M, (2)

where M is the magnetization, Heff is the effective magnetic
field, γ is the gyromagnetic ratio, µ0 is the vacuum per-
meability, MS is the saturation magnetization, and α is the
damping coefficient. The effective magnetic field is taken to
be a superposition of the static external magnetic field H0, the
magnetostatic magnetic field Hm, and the exchange magnetic
field Hex:

Heff = H0 + Hm + Hex. (3)

Assuming a harmonic time dependence [exp(−iωt)], split-
ting the magnetization M and magnetostatic magnetic field
Hm into static and dynamic (radio frequency) components,
expressing the latter as a gradient of the magnetostatic po-
tential (h = −∇φ), writing the exchange magnetic field as
Hex = ∇ · (l2∇m) (with l denoting the exchange length) [40],
and linearizing the LL equation, we arrive at the following
system of equations:

∂x(mx − ∂xφ) + ∂z(mz − ∂zφ) = 0, (4a)

∂xφ − ∇ · (l2∇mx ) + H0

MS
mx + iω

γμ0MS
(mz + αmx ) = 0, (4b)

∂zφ − ∇ · (l2∇mz ) + H0

MS
mz − iω

γμ0MS
(mx − αmz ) = 0, (4c)

where all material coefficients are functions of z only. The φ, mx, and mz fields of a waveguide eigenmode have a harmonic
dependence on x: ⎧⎨

⎩
φ(x, z)
mx(x, z)
mz(x, z)

⎫⎬
⎭ =

⎧⎨
⎩

φ(z)
mx(z)
mz(z)

⎫⎬
⎭ exp(ikxx), (5)

where kx is the mode wave number. Taking advantage of this fact and introducing the symbols m̃x := imx, ωM := −γμ0MS , and
ω0 := −γμ0H0, we can rewrite the equations in the form

kx(m̃x + kxφ) + ∂z(mz − ∂zφ) = 0, (6a)

kxφ + ∂z(l2∂zm̃x ) − k2
x l2m̃x − ω0 − iαω

ωM
m̃x − ω

ωM
mz = 0, (6b)

∂zφ − ∂z(l2∂zmz ) + k2
x l2mz + ω0 − iαω

ωM
mz + ω

ωM
m̃x = 0. (6c)
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This is a quadratic eigenvalue problem in kx; its approximate
solution can be found by discretizing the above equations with
the finite-element method. This requires transforming them
into a weak form, which forces the integrals of their resid-
uals weighted with an appropriate set of test functions to
vanish [41,42]. To this end, we multiply the equations by
test functions ψ , ñx, and nz, respectively, and integrate by
parts over z to reduce the order of differentiation and thus
lower the smoothness requirements on the trial functions into

which φ, m̃x, and mz will be expanded. Application of the
boundary and continuity conditions—(i) limz→±∞ φ(z) = 0,
(ii) bz ≡ mz − ∂zφ is continuous along z, and (iii) l2∂zmx and
l2∂zmz are continuous along z (which implies, in particular,
that ∂zmx = ∂zmz = 0 on interfaces between layers with and
without exchange magnetic field)—annihilates the boundary
terms produced by integration by parts and leads to the fol-
lowing weak form: Find kx, φ, m̃x, and mz such that for all ψ ,
ñx, and nz

〈∂zψ, ∂zφ〉 + k2
x 〈ψ, φ〉 + kx〈ψ, m̃x〉 − 〈∂zψ, mz〉 = 0, (7a)

kx〈ñx, φ〉 − 〈∂zñx, l2∂zm̃x〉 − k2
x 〈ñx, l2m̃x〉 −

〈
ñx,

ω0 − iαω

ωM
m̃x

〉
−

〈
ñx,

ω

ωM
mz

〉
= 0, (7b)

−〈nz, ∂zφ〉 −
〈
nz,

ω

ωM
m̃x

〉
− 〈∂znz, l2∂zmz〉 − k2

x 〈nz, l2mz〉 −
〈
nz,

ω0 − iαω

ωM
mz

〉
= 0, (7c)

where

〈 f , g〉 :=
∫

f (z) g(z) dz. (8)

The solutions (φ, m̃x, mz ) and the test functions (ψ, ñx, nz )
are required to satisfy the essential boundary and continuity
conditions, i.e., those not involving derivatives.

This weak form can be discretized using the Galerkin
method. The fields φ, m̃x, and mz are expressed as finite linear
combinations of appropriate basis functions [defined on a
sufficiently long but finite interval zmin � z � zmax in the case
of φ and on the union of the intervals where l2(z) > 0 in the
cases of m̃x and mz], and the weak form is evaluated with the
test functions ψ , ñx, and nz set to each of these basis func-
tions in turn. This leads to a quadratic algebraic eigenvalue
problem

Ax + kxBx + k2
x Cx = 0, (9)

where x is the vector of expansion coefficients of φ, m̃x, and
mz, and A, B, and C are matrices independent from kx. This
quadratic eigenvalue problem can be rewritten as a general-
ized linear eigenvalue problem:

[
A B

I

][
x
y

]
= kx

[ −C
I

][
x
y

]
, (10)

which can be solved using the standard QZ algorithm [43].
When damping is neglected, all matrices in the eigenproblem
written in terms of φ, m̃x, and mz are real; so the phases
of eigenvectors corresponding to propagative modes (modes
with real kx) can be chosen so that the profiles φ(z) and mz(z)
are real whereas mx(z) is imaginary.

C. Mode matching

The fields in the ith x-invariant waveguide segment, sand-
wiched between the planes x = xi and x = xi+1, are expanded
in the basis of eigenmodes determined as described in the

previous section:

φ(x, z) =
∑

j

U i
j (x) φiu

j (z) +
∑

j

Di
j (x) φid

j (z)

for xi � x � xi+1, (11)

and similarly for mx and mz. The first sum runs over modes
propagating or decaying rightwards (towards x = ∞); the
second sum runs over modes propagating or decaying left-
wards (towards x = −∞). The symbol U i

j (x) denotes the
position-dependent excitation coefficient of the jth rightward
mode of the ith segment with magnetostatic potential profile
φiu

j (z). Analogous symbols containing the letter d are used for
leftward modes. Within each segment, U i

j (x) and Di
j (x) vary

harmonically and can be written as

U i
j (x) = U i

j (x
iu) exp

[
ikiu

x j (x − xiu)
]
, (12a)

Di
j (x) = Di

j (x
id ) exp

[
ikid

x j (x − xid )
]
, (12b)

where kiu
x j and kid

x j are mode wave numbers. It is convenient to
choose the reference positions xiu and xid as

xiu = xmax(i,2), xid = xmin(i+1,n). (13)

This ensures that imposition of boundary conditions on seg-
ment interfaces leads to equations [Eq. (14) below] containing
exponentials whose magnitude does not exceed 1, which
could compromise numerical stability.

The fields in adjacent waveguide segments are linked by
the following boundary conditions that must hold on the in-
terfaces between these segments: (i) φ is continuous along x
on the whole interface, (ii) bx is continuous along x on the
whole interface, (iii) mx and mz are continuous along x on
interfaces separating pairs of layers such that l2 > 0 in both
layers, and (iv) l2∂xmx and l2∂xmz are continuous along x on
interfaces separating pairs of layers such that l2 > 0 in at least
one layer.

These boundary conditions are imposed by multiplying
them with the basis functions used to expand the fields in
all layers (for the first two boundary conditions) or in the
layers fulfilling the specified criteria (for the last two boundary
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conditions) and integrating over z. For each interface, this
leads to a set of linear equations that can be written symboli-
cally as

[Viu Vid ]

[
Eiu(xi+1 − xiu)

I

][
ui

d i

]

= [Wi+1,u Wi+1,d ]

[
I

Ei+1,d (xi+1 − xi+1,d )

][
ui+1

d i+1

]
,

(14)

where i + 1 is the index of the interface. In this formula,
E···(�x) are diagonal matrices of exponentials dependent on
the length of segments adjacent to xi+1, whereas the matri-
ces V··· and W··· are independent from that length. Explicit
expressions for these matrices are provided in Appendix A.
The symbols ui and d i denote vectors of the excitation coef-
ficients ui

j := U i
j (x

iu) and di
j := Di

j (x
id ) ( j = 1, 2, . . . ) at the

reference positions xiu and xid .

D. Solution of the scattering problem

The excitation coefficients of the outgoing modes of the
semi-infinite waveguide segments—as well as the excita-
tion coefficients of modes of any finite segments—can be
calculated by solving the system of equations obtained by
combining equations of the form (14) for i = 2, 3, . . . , n,
with the coefficients of the incoming modes, u1 and dn,
treated as known. Alternatively, the scattering matrices of
individual interfaces can be calculated independently and then
concatenated using the algorithm from Ref. [44] to reduce the
computational expense.

III. MODE NORMALIZATION AND POWER FLUX

Frequently, the main quantities of interest in the solution of
a scattering problem are the reflectance and transmittance of
the structure in question. As we show below, in the absence of
damping, these can be identified with the squared magnitudes
of the elements of d1 and un corresponding to propagating
modes, provided that the mode profiles are normalized to unit
power.

Stancil and Prabhakar (Ref. [39], Sec. 6.1 therein) identify
the time-averaged Poynting vector of exchange-free magneto-
static waves with

〈Sex.-free〉 = 1
2 Re(−iωφ∗b). (15)

It follows that, in the exchange-free approximation, the power
carried by time-harmonic spin waves propagating along the x
axis of an x- and y-invariant waveguide is given by

Pex.-free =
∫ ∞

−∞
〈Sex.-free,x〉 dz

= 1

2

∫ ∞

−∞
Re(−iωφ∗bx ) dz

= 1

2

∫ ∞

−∞
Im(ωφ∗bx ) dz. (16)

We will now generalize this expression to dipole-exchange
spin waves (in the Damon-Eshbach configuration). In
Appendix B we derive an orthogonality relation between a

pair of dipole-exchange eigenmodes of an x- and y-invariant
waveguide with negligible damping:∫ ∞

−∞

[
μ−1

0 (−φab∗
bx + φ∗

b bax ) + il2(kxa + k∗
xb)ma · m∗

b

]
dz = 0

if kxa �= k∗
xb. (17)

Here, φa(z), ma(z), and kxa are the field profiles and the wave
number of eigenmode a; φb(z), mb(z), and kxb are those of
eigenmode b; and bix (z) = μ0(mix − ∂xφi ) for i = a, b. Us-
ing the identities ikxama = ∂xma and ikxbmb = ∂xmb, we can
rewrite this relation in a wave-number-free form:∫ ∞

−∞

[
μ−1

0 (−φab∗
bx + φ∗

b bax )

+l2(−ma · ∂xm∗
b + m∗

b · ∂xma)
]

dz = 0 if kxa �= k∗
xb. (18)

When a and b refer to the same mode, the integral from
the above equation (omitting the now redundant mode index)
reduces to

P′ :=
∫ ∞

−∞

[
μ−1

0 (−φb∗
x + φ∗bx )

+ l2(−m · ∂xm∗ + m∗ · ∂xm)
]

dz

= 2i
∫ ∞

−∞
Im

(
μ−1

0 φ∗bx + l2m∗ · ∂xm
)

dz. (19)

Comparison with Eq. (16) shows that

P := −1

4
iμ0ωP′ = 1

2

∫ ∞

−∞
Im(ωφ∗bx + ωμ0l2m∗ · ∂xm) dz

(20)
reduces to the expression from Eq. (16) when the exchange
interaction is neglected, i.e., when l = 0. This motivates iden-
tifying P with the power carried by a dipole-exchange spin
wave in the Damon-Eshbach configuration.

In general, the spin wave will be a superposition of multiple
waveguide modes:{

φ(x, z)
m(x, z)

}
=

∑
i

ai exp(ikxix)

{
φi(z)
mi(z)

}
, (21)

where [φi(z), mi(z)] are the field profiles of the ith mode, kxi

is its wave number, and ai is its excitation coefficient. From
Eq. (20), the total power carried by these modes will be

P = iμ0ω

4

∫ ∞

−∞

[
μ−1

0 (φb∗
x − φ∗bx )

+ l2(m · ∂xm∗ − m∗ · ∂xm)
]

dz

=
∑
i, j

aia
∗
j Pi j, (22)

where

Pi j := iμ0ω

4

∫ ∞

−∞

[
μ−1

0 (φib
∗
x j − φ∗

j bxi )

+ l2(mi · ∂xm∗
j − m∗

j · ∂xmi )
]

dz. (23)

The orthogonality relation (18) implies that, in the absence of
damping and of degenerate modes, the integral Pi j vanishes
unless (a) i = j and mode i is propagative (kxi is real) or
(b) mode i is an evanescent mode (kxi is not real) and mode
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j is its complex-conjugate counterpart (kx j = k∗
xi). Therefore

under these assumptions the total power carried by a super-
position of waveguide modes is the sum of powers carried by
individual propagative modes and pairs of evanescent modes
with complex-conjugate wave numbers:

P =
∑

propagative modes i

|ai|2Pii

+
∑

evanescent modes i

Re[aia
∗
conj(i)Pi,conj(i)], (24)

where conj(i) denotes the index of the mode with wave num-
ber k∗

xi. In practice, it is convenient to normalize mode profiles
so that Pii = 1 for propagative modes and Pi,conj(i) = 1 for
evanescent ones, since this makes it possible to obtain the
power carried by individual modes or pairs of modes directly
from their excitation coefficients.

Importantly, Eq. (23) enables unit-power mode normaliza-
tion even when the profiles of the incoming and outgoing
modes in a system are neither identical nor related by
symmetry, e.g., when the input and output waveguides are
multimodal or have different geometries.

If degenerate modes exist, Eq. (24) is still valid provided
that such modes have been suitably orthogonalized. On the
other hand, when damping is present, Eq. (18) loses its valid-
ity, and so the total power cannot in general be decomposed
into a simple sum of powers carried by individual modes: The
cross terms proportional to Pi j with i �= j do not disappear.
However, if the damping is low enough, such a decomposition
may still be accurate enough for practical purposes, as will be
shown numerically in the next section.

IV. APPLICATIONS

A. Introduction

In this section we use the finite-element modal method
described above to simulate the scattering of spin waves trav-
eling along a thin ferromagnetic film on a stripe of another
ferromagnetic material placed above the film. We validate the
method by comparing its predictions against results of micro-
magnetic simulations. Finally, to understand the variation of
the scattering coefficients with the stripe width, we develop a
semianalytical model elucidating the roles played by the two
pairs of modes supported by the bilayer made of the film and
the stripe. The numerical inputs required by the model—mode
wave numbers and scattering matrices—are obtained directly
from simulations made with the modal method.

B. The system under consideration

Figure 3 shows the geometry of the system under con-
sideration. It is composed of a film of thickness 30 nm
made of a CoFeB alloy [45] with static magnetization
MS = 1270 kA/m and exchange constant A ≡ μ0M2

S l2/2 =
15 pJ/m and a stripe of the same thickness made of
permalloy with MS = 760 kA/m and exchange constant
A = 13 pJ/m, separated from the film by a nonmag-
netic gap of thickness 10 nm. The stripe width w will
be varied in the calculation described below. The gy-
romagnetic coefficient of both materials is taken to be
γ = −176 GHz/T, and the damping coefficient α = 0.0002.

FIG. 3. xz-plane cross section of the y-invariant system analyzed
in Sec. IV.

The whole system is placed in a uniform external magnetic
field µ0H = 0.1 T directed along the negative y axis and
parallel to the stripe.

C. Eigenmodes

Evidently, this system is composed of three x-invariant seg-
ments, two of which (the first and the third) are identical. The
eigenmodes of each segment are calculated in the manner de-
scribed in Sec. II B: Eqs. (7a)–(7c) are discretized and turned
into an algebraic generalized eigenvalue problem [Eq. (10)] by
expanding the fields φ, m̃x, and mz into fifth-order Lagrange
finite elements defined on a one-dimensional (1D) mesh cov-
ering an interval of length 12.19 µm with the film at the center.
The same mesh is used in all three x-invariant segments. Mesh
nodes are distributed so that the mesh is geometry-conforming
in all segments; node spacing increases away from the fer-
romagnetic films. Dirichlet boundary conditions are imposed
on φ at the top and bottom of the computational domain. In
total, 224 degrees of freedom are used for φ, and 6 degrees of
freedom per ferromagnetic layer are used for m̃x and mz.

All calculations are done at the frequency 17 GHz. At this
frequency, we find that the CoFeB film supports a pair of
counterpropagating propagative eigenmodes with wavelength
1020 nm and (amplitude) attenuation length 123 µm. The
CoFeB-permalloy bilayer supports two pairs of counterpropa-
gating propagative eigenmodes; those propagating to the right
have wavelengths 1299 and 108 nm and attenuation lengths
165 and 39 µm, whereas those propagating to the left have
wavelengths 973 and 145 nm and attenuation lengths 99 and
27 µm. These values agree (to the number of digits shown)
with ones obtained with the method of De Wames and Wol-
fram [46], which does not require any domain truncation or
discretization.

The bilayer eigenmodes with wavelengths 1299 and
973 nm are concentrated primarily in the CoFeB layer and
have larger group velocities than the modes with wavelengths
108 and 145 nm, concentrated in the permalloy layer. There-
fore, in the following, we shall call the former pair of modes
the fast modes and the latter the slow modes.

The φ(z), mx(z), and mz(z) profiles of all propagative
modes of the film and the bilayer are plotted in Fig. 4.
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FIG. 4. Profiles of the magnetostatic potential φ(z) and the x and
z components of the dynamic magnetization m(z) of the eigenmodes
of (a)–(c) the CoFeB film and (d)–(f) the bilayer. Solid lines, right-
propagating modes; dashed lines, left-propagating modes. The areas
taken by the CoFeB film and the permalloy film are shaded in red and
blue, respectively. All plots show only the dominant real or imaginary
component; the L2 norm of the other one is over 100 times smaller.

Here and throughout the rest of this paper, the phases of all
mode profiles are chosen so that mz is real and negative at
the midplane of the CoFeB film.

D. Scattering: Numerical simulations

Suppose a right-propagating mode of the CoFeB film is
excited by an antenna located to the left of segment 2. In
that case, it will be scattered on the bilayer, giving rise to a
reflected mode propagating to the left along segment 1 and a
transmitted mode propagating to the right along segment 3.
We are interested in the dependence of the power and phase
of the reflected and transmitted modes on the width of the
bilayer. We calculate the scattering coefficients in the man-
ner described in Sec. II D, setting u1 to [1, 0, 0, . . . ]T (i.e.,
assuming the incident field in segment 1 consists solely of
its right-propagating propagative eigenmode with unit power,
arriving at the interface between segments 1 and 2 with phase
0◦) and d3 to [0, 0, . . . ]T (i.e., assuming there is no wave
incident from the right in segment 3). The results of these cal-
culations are plotted in Fig. 5 (solid curves). The four subplots
show the reflectance and transmittance (|d1

1 /u1
1|2 and |u3

1/u1
1|2,

respectively) and the phase shifts of the reflected and transmit-
ted waves, defined as arg(d1

1 /u1
1) and arg{u3

1/[u1
1 exp(ik1u

x1w)]}.
(The phase shift of the transmitted wave is defined as
the difference of the phase of the transmitted wave and the
phase that would be acquired by the incident wave if the
stripe was removed.) As mentioned at the end of Sec. III,
in the presence of damping, waveguide eigenmodes are not
strictly power orthogonal. However, in the system under

FIG. 5. (a)–(d) Dependence of the scattering coefficients of the bilayer, obtained from numerical simulations done with the finite-element
modal method and micromagnetic simulations, on the stripe width. All calculations were performed at frequency 17 GHz.
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FIG. 6. Convergence of (a) the transmittance and (b) the phase
shift of the transmitted wave with increasing polynomial degree p of
the finite elements used in calculations.

consideration the damping is small, and the total cross power
[the sum of the terms proportional to Pi j , i �= j, in the expan-
sion from Eq. (22)] on both sides of the stripe never rises
above 1% of the incident power; so we neglect it in the
following discussion.

On the reflectance curve from Fig. 5(a), we can see a
regularly spaced series of narrow asymmetric peaks followed
by zero crossings (the familiar Fano resonance shape), super-
imposed on a slow oscillation with a period of approximately
500 nm. As expected from the energy conservation principle,
the transmittance curve in Fig. 5(b) is a mirror image of the
reflectance curve. The narrow peaks and dips in the reflectance
and transmittance curves are accompanied by rapid changes in
the phase shifts of the reflected and transmitted waves. Away
from these narrow features, the phase shift of the transmitted
wave decreases steadily with increasing stripe width, indicat-
ing that the phase of the transmitted wave lags more and more
behind that of the unscattered incident wave.

The red circles in Fig. 5 are data points obtained from
micromagnetic simulations performed with MUMAX3 [21],
described in detail in Appendix C. The results of these simu-
lations agree well with those obtained with the finite-element
modal method. The latter can produce a highly precise so-
lution to the linearized Landau-Lifshitz equations (4a)–(4c).
Figure 6 shows the effect of increasing the polynomial de-
gree of elements on the positions and shapes of two narrow
features in the curves from Figs. 5(b) and 5(d). The curves
obtained with elements of order 4 and 5 are visually almost
indistinguishable. We have also verified that increasing the
size of the computational domain in the z direction by a
factor of 4 makes no perceptible difference to the shape of

the curves. Computation of the scattering coefficients of the
system under consideration (using the mesh and element order
described in Sec. IV C) with the finite-element modal method
on a laptop PC takes 1.5 s. Over 97% of this time is spent
on the calculation of waveguide eigenmodes and interface
scattering matrices, which needs to be done only once even
if the scattering coefficients are to be computed for multiple
stripe widths; the method is therefore particularly well suited
for the modeling of structures containing waveguide segments
whose lengths are allowed to vary. In contrast, micromagnetic
simulations of the same system take approximately 1 h for
each value of w.

E. Scattering: Semianalytical model

To understand the origin of the features visible in the plots
from Fig. 5, we formulate a semianalytical model similar to
that presented in Ref. [14] for a system with segment 3 con-
taining no magnetic materials. We start by noting that wave
scattering on an interface x = xi+1 separating segments i and
i + 1 can be described by a scattering matrix Si+1 linking the
complex amplitudes of the incoming and outgoing modes on
both sides of the interface,[

Di(xi+1)
U i+1(xi+1)

]
= Si+1

[
U i(xi+1)

Di+1(xi+1)

]
. (25)

This matrix can be easily calculated using the finite-element
modal method; in the notation of Eq. (14),

Si+1 = [−Viu Wi+1,d ]−1[Vid −Wi+1,u]. (26)

If segments i and i + 1 are long enough, all incoming
evanescent modes decay away and become negligible before
reaching the interface between these segments. To obtain the
amplitudes of the outgoing propagative modes, it is therefore
sufficient to consider only the rows and columns of Si+1

corresponding to propagative modes.
Consider first the interface x = x2 at the left end of the

bilayer. To simplify the notation, let us denote with ui and
di the complex amplitudes of the right- and left-propagating
modes of the input film (segment 1) and with us and ds (uf and
df) the amplitudes of the right- and left-propagating slow (fast)
modes of the bilayer (segment 2), all measured at x = x2.
If the bilayer is wide enough for the evanescent coupling
between its ends to be negligible, then⎡

⎣di

us

uf

⎤
⎦ =

⎡
⎣Sii Sis Sif

Ssi Sss Ssf

Sfi Sfs Sff

⎤
⎦

⎡
⎣ui

ds

df

⎤
⎦, (27)

where Sii, etc., are appropriate elements of the scattering ma-
trix S2. At 17 GHz, their numerical values found with the
finite-element modal method are⎡

⎣Sii Sis Sif

Ssi Sss Ssf

Sfi Sfs Sff

⎤
⎦

=
⎡
⎣0.117e−0.04i 0.089e−0.78i 0.989e0.03i

0.145e−1.35i 0.984e2.95i 0.095e0.80i

0.983e−0.05i 0.149e1.17i 0.111e−3.00i

⎤
⎦ (28)

(these values are obtained for modes normalized to carry unit
power, with phases chosen so that mz is real and negative on
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the midplane of the CoFeB film). It can be seen that the film
mode is coupled primarily with the fast mode of the bilayer.
The slow bilayer mode is strongly reflected. The fast and slow
bilayer modes are only weakly coupled.

Likewise, amplitudes of the incoming and outgoing modes
at the right end of the bilayer (x = x3) are tied by⎡

⎢⎣
d ′

s

d ′
f

u′
o

⎤
⎥⎦ =

⎡
⎢⎣

S′
ss S′

sf

S′
fs S′

ff

S′
os S′

of

⎤
⎥⎦

[
u′

s

u′
f

]
, (29)

where u′
s and d ′

s (u′
f and d ′

f ) are the amplitudes of the right- and
left-propagating slow (fast) modes of the bilayer and u′

o is the
amplitude of the right-propagating mode of the CoFeB film,
all measured at x = x3. Numerically [47],⎡

⎢⎣
S′

ss S′
sf

S′
fs S′

ff

S′
os S′

of

⎤
⎥⎦ =

⎡
⎣ 0.984e2.95i 0.149e1.17i

0.095e0.80i 0.111e−3.00i

0.145e−1.34i 0.983e−0.05i

⎤
⎦. (30)

Mode amplitudes at the two ends of the bilayer are linked by

u′
i = exp(ikiuw) ui =: 	iuui, (31a)

di = exp(−ikidw) d ′
i =: 	id d ′

i for i = s, f, (31b)

where kiu and kid are the wave numbers of the right- and
left-propagating modes, numerically determined to be ksu =
58.3 + 0.026i, kfu = 4.84 + 0.006i, ksd = −43.4 − 0.037i,
and kfd = −6.46 − 0.010i rad/µm.

Together, Eqs. (27), (29), (31a), and (31b) form a system
of ten equations for as many unknown mode amplitudes (the
amplitude ui of the mode incident from the input film is treated
as known). To obtain intelligible expressions for the scattering
coefficients r ≡ di/ui and t ≡ uo/ui, it is advantageous to start
by eliminating the amplitudes uf, df, u′

f, and d ′
f of the fast

bilayer mode, which is only weakly reflected at the interface
with the CoFeB film and hence will not give rise to strong
Fabry-Pérot-like resonances. This mimics the approach taken
by Lecamp et al. [48] in their model of pillar microcavities.
This reduces the second row of Eq. (27) and the first row of
Eq. (29) to

us = S̃siui + S̃ssds, (32a)

d ′
s = S̃′

ssu
′
s + S̃′

sf	fuSfiui, (32b)

where

S̃si := Ssi + αfSsf	fd S′
ff	fuSfi

1 − αfSsf	fd S′
fs	su

, (33a)

S̃ss := Sss + αfSsf	fd S′
ff	fuSfs

1 − αfSsf	fd S′
fs	su

, (33b)

S̃′
ss := S′

ss + αfS′
sf	fuSff	fd S′

fs

1 − αfS′
sf	fuSfs	sd

, (33c)

S̃′
sf := αfS′

sf

1 − αfS′
sf	fuSfs	sd

(33d)

and

αf := (1 − Sff	fd S′
ff	fu)−1. (34)

The fast bilayer mode is only weakly reflected at the interface
with the film: |Sff| = |S′

ff| ≈ 0.111 � 1. Therefore multiple

reflections of the fast mode at bilayer interfaces do not give
rise to strong Fabry-Pérot resonances, and the coefficient αf

remains close to 1 for all bilayer widths. Given that, in addi-
tion, all reflection coefficients except Sss and S′

ss are small, we
can expect the scattering coefficients with a tilde defined in
Eqs. (33a)–(33d) to be close to the corresponding coefficients
without a tilde.

Having eliminated the amplitudes of the fast modes, we
solve the remaining equations for the amplitudes of the slow
modes and substitute the resulting expressions into the formu-
las for di in the first row of Eq. (27) and u′

o in the last row of
Eq. (29). This yields the following formulas for the reflection
and transmission coefficients:

r ≡ di/ui = rf + αsrs, (35a)

t ≡ uo/ui = tf + αsts, (35b)

where

αs := (1 − S̃ss	sd S̃′
ss	su)−1 (36)

represents the effect of multiple reflections of the slow mode
and

rf := Sii + αfSif	fd S′
ff	fuSfi, (37a)

rs := Sis	sd (S̃′
ss	suS̃si + S̃′

sf	fuSfi)

+αfSif	fd
[
S′

fs	su(S̃si + S̃ss	sd S̃′
sf	fuSfi)

+ S′
ff	fuSfs	sd (S̃′

ss	suS̃si + S̃′
sf	fuSfi)

]
, (37b)

tf := αfS
′
of	fuSfi, (37c)

ts := S′
os	su(S̃si + S̃ss	sd S̃′

sf	fuSfi)

+αfS
′
of	fu

[
Sfs	sd (S̃′

sf	fuSfi + S̃′
ss	suS̃si )

+ Sff	fd S′
fs	su(S̃si + S̃ss	sd S̃′

sf	fuSfi)
]

(37d)

(to facilitate interpretation, scattering coefficients of magni-
tude much less than 1 have been underlined). It can be seen
that both scattering coefficients are made up of two terms.

The first term, rf or tf, is free from the resonant factor αs and
the rapidly varying phase factors 	sd and 	su. Both terms in
rf contain one small reflection coefficient, whereas tf contains
none. Therefore the transmittance |t |2 is usually larger than
the reflectance |r|2.

The other term, αsrs or αsts, is proportional to the factor
αs, which is normally close to unity but whose magnitude can
grow to over 60 near Fabry-Pérot resonances of the slow mode
of the bilayer. These occur approximately at stripe widths

wn = 2πn − arg(SssS′
ss )

Re(ksu + ksd )
where n = 1, 2, . . . (38)

(neglecting the small difference between SssS′
ss and S̃ssS̃′

ss).
Away from these resonances, this term is small, since each
of the terms making up rs or ts is proportional to a product
of at least two scattering coefficients of small magnitude (less
than 0.15). All these terms also contain the phase factors 	su

and/or 	sd ; so their phases vary rapidly.
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FIG. 7. (a)–(d) Comparison of the values of the bilayer’s scattering coefficients predicted by the model from Sec. IV E with results of
numerical simulations done with the finite-element (FE) modal method. The dashed vertical lines are the positions of resonances predicted
with Eq. (38).

In Fig. 7 we compare the power and phase shift of the
reflected and transmitted modes calculated from Eqs. (35a)
and (35b) (red dashed curves) with results of full numerical
simulations made with the finite-element modal method (blue
solid curves). The two data series agree very well except for
very narrow stripes, for which evanescent coupling between
the two ends of the bilayer, neglected in the model from which
Eqs. (35a) and (35b) were derived, plays a large role. The
dashed vertical lines indicate the positions of resonances pre-
dicted from Eq. (38); their agreement with the full numerical
simulations justifies approximating S̃ssS̃′

ss with SssS′
ss in the

derivation of that equation.
The green dotted curves in Fig. 7 show the result of ne-

glecting the terms proportional to αs in Eqs. (35a) and (35b).
As expected, the sharp resonances are gone; however, the
curves continue to reproduce faithfully long-term trends. Thus
the slow oscillations of the reflectance and transmittance as
a function of stripe width are due to the weak Fabry-Pérot
resonances of the fast mode encapsulated in the αf factor.
The propagation constant of the right-propagating fast mode is
smaller than that of the eigenmodes of the CoFeB film; hence
the phase shift of the transmitted wave decreases steadily with
stripe width.

V. CONCLUSIONS

We have introduced a finite-element modal method for the
simulation of spin waves in the dipole-exchange regime and
the Damon-Eshbach configuration. We have complemented it
with a derivation of the Lorentz reciprocity theorem and mode
orthogonality relations applicable to this class of systems and
extended the formula for the power carried by magnetostatic

modes to the case of dipole-exchange spin waves. We have
used a system composed of a CoFeB thin film decorated
with a dynamically coupled permalloy stripe to illustrate the
usefulness of the proposed method for the calculation of
spin wave transmittance, reflectance, and the phase shift of
scattered waves. Its predictions were successfully validated
against micromagnetic simulations. We found the calculation
of scattering coefficients with our method to be over 1000
times faster than calculation with micromagnetic simulations,
clearly demonstrating its potential in the design of elements
of magnonic circuits. Table I highlights the main differences
between the modal method and micromagnetic simulations.

We have formulated a detailed semianalytical model of
spin wave propagation in the system mentioned above.
The only numerical inputs required by the model, namely,
propagation constants of individual waveguide modes and
normalized mode scattering coefficients associated with inter-
faces separating waveguide segments with different geometry,
were obtained directly with the modal method (with no post-
processing required). The model highlights the contrasting
roles played by the two pairs of normal modes supported by
the bilayered part of the system and makes it possible to quan-
tify the contributions of individual scattering pathways. In
particular, we have found the slow modes to be responsible for
the formation of sharp Fabry-Pérot-like resonances observed
in the transmission spectra, as in the Gires-Tournois interfer-
ometer [14], and the fast modes to account for low-amplitude
transmittance oscillations with a larger spatial period. This
provides a deepened physical interpretation of the results of
recent experiments [13] and a tool for future research and
optimization of magnonic devices.
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TABLE I. Comparison between the finite-element modal method and micromagnetic simulations.

Aspect Modal method Micromagnetic simulations

Physically relevant outputs
(scattering coefficients and matrices)

Obtained directly without any
postprocessing

Require postprocessing (see Appendix C)

Outgoing boundary conditions in
input and output waveguides

Fulfilled automatically Fulfillment requires introducing boundary
layers with a suitable damping profile

Individual mode excitation Straightforward (via the u1 and dn

amplitude vectors)
Nontrivial (requires designing an appropriate
antenna) unless the mode to be excited is the
only one with a specific symmetry

Number of unknowns Low (a few hundred per segment) High (864×106 for the three-segment system
simulated in this paper)

Simulation time Short (1 s per point for the system studied
in this paper)

Long (1 h per point for the system studied in
this paper)

Potential for reuse of precalculated
results

Segment eigenmodes can be precalculated
and reused in simulations of multiple
systems containing segments with the
same cross section; simulations at each
frequency must be done separately

Each change in geometry requires running the
simulation from scratch; a single simulation
with a wideband source provides information
about system behavior at multiple frequencies

Precision High: only a modest computational cost is
required to reduce numerical errors
(caused by the finite mesh size and density
and finite polynomial expansion order) far
below those resulting from the adopted
mathematical model (e.g., linearization of
the LL equation, piecewise constant
material properties, idealized geometry)

Typically low: numerical errors are difficult to
eliminate especially when lowest-order finite
differences are employed

Temporal behavior Time-harmonic field variation assumed
and exploited to simplify and accelerate
computations

Not limited to time-harmonic field variation
but unable to exploit it if present (requires
time integration until steady state)

Nonlinearity of the LL equation Neglected (small-perturbations regime
assumed)

Fully taken into account

System geometry Limited to systems that can be split into
segments with constant cross sectionsa

Arbitrary

Static magnetization Required to be spatially piecewise constant
in terms of both magnitude and orientationa

Arbitrary

aSegments with variable cross sections or non-negligible spatial variability of static magnetization could, however, be discretized with standard
nonmodal finite elements, as in photonics (Ref. [42], Sec. 11.1.3 therein).
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APPENDIX A: MODE-MATCHING MATRICES

Let { fq(z)}N f

q=1 be the set of (continuous) basis functions
used to expand the magnetostatic potential profiles of the
eigenmodes of all waveguide segments. Let {gLq (z)}Ng(L)

q=1 be
the (possibly empty) set of basis functions obtained by re-
stricting all basis functions fq(z) to a set of intervals L ⊂
[zmin, zmax] and keeping only those that are not identically
zero. Let Li ⊂ [zmin, zmax] be the set of intervals with nonva-

nishing l2(z) in the ith segment. The set {gLi

q (z)}Ng(Li )
q=1 is then

the set of basis functions used to expand the magnetization
profiles of the eigenmodes of the ith waveguide segment.

The solution of the eigenproblem (10) for each segment
i yields a family of 2[N f + 2Ng(Li )] eigenmodes; the field
profiles of the jth mode propagating or decaying to the right
with wave number kiu

x j are

φiu
j (z) =

N f∑
q=1

fq(z)F iu
q j , (A1a)

m̃iu
x j (z) =

Ng(Li )∑
q=1

gL
i

q (z)M̃iu
xq j, (A1b)

miu
z j (z) =

Ng(Li )∑
q=1

gL
i

q (z)Miu
zq j, (A1c)
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WOJCIECH ŚMIGAJ et al. PHYSICAL REVIEW B 108, 014418 (2023)

where F iu
q j , M̃iu

xq j , and Miu
zq j are elements of one of the eigenvec-

tors (optionally scaled to normalize the mode to unit power).
Replacement of the superscript u with d yields analogous
expressions for the jth mode propagating or decaying to the
left.

Imposition of the boundary conditions listed in Sec. II C at
the interface x = xi+1 between segments i and i + 1 produces
Eq. (14) with Eiu(�x) defined as the diagonal matrix whose
jth diagonal element is exp(ikiu

x j�x) and the Viu and Wi+1,u

matrices defined as

Viu =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JφφFiu

Jφmi M̃iu
x − iJφφFiuKiu

x

Jmi∩i+1mi M̃iu
x

Jmi∩i+1mi Miu
z

Jmi∪i+1mi

l2 M̃iu
x

Jmi∪i+1mi

l2 Miu
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

and

Wi+1,u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

JφφFi+1,u

Jφmi+1M̃i+1,u
x − iJφφFi+1,uKi+1,u

x

Jmi∩i+1mi+1M̃i+1,u
x

Jmi∩i+1mi+1Mi+1,u
z

Jmi∪i+1mi+1

l2 M̃i+1,u
x

Jmi∪i+1mi+1

l2 Mi+1,u
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)

In the equations above, Fiu, M̃iu
x , and Miu

z are matrices of the
mode field expansion coefficients F iu

q j , M̃iu
xq j , and Miu

zq j intro-
duced in Eqs. (A1a)–(A1c), whereas the elements of matrices
J··· are defined as

Jφφ
pq =

∫
fp(z) fq(z) dz, (A4a)

J
φmj
pq =

∫
fp(z) gL

j

q (z) dz, (A4b)

J
mi∩i+1mj
pq =

∫
gL

i∩Li+1

p (z) gL
j

q (z) dz, (A4c)

J
mi∪i+1mj

l2,pq =
∫

l2
j (z) gL

i∪Li+1

p (z) gL
j

q (z) dz, (A4d)

with l2
j (z) representing the profile of the squared exchange

length in segment j. Finally, Kiu
x is the diagonal matrix of

mode wave numbers kiu
x j . The formulas for Eid (�x), Vid , and

Wi+1,d can be obtained by replacing the superscript u with d .

APPENDIX B: MODE ORTHOGONALITY RELATIONS

In this Appendix, we derive a version of the Lorentz reci-
procity theorem applicable to dipole-exchange spin waves
in the Damon-Eshbach configuration and a number of or-
thogonality relations binding pairs of eigenmodes of such
structures. In this paper, these relations are utilized to deduce
the formula for mode power [Eq. (23)]. However, they can
also be useful in their own right, for instance, to extract the
contribution of a particular mode to the total magnetization
calculated with a nonmodal method [49].

1. Lorentz reciprocity theorem for dipole-exchange spin waves

Consider a magnetostatic potential φa and magneti-
zation ma satisfying the system of equations (4a)–(4c),
comprising the Gauss law for magnetism and the
linearized LL equation with a damping term, which can
be rewritten in the following form:

∇ · (ma − ∇φa) = 0, (B1a)

∇φa −
∑
i=x,z

ei[∇ · (l2∇mai )]

+ω0 − iωα

ωM
ma − i

ω

ωM
ey × ma = 0, (B1b)

where ei (i = x, y, z) denotes the unit vector directed along
axis i. Consider also another magnetostatic potential φ′

b and
magnetization m′

b satisfying the corresponding equations in
the complementary system, i.e., one obtained by reversing the
direction of the static external magnetic field and the static
magnetization and replacing damping with gain:

∇ · (m′
b − ∇φ′

b) = 0, (B2a)

∇φ′
b −

∑
i=x,z

ei[∇ · (l2∇m′
bi )]

+ω0 − iωα

ωM
m′

b + i
ω

ωM
ey × m′

b = 0. (B2b)

Multiplying Eq. (B1a) by φ′
b and Eq. (B2a) by φa and sub-

tracting the results, we obtain

φ′
b∇ · ma − φa∇ · m′

b − φ′
b∇2φa + φa∇2φ′

b = 0. (B3)

Similarly, multiplying Eq. (B1b) by m′
b and Eq. (B2b) by ma

and subtracting the results, we obtain

m′
b · ∇φa − ma · ∇φ′

b −
∑
i=x,z

m′
bi∇ · (l2∇mai )

+
∑
i=x,z

mai∇ · (l2∇m′
bi ) = 0. (B4)

Subtraction of Eq. (B3) from Eq. (B4) yields

m′
b · ∇φa − ma · ∇φ′

b − φ′
b∇ · ma + φa∇ · m′

b

+φ′
b∇2φa − φa∇2φ′

b −
∑
i=x,z

m′
bi∇ · (l2∇mai )

+
∑
i=x,z

mai∇ · (l2∇m′
bi ) = 0. (B5)

Using the relationship b = μ0(m + h) = μ0(m − ∇φ) and
the identity ∇ · ( f g) = (∇ f ) · g + f ∇ · g, this equation can
be reduced to

∇ ·
[
μ−1

0 (φab′
b − φ′

bba) +
∑
i=x,z

l2(mai∇m′
bi − m′

bi∇mai )

]
= 0.

(B6)

This is an analog of the Lorentz reciprocity theorem, known
from classical electromagnetism [50], for magnetostatic
waves with exchange interaction. As in electromagnetism
[51], it can be used to derive orthogonality relations for
waveguide modes.
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2. Orthogonality relation between modes
of complementary waveguides

Let φa and ma be the magnetostatic potential and magne-
tization of an eigenmode of an x-invariant waveguide, with
kxa being the mode wave number, and φ′

b and m′
b be the

corresponding fields of an eigenmode of the complementary
waveguide, with wave number k′

xb. Applying the Lorentz reci-
procity theorem (B6) to these fields and taking advantage of
the fact that they can be written as a product of exp(ikxax) or
exp(ik′

xbx) and a z-dependent factor, we get

i(kxa + k′
xb)

[
μ−1

0 (φab′
bx − φ′

bbax ) − il2(kxa − k′
xb)ma · m′

b

]
+∂z

[
μ−1

0 (φab′
bz − φ′

bbaz ) + l2(ma ∂zm′
b − m′

b ∂zma)
] = 0.

(B7)

Integrating over z and noting that φ, bz, and m · l2∂zm are
continuous functions of z and (at least when any magnetic
layers have finite thickness) φ and m decay to 0 as z → ±∞,
we see that the second term

∫ ∞
−∞ ∂z(· · · ) dz vanishes, leaving

us with

(kxa + k′
xb)

∫ ∞

−∞

[
μ−1

0 (φab′
bx − φ′

bbax )

−il2(kxa − k′
xb)ma · m′

b

]
dz = 0. (B8)

This implies the following orthogonality relation:∫ ∞

−∞
[μ−1

0 (−φab′
bx + φ′

bbax ) + il2(kxa − k′
xb)ma · m′

b] dz = 0

if kxa �= −k′
xb. (B9)

3. Orthogonality relation between modes of a single waveguide
(without conjugation)

Let [φa(z), max(z), maz(z)] and [φb(z), mbx(z), mbz(z)] be
the field profiles of two eigenmodes, with wave numbers
kxa and kxb, of the same waveguide. Direct inspection of
Eqs. (6a)–(6c) shows that [φb

′(z), mbx
′(z), m′

bz(z)] := [φb(z),
−mbx(z), mbz(z)] are the field profiles of an eigenmode with
wave number kxb

′ = −kxb of the complementary waveguide.
Substitution of these field profiles into Eq. (B9) yields an
orthogonality relation between two modes of the same waveg-
uide:∫ ∞

−∞

[
μ−1

0 (φabbx + φbbax )

+ il2(kxa + kxb)(−maxmbx + mazmbz )
]

dz = 0

if kxa �= kxb. (B10)

4. Orthogonality relation between modes of a single waveguide
(with conjugation)

Comparison of Eqs. (B1a) and (B1b) with Eqs. (B2a) and
(B2b) shows that, in the absence of damping, if (φ, m) satisfy
Eqs. (B1a) and (B1b), then the complex-conjugate fields (φ∗,
m∗) satisfy Eqs. (B2a) and (B2b) governing the complemen-
tary system. Therefore if [φb(z), mbx(z), mbz(z)] are the field
profiles of a waveguide mode with wave number kxb, then
[φ∗

b (z), m∗
bx(z), m∗

bz(z)] are the field profiles of a mode with
wave number −k∗

xb of the complementary waveguide. Substi-

tution of these profiles into Eq. (B9) yields another orthogo-
nality relation between two modes of the same waveguide:∫ ∞

−∞

[
μ−1

0 (−φab∗
bx + φ∗

b bax ) + il2(kxa + k∗
xb)ma · m∗

b

]
dz = 0

if kxa �= k∗
xb, (B11)

which is Eq. (17). It should be stressed once again that this
relation holds only when damping is neglected.

APPENDIX C: MICROMAGNETIC SIMULATIONS

To perform micromagnetic simulations, we use the open-
source MUMAX3 environment [21], which solves the full LL
equation

∂t M = − |γ |μ0

1 + α2

[
M × Heff + α

MS
M × (M × Heff )

]
, (C1)

with the finite-difference time-domain (FDTD) method.
We carry out simulations for the geometry presented in

Fig. 3 modeled with two rectangular ferromagnetic slabs with
dimensions and parameters described in Sec. IV B. We dis-
cretize the system into unit cells of size 2×100×5 nm3 along
the x, y, and z axes, respectively. Additionally, to make the
system independent of the y coordinate, we impose periodic
boundary conditions along the y axis with 1024 repetitions
of the system image. We place the system in a spatially uni-
form in-plane magnetic field of value µ0H0 = 0.1 T aligned
along the y axis. The damping coefficient α from Eq. (C1)
is set to α0 = 0.0002 in both magnetic domains. The length
of the computational domain along the x axis is 37.5 µm. To
prevent reflections from the outer boundaries of the modeled
system, we introduce absorbing boundary conditions. Within
each 9-µm-wide absorbing boundary layer, the damping co-
efficient increases quadratically up to the value of αedge =
0.5 at the outer domain boundaries, α(ξ ) = α0 + (αedge −
α0)ξ 2/L2, where ξ is the distance from the domain boundary
and L is the width of the absorbing boundary layer.

We perform the simulations with a sweep over the stripe’s
width in the range from 0 to 500 nm with a step of 2 nm.
The initial stage of each simulation is the relaxation, which
finds a stable magnetic configuration required in each sim-
ulation’s dynamic part. We excite spin waves by a steady
microwave field at frequency f0 = 17 GHz, locally applied in
an 8-nm-wide region. The antenna is placed 9.25 µm from the
left boundary of the system. To achieve the steady state, we
continuously excite the spin waves for 100 ns. After this time,
MUMAX3 saves 40 snapshots of the dynamic out-of-plane
component of magnetization of the system with the sampling
interval 0.003 ns.

The results of micromagnetic simulations are saved in
the form of a matrix that contains the x component of the
magnetization as a function of time and space, m(t ; x, y, z).
The elements of the matrix are real numbers. In the first step
of the postprocessing, we perform the fast Fourier transform
over time. This operation transforms the initial matrix from
time dependent to frequency dependent, and m̃( f , x, y, z) and
its elements become complex numbers. In the following cal-
culations we only consider the slice of m̃ at the pumping
frequency f = f0. Fourier transform calculations show that
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only spin waves with frequency f0 are excited, since the only
peak in the Fourier spectrum appears at this frequency. This
operation reduces the visibility of undesired numerical noise
and transforms the data to a more easily interpretable form.
It enables us to easily separate the amplitude and phase of
propagating waves, |m̃| and arg(m̃).

We calculate the transmittance in the system by dividing
maximal values of the squared absolute value of magnetiza-
tion (|m̃|2) obtained from simulations with the stripe and the
reference simulation without the stripe. In each calculation
step, values from the same interval x ∈ (2.5; 7.5) µm placed
in segment 3 (cf. Fig. 3) are compared. We obtain the phase
shift of the transmitted wave �t by comparing phases of spin
waves from the reference simulation and the simulation with
a stripe of a given width. The phases of these waves are
calculated as a mean value of arg(m̃) for reference simulation
results and simulation with the stripe results in the interval
x ∈ (2.5; 7.5) µm. Finally, we define �ϕt as the difference
between the phases of the transmitted and reference waves,
�ϕt = φt − φref, normalized to the interval (−180°, 180°].

Calculations of the reflected wave parameters are more
complicated, since the interference of incident and reflected
waves is present in segment 1. Before calculating the re-
flectance, the contribution of the incident wave needs to be

canceled. We achieve this by subtracting the reference sim-
ulation results from each result of the simulation with the
stripe. The reflectance is then obtained by comparing the
maximal absolute value of the spin wave amplitude of the
reflected wave in the interval x ∈ (−7.5; −2.5) µm in segment
1 with an analogous value from the reference simulation but
from another interval placed in segment 3. The new interval
x ∈ (2.5; 7.5) µm is positioned at a distance from the stripe
that is similar to the distance from the stripe of the interval
in segment 1, and the new interval has the same length as the
interval in segment 1. This method ensures that the attenuation
in the layer influences both reflected and reference waves in
the same magnitude in the calculations.

To calculate the phase shift of the reflected spin wave �ϕr,
we use a similar approach to that used in Ref. [14]. In this
paper, very high reflectance is assumed, which is not the case
in the current calculations. Thus we assume different ampli-
tudes of the incident and reflected waves. We obtain �ϕr by
fitting a formula (I − R) + 2R cos(2kx + �ϕr ) to the absolute
value of simulation results m̃ in an interval x ∈ (−5; −2.5) µm
in segment 1. Here, I denotes the amplitude of the incident
wave, and R denotes the amplitude of the reflected wave.
Like �φt , the phase shift �φr is normalized to the interval
(−180°, 180°].
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