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Ordered phases in the frustrated fcc lattice antiferromagnet
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We study the ordered phases of the S = 1/2 fcc Heisenberg antiferromagnet, with first- and second-neighbor
interactions, using perturbative series expansions at zero temperature. From calculations of ground-state energies
we determine the regions of stability of semiclassical AF1, AF2, and AF3 phases. For the pure nearest-neighbor
case our results suggest that AF1 is favored over AF3, a result in disagreement with linear spin-wave theory,
but in agreement with other more recent work. We also investigate the two possible AF2 phases and locate the
crossover between AF3 and AF2 at J2/J1 ∼ 0.535.
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I. INTRODUCTION

Studies of antiferromagnetism in the face-centered-cubic
(fcc) Heisenberg model go back to the 1960s or even earlier
[1–3]. The geometric frustration inherent in this structure
allows the possibility of different ordered states and renders
the theoretical analysis difficult. The inclusion of additional
second-neighbor exchange interactions, which are expected
to play a role in real materials, can add further frustration
through competing interactions.

There is a large body of theoretical and experimental work
in this field [4–9], including measurement of excitations in the
well known materials NiS2 [10] and MnS2 [11], as well as the
discovery of new materials [12] (and references therein).

Early theoretical studies, mostly based on “effective-field”
methods, have led to the identification of a number of “clas-
sical” phases, known as AF1, AF2, and AF3 (also termed
type-1, type-2, and type-3 in the literature). We show these
schematically in Fig. 1. The interaction strengths, which we
denote J1 and J2, will determine the regions of stability of
each of these phases and lead to a phase diagram with possible
crossovers between different phases, as shown, for example,
in Ref. [7].

In both AF1 and AF3 phases each spin has four like and
eight unlike nearest neighbors. Thus, with nearest-neighbor
interactions only and in the absence of quantum fluctuations,
these classical phases will be degenerate. The lifting of this
degeneracy by quantum fluctuations has been studied recently
[13], using linear spin-wave theory, with the conclusion that
AF3 is favored, although the energy difference per spin is
only a few parts in 104. More recent calculations [14] have,
however, come to the opposite conclusion, which is in accord
with our calculations below. In the AF1 phase the second-
neighbor pairs are all alike, whereas in AF3 four are alike and
two opposite. Thus ferromagnetic J2 will favor AF1 and anti-
ferromagnetic J2 will favor AF3. For larger antiferromagnetic
J2 a new phase AF2 or, rather, two phases AF2a and AF2b
will be possible. These phases have six like and six unlike
nearest neighbors, while all six second neighbors are unlike.
Thus, classically, these are degenerate for all J2. However, it
has been argued [8] that quantum fluctuations favor AF2a. The

crossover point between AF3 and AF2, classically at J2/J1 =
0.5, does not appear to have been accurately determined in the
quantum case.

The present paper reports studies of the frustrated J1 − J2

fcc model for the extreme quantum case S = 1/2, using se-
ries expansion methods [15,16]. Details of the calculation are
given in Sec. II and the results presented and discussed in
Sec. III. Section IV gives an overall summary.

II. SERIES EXPANSIONS AT ZERO TEMPERATURE

We consider the isotropic Heisenberg model, defined by
the usual Hamiltonian

H = J1

∑
〈i j〉

Si · S j + J2

∑
〈ik〉

Si · Sk, (1)

where the sums are over first- and second-neighbor bonds,
respectively, the S are quantum spin-1/2 operators, and we
assume antiferromagnetic J1 > 0. J2 can be of either sign,
although we focus mainly on the case of antiferromagnetic
J2 as well.

The series expansion method at T = 0 is based on sep-
arating the Hamiltonian in the usual perturbative form H =
H0 + λV , where H0 has a simple known ground state, usually
without quantum fluctuations, and V represents the remaining
terms. In the present work we use “Ising expansions,” in which
H0 consists of the diagonal (zz) terms in the Hamiltonian and
V consists of the transverse terms.

We use the “linked cluster” approach [15,16], in which
perturbation series are computed for a sequence of connected
clusters of increasing size, and these are then combined ap-
propriately to yield series for any extensive quantity, such
as the ground-state energy, magnetization, etc. for the bulk
lattice. The coefficients of the resulting series, up to an order
determined by the clusters with the largest number of sites,
are numerically exact.

In carrying out these calculations, we choose H0 to ex-
hibit a particular type of magnetic order and thus a separate
calculation is needed for each candidate phase. We need to
distinguish between four bond types, which we label by κ , as

2469-9950/2023/108(1)/014414(5) 014414-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1927-6192
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.014414&domain=pdf&date_stamp=2023-07-11
https://doi.org/10.1103/PhysRevB.108.014414


J. OITMAA PHYSICAL REVIEW B 108, 014414 (2023)

TABLE I. Bond numbers and classical energies of AF1, AF2,
and AF3 ground states.

Type κ AF1 AF2 AF3

1 2N 3N 2N
2 4N 3N 4N
3 3N 0 2N
4 0 3N N
Ecl − 1

2 J1 + 3
4 J2 − 3

4 J2 − 1
2 J1 + 1

4 J2

follows:

κ = 11st nhbr like spins (++), (−−),

κ = 21st nhbr unlike spins (+−),

κ = 32nd nhbr like spins (++), (−−),

κ = 42nd nhbr unlike spins (+−).

Table I gives the number of each bond type in the three ground
states AF1, AF2, and AF3 and the classical energy of each.

It is also convenient to transform the spin operators on
the “up” sites (Sx, Sy, Sz ) → (Sx,−Sy,−Sz ) to give a uniform
unperturbed ground state and to separate out the classical
energy for each cluster. The Hamiltonians for each bond type
then take the form

κ = 1, H0 = −J1

(1)∑
〈i j〉

(
1

4
− Sz

i Sz
j

)
,

V = 1

2
J1

(1)∑
〈i j〉

(S+
i S−

j + S−
i S+

j ),

κ = 2, H0 = J1

(2)∑
〈i j〉

(
1

4
− Sz

i Sz
j

)
,

V = 1

2
J1

(2)∑
〈i j〉

(S+
i S+

j + S−
i S−

j ),

TABLE III. Padé approximant values of energies of AF1 and
AF3 phases at T = 0. The superscript l denotes results obtained from
the logarithmic derivative series.

AF1 AF3

t = 0 t = 0.5 t = 0 t = 0.5

[4,6] −0.7253 −0.7240 −0.7231 −0.7221
[5,5] −0.7250 −0.7252 −0.7229 −0.7228
[6,4] −0.7250 −0.7244 −0.7229 −0.7224
[4,5] −0.7247 −0.7237 −0.7227 −0.7218
[5,4] −0.7249 −0.7239 −0.7228 −0.7220
[4,4] −0.7252 −0.7225 −0.7231 −0.7206
[4, 5]l −0.7250 −0.7251 −0.7229 −0.7229
[5, 4]l −0.7252 −0.7237 −0.7230 −0.7218
[4, 4]l −0.7249 −0.7235 −0.7227 −0.7216

κ = 3, H0 = −J2

(3)∑
〈i j〉

(
1

4
− Sz

i Sz
j

)
,

V = 1

2
J2

(3)∑
〈i j〉

(S+
i S−

j + S−
i S+

j ),

κ = 4, H0 = J2

(4)∑
〈i j〉

(
1

4
− Sz

i Sz
j

)
,

V = 1

2
J2

(4)∑
〈i j〉

(S+
i S+

j + S−
i S−

j ),

where the superscripts on the summations designate the bond
type κ .

Another modification which is commonly used to improve
convergence of the series is to add and subtract a diagonal
term H0 → H0 + t

∑
i Sz

i , V → V − t
∑

i Sz
i , where t is an

adjustable parameter. This is particularly useful in the J1, J2

case, where small energy gaps in the spectrum of H0 could
lead to small energy denominators in the perturbation series.
We have used this technique, with t = 0.5, 1.0. It is of course

TABLE II. Coefficients of AF1 and AF3 energy series for t = 0.0, 0.5.

AF1 AF3

t = 0.0 t = 0.5 t = 0.0 t = 0.5

−0.500000000000D+00 −0.500000000000D+00 −0.500000000000D+00 −0.500000000000D+00
0.000000000000D+00 0.000000000000D+00 0.000000000000D+00 0.000000000000D+00

−0.333333333333D+00 −0.250000000000D+00 −0.333333333333D+00 −0.250000000000D+00
0.222222222222D+00 0.625000000000D−01 0.222222222222D+00 0.625000000000D−01

−0.282804232804D+00 −0.600322420635D−01 −0.274933862434D+00 −0.577628968254D−01
0.481946334089D+00 0.572992941390D−01 0.464719702696D+00 0.563404470585D−01

−0.980165915126D+00 −0.777241341673D−01 −0.943220784740D+00 −0.766621778647D−01
0.222522844917D+01 0.111189395904D+00 0.213374470566D+01 0.109697507750D+00

−0.543376663230D+01 −0.173819812516D+00 −0.518390582543D+01 −0.170885483881D+00
0.139765332577D+02 0.282379109908D+00 0.132639837657D+02 0.277344869098D+00

−0.374005417279D+02 −0.478771665557D+00 −0.353155798676D+02 −0.469641935449D+00
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TABLE IV. Estimated ground-state energies of AF1 and AF3
phases from different methods.

AF1 AF3

LWST [13] −0.744028 −0.745553
SCSWT [14] −0.72425 −0.72160
CC [14] −0.7267(3) −0.7244(3)
Series (t = 0) −0.7250(3) −0.7230(3)

necessary to check that this does not introduce systematic
errors.

III. RESULTS

The calculations are limited by the rapid increase in the
number of clusters of increasing size, made larger by the
need to distinguish bond types. For the nearest-neighbor case,
where there are two bond types, there are a total of 955 116
distinct clusters with 10 or fewer sites for AF1 and 1 674 334
for AF3, from which we have computed series to 10th order.
In Table II we give the coefficients of the energy series for
the pure J1 model, for both t = 0 and t = 0.5, where t is the
convergence parameter discussed above.

We note that the AF1 and AF3 series are identical up to
the terms in λ4, but differ from fourth order onwards. This is
consistent with the results of Ref. [8].

The series have been analyzed using standard Padé ap-
proximant methods, using both the direct series and the
logarithmic derivative. Table III shows values of the energies
of AF1 and AF3 phases from a set of high-order approxi-
mants.

As is apparent, the energies of the two phases are very
close, but those of AF1 lie consistently below those of AF3.
The inclusion of the t term, as discussed above, gives some
variation in the third digit, but does not, in the present case,
result in better consistency among the different approximants.

Table IV compares our estimates of the ground-state ener-
gies of both phases with previous results, obtained from linear
spin-wave theory (LSWT) [13], a self-consistent spin-wave

FIG. 1. Ordered phases of the J1 − J2 fcc antiferromagnet. Solid
and open circles denote up and down spins with respect to a quan-
tization axis. The z axis, in the vertical direction, is expanded for
clarity.

theory (SCSWT) [14], and a numerical coupled-cluster (CC)
calculation [14].

As can be seen our series results are very consistent with
other most recent estimates, falling between the SCSWT and
CC values. They all indicate that, for J2 = 0, the AF1 phase is
selected over AF3 by quantum fluctuations. The earlier LSWT
result therefore does not give a correct prediction.

We now turn to the more general case with both inter-
actions J1 and J2. Here the number of clusters grows even
more rapidly with cluster size and we have computed series
to eighth order in general.

First, we consider the AF2a and AF2b phases which, clas-
sically, are degenerate for all values of J2. In Table V we give
the coefficients of the energy series for the particular case
J2 = 0.7, for parameter values t = 0, 1.

Again, we note that the series are identical through third
order and differences begin at the λ4 term. Analysis of these
series gives the energy estimates shown in Table VI.

The estimates are less regular than those in Table II, for
the pure J1 case. This is to be expected, due to both the
competing interactions and the shorter series. However, we
note that, for every different approximant, the AF2a phase has

TABLE V. Coefficients of the AF2a and AF2b energy series for J2 = 0.7 for parameter values t = 0, 1.

AF2a AF2b

t = 0.0 t = 1.0 t = 0.0 t = 1.0

−0.525000000000D+00 −0.525000000000D+00 −0.525000000000D+00 −0.525000000000D+00
0.000000000000D+00 0.000000000000D+00 0.000000000000D+00 0.000000000000D+00

−0.339375000000D+00 −0.211048951049D+00 −0.339375000000D+00 −0.211048951049D+00
0.333984375000D+00 0.491290527654D−01 0.333984375000D+00 0.491290527654D−01

−0.580362830237D+00 −0.640871825598D−01 −0.563534631188D+00 −0.607531973356D−01
0.126254314588D+01 0.594980686405D−01 0.122809301350D+01 0.603421771454D−01

−0.318910716158D+01 −0.807625851448D−01 −0.310415495749D+01 −0.803667425705D−01
0.894628857272D+01 0.113129149300D+00 0.867461095606D+01 0.112551278350D+00

−0.270084841561D+02 −0.175616037870D+00 −0.260614406845D+02 −0.174251584932D+00
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TABLE VI. Estimates of the ground-state energies of AF2a and
AF2b phases, from Padé approximant analysis of series for J2 = 0.7
and t = 1.0. The superscript l denotes approximants to the logarith-
mic derivative series.

AF2a AF2b

[3,5] −0.7280 −0.7235
[4,4] −0.7262 −0.7218
[5,3] −0.7279 −0.7232
[3,4] −0.7260 −0.7213
[4,3] −0.7260 −0.7214
[3,3] −0.7263 −0.7219
[3, 4]l −0.7238 −0.7207
[4, 3]l −0.7284 −0.7237
3, 3l −0.7255 −0.7211

lower energy. The same result is found for other J2 values. We
thus conclude that, for the AF2 phases, the AF2a case is more
stable and is selected by quantum fluctuations, although the
energy difference is small.

Finally, we compare the energies of AF1, AF2, and AF3
phases for a range of J2 values and construct a phase dia-
gram. In Fig. 2 we show the estimated ground-state energies
and magnetizations versus J2/J1 for all three phases. Uncer-
tainties are, unless shown by error bars, within the size of

FIG. 2. (a) Ground-state energies of different phases versus J2

and (b) magnetizations. Unless shown by error bars, uncertainties
are believed to be no larger than the data points. The lines are guides
for the eye.

FIG. 3. Energies of AF3 and AF2 phases in the crossover region.
The lines are guides for the eye.

the data points. Where error bars are shown, they represent
“confidence limits,” based on consistency between different
approximants and not true statistical errors. The magnetiza-
tion series are, as usual, more erratic, but not excessively so.

It is evident that for J2 < 0 the AF1 phase is stable. For
0 � J2 � 0.5 the AF3 phase is the stable ground state, while
for J2 � 0.5 the phase AF2 has lowest energy. The transitions
are seen to be strongly first order. Quantum fluctuations lead to
a reduction of the ground-state magnetization below the clas-
sical value 0.5, with the strongest reduction at the AF1/AF3
boundary, where the magnetization is reduced by some 50%.

Figure 3 shows the energies of AF3 and AF2 phase on a
finer scale in the crossover region. We estimate the location of
the transition at J2/J1 = 0.535 ± 0.005.

IV. DISCUSSION

We have used series expansions to compute the ground-
state energies and magnetizations of various ordered phases
of the spin-1/2 Heisenberg antiferromagnet on the fcc lattice,
with both first- and second-neighbor exchange interactions.
This allows us to properly include quantum fluctuations at
T = 0 and to determine their effect in selecting among de-
generate classical states.

In particular, we present evidence that in the pure nearest-
neighbor case the AF1 phase is favored over AF3, in
agreement with the most recent other work [14]. We also find
that for large antiferromagnetic J2 the AF2a phase is selected
over AF2b, which also agrees with previous work [8].

The crossover between AF3 and AF2 phases, which classi-
cally occurs at J2 = 0.5, is estimated to be shifted, by quantum
fluctuations, to J2 ∼ 0.535. We are not aware of any previous
calculation of this shift.
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