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Quantum unidirectional magnetoresistance
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We predict unidirectional magnetoresistance effects arising in a bilayer composed of a nonmagnetic metal
and a ferromagnetic insulator, whereby both longitudinal and transverse resistances vary when the direction of
the applied electric field is reversed or the magnetization of the ferromagnetic layer is rotated. In the presence
of spin-orbit coupling, an electron wave incident on the interface of the bilayer undergoes a spin rotation and a
momentum-dependent phase shift. Quantum interference between the incident and reflected waves furnishes the
electron with an additional velocity that is even in the in-plane component of the electron’s wave vector, giving
rise to quadratic magnetotransport that is rooted in the wave nature of electrons. The corresponding unidirectional
magnetoresistances exhibit decay lengths at the scale of the Fermi wavelength—distinctive signatures of the
quantum nonlinear magnetotransport effect.
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I. INTRODUCTION

As fingerprints of electron waves, quantum interference
effects in electron transport have been of fundamental interest
[1–7]. And from the perspective of applications, studies of
coherent quantum transport of electrons—and more generally
information carriers—may also underpin the development of
future quantum devices, including quantum computers [8].
However, interference-based magnetoresistances have thus far
been limited to the linear response regime [2,3,9,10], where
they remain invariant under the reversal of the applied mag-
netic field.

Recently, there has been increasing interest in an emergent
unidirectional magnetoresistance (UMR) effect observed in
various bilayer systems composed of a nonmagnetic layer and
a ferromagnetic layer [11–17]. This novel nonlinear magne-
totransport effect features a variation in magnetoresistance
when the direction of the applied electric field is reversed, at
variance with common linear magnetoresistances, which are
electric-field independent.

While the list of systems that can host such UMRs keeps
growing, they consistently possess three essential ingredi-
ents: Strong spin-orbit coupling (SOC), structural inversion
asymmetry, and broken time reversal symmetry. In terms
of microscopic mechanisms, lying at the heart of UMR ef-
fects are the spin-momentum coupling and spin-asymmetry
in electron scattering [13,15,18–20]. Quantum interference,
however, has not been demonstrated to play any role in non-
linear magnetotransport.

In this work, we unveil the role of quantum interference
in generating both longitudinal and transverse UMRs in bi-
layer structures consisting of a nonmagnetic metal (NM) and
a ferromagnetic insulator (FI), in the presence of SOC at
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the interface. Microscopically, the scattering of an electron
wave at such an interface hinges on the wave vector and spin
orientations of the incident electron, as shown schematically
in Fig. 1. Due to the interference between the incident and
reflected waves, the electron acquires an additional velocity
that is even in the in-plane component of the wave vector (as
we will show explicitly), which in turn gives rise to a nonlinear
current density of the following form:

j(2) = σ
(2)
‖ z · (E × m) E + σ

(2)
⊥ E · m z × E, (1)

where E is the applied electric field, m and z are two unit
vectors denoting, respectively, the directions of magnetization
of the ferromagnetic layer and the normal to the bilayer in-
terface. σ (2)

‖ and σ
(2)
⊥ , both being E-independent, characterize,

respectively, the strengths of the longitudinal and transverse
contributions to the nonlinear transport, with the superscripts
indicating that j(2) is of the second order in the electric field.

Given the quantum mechanical origin of the phenomena,
we shall refer to the corresponding UMRs as quantum unidi-
rectional magnetoresistances (QUMRs), to distinguish them
from their semiclassical counterparts that have heretofore
been reported.

II. THE MODEL

For simplicity, we shall restrict ourselves to the nonlinear
magnetotransport in a NM|FI bilayer, whereby electrons in-
cident on the interface are completely reflected back into the
NM layer and hence the charge transport in the ferromagnetic
layer can be disregarded. Furthermore, we assume the pres-
ence of an exchange interaction coupling the electron spin
and the interfacial magnetization of the FI and a Rashba-type
SOC arising from the structural inversion asymmetry at the
interface. Consider a setup described by Fig. 1, with a three-
dimensional (3D) electron gas contained in a semi-infinite
NM layer occupying the z > 0 half-space and a FI layer occu-
pying the other half.
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FIG. 1. Schematic of the quantum unidirectional magnetoresis-
tance (QUMR) effect in a NM|FI bilayer. An electron in the NM
layer scatters off the interface with spin-orbit coupling (SOC), re-
sulting in an interference between the incident and reflected waves,
which in turn gives rise to a nonlinear current. Both longitudinal
and transverse components of the nonlinear current, j (2)

‖ and j (2)
⊥ , are

sensitive to the orientation of the in-plane magnetization m relative
to the electric field E, with different dependencies on θm—the angle
between m and E.

The 3D electron gas can be described by the Hamiltonian
[21,22]

Ĥ = p̂2

2m
+ αR

h̄
δ(z)σ̂ · (p̂ × z) − Jexδ(z)σ̂ · m + Vb�(−z),

(2)

where αR and Jex are the coefficients of the interfacial Rashba
SOC and exchange interaction, respectively, and Vb is the
height of the energy barrier, which is greater than the Fermi
energy of electrons in the NM layer.

The general scattering state may be written as

ψscat. =
{

eiq·ρ(e−ikzz + eikzzR̂q)χ, z > 0

eiq·ρeκzz T̂qχ, z < 0
, (3)

where q[=(kx, ky)] and ρ[=(x, y)] are the wave- and position-
vector in the x − y plane, wherein the system is translationally
invariant and allows the propagation of plane waves, kz is the z
component of the wave vector of the propagating wave in the
NM layer, and κ−1

z [= (2mVb/h̄2 − k2
z )−1/2] characterizes the

decay length of the evanescent wave in the FI layer. R̂q and T̂q
are 2×2 matrices in spin space, which describe, respectively,
the spin-dependent reflection and transmission amplitudes,
and the spinors χ are taken to be the eigenstates satisfying
σ̂ · m χ± = ±χ±.

By imposing the standard boundary conditions at the
Rashba interface, namely the continuity of the wave func-
tion and the discontinuity of its spatial derivative along the
z direction—as detailed in Appendix A—we find

R̂q = ei(ϕq+ϑqσ̂·nq ), (4)

and T̂q = 1 + R̂q, where ϕq = arcsin(2kzκz/κq), ϑq =
arcsin(2kzQq/κq), κ

2
q = [Q2

q − (κ2
z + k2

z )]2 + (2kzQq)2,
and nq= Qq/Qq. Here, Qq ≡ ηRq×z − ξexm, with
ηR ≡ 2mαR/h̄2 a dimensionless constant characterizing the
strength of the interfacial Rashba SOC and ξex ≡ 2mJex/h̄2

the rescaled exchange interaction. Note that R̂q is unitary, as
enforced by the conservation of probability flux.

All key information about the reflected wave, such as the
phase shift, in particular, is encapsulated in Eq. (4), from
which the physical meaning of R̂q is evident: The angle ϕq
describes a largely spin-independent phase shift, in conjunc-
tion with a spin rotation by an angle ϑq about a rotation axis
taken in the direction of nq. Note that both ϑq and nq depend,
through the vector field Qq, on the wave vector q and the
magnetization m, as the spin rotation is brought about by the
interfacial exchange interaction and Rashba SOC.

III. INTERFERENCE VELOCITY

To provide a heuristic picture of the QUMR effect, let us
first consider the spin-averaged velocity relevant to the charge
transport in the NM layer, which is given by the expectation
value of the velocity operator with respect to the spinor part
of the scattering state for z > 0, i.e.,

〈v̂〉 ≡
∑

σ

Re

[(
ψσ

scat.

)† p̂
m

(
ψσ

scat.

)] = 〈v̂〉I + 〈v̂〉R + 〈v̂〉I-R,

(5)

where the sum runs over the spin index. This velocity can be
decomposed into three parts, as shown in Eq. (5). The first
two terms, 〈v̂〉I and 〈v̂〉R, are associated with the incident
and reflected waves, respectively, and more intriguingly, there
exists another term, 〈v̂〉I-R, originating from the interference
between the incident and the reflected waves. The in-plane
component of this interference velocity can be expressed as

〈v̂‖〉I-R = 4h̄q
m

cos(ϑq) cos(2kzz + ϕq), (6)

where v̂‖ = (v̂x, v̂y).
There are two crucial differences between the interference

velocity 〈v̂〉I-R and the other counterparts, as displayed in
Fig. 2. While 〈v̂〉I and 〈v̂〉R share the same in-plane compo-
nent h̄q

m (which is clearly odd in q), the interference velocity
〈v̂〉I-R includes a constituent that is even in q [23]—which we
define as 〈δv̂‖〉I-R ≡ 1

2 [〈v̂‖(q)〉I-R + 〈v̂‖(−q)〉I-R]—due to the
combined action of interference and spin-dependent scattering
at the interface, as long as the magnetization m is not perpen-
dicular to the x − y plane.

Furthermore, 〈v̂〉I and 〈v̂〉R are inert to the rotation of
the magnetization m, but 〈v̂‖〉I- R is not. In fact, the latter
is exquisitely sensitive to the variation in the angle formed
by m and q, with 〈δv̂x〉I-R and 〈δv̂y〉I-R exhibiting different
angular dependencies. It is these distinctive features of the
interference velocity that give rise to the QUMR, as we will
evaluate below.

IV. DISORDER SCATTERING

To take into account interfacial disorder—which leads
to diffusive scattering of incident electrons, we add a ran-
dom impurity potential that is localized at the interface, i.e.,
Ĥ → Ĥ + V imp(r) with V imp(r) = V imp(ρ)δ(z), leading to
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FIG. 2. The even part of the spatial average of 〈v̂‖(q)〉I-R, given
by 〈δv̂‖〉I-R = 1

2 [〈v̂‖(q)〉I-R + 〈v̂‖(−q)〉I-R], as a function of in-plane
momentum for three different values of θm. (a) Plots of 〈δv̂x〉I-R

(main) and 〈v̂x〉I (inset) as functions of qi = qx at qy = 0. (b) Plots of
〈δv̂y〉I-R (main) and 〈v̂y〉I (inset) as functions of qi = qy at qx = 0.

the Dyson equation

ˆ̃G(r, r′) = Ĝ(r, r′) +
∫

dr1Ĝ(r, r1)V imp(r1) ˆ̃G(r1, r′), (7)

for the disordered propagator ˆ̃G. And we assume the impu-
rity potential has the white noise distribution 〈V imp(ρ)〉 = 0
and 〈V imp(ρ)V imp(ρ′)〉 = (h̄2/2m)2ηγ δ(ρ − ρ′), where the di-
mensionless parameter ηγ characterizes the strength of the
impurity interaction and 〈· · ·〉 here denotes the configurational
average over impurity positions.

Taking the disorder average of Eq. (7) for the
retarded propagator and introducing the decomposition
〈 ˆ̃GR(r, r′; ε)〉 = ∫

q eiq·(ρ−ρ′ ) ˆ̃gR
q(z, z′; ε) with

∫
q ≡ ∫ d2q

(2π )2 ,
the solution of the dressed propagator at the interface
(z, z′ = 0) reads ˆ̃gR = [(ĝR)−1 − ˆ̃�imp]−1, where ĝR

is the bare propagator corresponding to Eq. (2) and
ˆ̃�imp(ε) = (h̄2/2m)2ηγ

∫
q ĝR

q(0, 0; ε) is the configurationally

averaged interfacial self-energy. Once ˆ̃gR is known at
the interface, the dressed reflection matrix is obtained,
which, using the decomposition ˆ̃�imp(ε) = h̄2ξ̃μ(ε)σ̂ μ/2m
with μ = 0, x, y, z, and following the steps provided in
Appendix A, may be expressed as

ˆ̃Rq = eiϕ̃q

κ̃q
(νqeiϑ̃q σ̂·ñq,R + iν ′

qeiϑ̃ ′
q σ̂·ñq,I ), (8)

where ϕ̃q = arcsin[2(κ̃zk̃z + Q̃q,R · Q̃q,I )/κ̃q], ϑ̃q =
arcsin(2kzQ̃q,R/νq) and ϑ̃ ′

q = arcsin(2kzQ̃q,I/ν
′
q) with

κ̃
2
q = (Q̃2

q,R − Q̃2
q,I − κ̃2

z + k̃2
z )2 + 4(Q̃q,R · Q̃q,I + κ̃zk̃z )2, ν2

q =
[Q̃2

q,R − Q̃2
q,I − κ̃2

z − k̃2
z − 2k̃zIm(ξ̃0)]2 + (2kzQ̃q,R)2 and ν ′2

q =
4[Q̃q,R · Q̃q,I − κ̃zIm(ξ̃0)]2 + (2kzQ̃q,I )2. Here, we have

FIG. 3. Diagrammatic structure of the quadratic response. To-
gether, panels (a)–(c) and their j ↔ k counterparts comprise the
dressed conductivity σ̃i jk . The red (blue) double-arrowed lines
represent dressed retarded (advanced) propagators, while the purple-
shaded areas are dressed vertices.

introduced the disordered quantities k̃z ≡ kz − Im(ξ̃0),
κ̃z ≡ κz + Re(ξ̃0) and Q̃q ≡ Qq + ξ̃ with Q̃q,R = Re(Q̃q),
Q̃q,I = Im(Q̃q), ñq,R = Q̃q,R/Q̃q,R and ñq,I = Q̃q,I/Q̃q,I.
Note that in the limit of vanishing disorder, νq, κ̃q → κq,

while ν ′
q → 0 (hence, ˆ̃Rq → R̂q). We thus see that the overall

effect of the interfacial disorder is a modulation of both the
amplitude and phase of the reflection matrix.

Along with the surface disorder, bulk impurities are also
present, whose contribution to the propagator may be included
through an additional local self-energy �B(r). This results in a
local scattering time τ (r) = −h̄/2Im[�B(r)] and a reduction
of the propagator as [24]

ˆ̃G(r, r′) → ˆ̃G(r, r′)exp

[
−

∫
�[r,r′]

ds′′

2l (r′′)

]
, (9)

which arises as a result of the damping of the electron wave
function as it propagates along the straight path �[r, r′] con-
necting the points r and r′, and accounts for the average
scattering encountered by the electron. Here, l (r) = vF τ (r)
is the local scattering length of the conduction electrons. In
the NM layer, the loss of momentum associated with the
damping of the wave function corresponds to the replacement
kz → kz

√
1 + ikF /k2

z ln at the Fermi level, where ln is the mean
free path.

V. QUMR

To capture the nonlinear transport, we evaluate the relevant
quadratic Kubo formulas. The nonlinear conductivity is then
composed of two parts, σ̃i jk = σ̃

(a)
i jk + σ̃

(b)
i jk , which diagram-

matically correspond to dressed triangle and three-photon
bubble diagrams [25–27], as shown in Fig. 3. In general, the
nonlinear conductivities will be modified by both self-energy
and vertex corrections. However, as explained in Appendix B,
the contributions of the latter to the total conductivities turn
out to be negligible in the weak disorder limit. Thus, to the
leading order in the interfacial disorder, the conductivities
may be expressed as

σ̃
(a)
i jk = 2e3h̄5

πm3

∫
SI

qiq jqkIm
[
Tr

(
∂εF

ˆ̃gR
q,zz′ ˆ̃gR

q,z′z′′ ˆ̃gA
q,z′′z

)]
, (10a)

σ̃
(b)
i jk = e3h̄3

πm2

∫
SII

qiδ jkIm
[
Tr

(
∂εF

ˆ̃gR
q,zz′ ˆ̃gA

q,z′z
)]

, (10b)

where
∫

SI ≡ ∫
q

∫ ∞
0 dz′ ∫ ∞

0 dz′′,
∫

SII ≡ ∫
q

∫ ∞
0 dz′, ˆ̃gR

q,zz′ ≡
ˆ̃gR

q(z, z′; εF ) and ˆ̃gA
q,zz′ = ( ˆ̃gR

q,z′z )† is the advanced propagator.
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Without loss of generality, let us set the electric field E in
the x direction, so that we are only concerned with two tensor
elements, σxxx and σyxx, governing the nonlinear charge trans-
port in the longitudinal and transverse directions, respectively.
One can show that σxxx must vanish when m is parallel to the
x axis, whereas σyxx has to be zero when m is parallel to the y
axis (which is perpendicular to E). These results can be under-
stood intuitively by the following symmetry analysis. When
m is parallel to the x axis, the system is invariant under the
mirror reflection in the yz plane (i.e., Mx : x → −x)—and so
are σi jk—whereby the nonlinear current density and electric
field follow the change {Ex; j (2)

x , j (2)
y } → {−Ex; − j (2)

x , j (2)
y }.

As a result, the quadratic response relation must satisfy j (2)
x =

σxxxExEx = − j (2)
x , so σxxx(m = ±x) = 0. Similarly, when m

is parallel to the y axis, the mirror reflection in the xz plane
(i.e., My : y → −y) leads to j (2)

y = σyxxExEx = − j (2)
y , i.e.,

σyxx(m = ±y) = 0.
To characterize the nonlinear transport, we introduce the

UMR coefficients ζ̃
(2)
‖ = ζ̃ (2)

x and ζ̃
(2)
⊥ = ζ̃ (2)

y , where [17]

ζ̃
(2)
i ≡ σ̃ix(Ex ) − σ̃ix(−Ex )

σDEx
� −2σ̃ixx

σD
. (11)

Here σ̃i j = ji/Ej denotes the linear conductivity tensor, and
σD is the Drude conductivity of the NM layer. In this defi-
nition, the UMR coefficient is solely a property of the system
and is independent of the strength of the applied current. Since
it has the dimensions of inverse electric field, physically, one
can say that it sets the scale of the electric field for which
the magnitudes of the UMRs become comparable to linear-
response effects [28].

Plots of the z dependencies of the UMR coefficients for
various values of the bulk and interfacial disorder param-
eters ln and ηγ are presented in Fig. 4, which reveal that
the UMR coefficients scale linearly with the mean free path.
This is not surprising, as in the semiclassical picture, σi jk ∝
l2
n , while σD ∝ ln. Furthermore, as shown in the insets of

Fig. 4, introducing the interfacial disorder leads to a slight
enhancement of the UMR coefficients, which is due to the
momentum relaxation of electrons caused by the interfacial
disorder that effectively modulates the momentum-dependent
spin-orbit scattering [see Eq. (8)]. However, this trend is ex-
pected to be reversed when the interfacial disorder is increased
further, as the vertex corrections, which constitute the diffuse
scattering and contribute negatively to the magnitudes of the
UMR coefficients (see Appendix B for details), will play an
increasingly important role in the quantum transport.

To shed light on the physical origin of the UMR effect, we
first note from Fig. 4 that spatial variations in ζ̃

(2)
‖ and ζ̃

(2)
⊥ —

composed of an oscillatory exponential decay—occur over a
length scale given by the Fermi wavelength λF = 2π/kF , with
kF =

√
2mεF /h̄2 the Fermi wave vector in the NM layer. This

reflects the quantum nature of the nonlinear transport effect,
as semiclassical UMRs typically scale with the spin diffusion
length. Furthermore, as shown in Appendix B, in the limiting
case of ln  λF , Eqs. (10) may be reexpressed entirely in
terms of the dressed interference velocity 〈 ˆ̃v(q, z)〉I−R as

σ̃i jk (z; m) = 2e3m2

π h̄4k2
F

l2
n

∫
q
F jk (q)〈 ˆ̃vi(q, z)〉I−R, (12)

FIG. 4. Plots of the z dependencies of the (a) longitudinal (at
m = y) and (b) transverse (at m = x) disorder-averaged UMR co-
efficients for various values of the mean free path, with ηγ = 0.2
(main) and for different impurity strengths, with ln = 10 nm (in-
set). Other parameters used: ηR = 0.2 [22,29–31], ηex = 0.2 [32],
m = 1.8×10−30 kg, εF = 5 eV, and Vb = 8 eV.

where

F jk (q) = 1

kz,F

[
q jqk

(
2

k2
z,F

+ 1

k2
F

− h̄2

m
∂εF

)
+ δ jk

]
, (13)

thereby confirming the quantum-interference origin of the
nonlinear magnetoresistances. In Eq. (12), we have explic-
itly noted the dependence of σ̃i jk on the spatial coordinate
z and the magnetization m, a property inherited from the
interference velocity. Note also that the nonlinear conductivity
tensor scales quadratically with the bulk disorder parameter,
σ̃i jk ∝ l2

n , in agreement with semiclassical expectations.
Incidentally, Eq. (12) also reveals a simple relation be-

tween the longitudinal and transverse QUMRs. A comparison
of the plots in Fig. 4 suggests that the transverse and
longitudinal UMR coefficients are related by a factor of
−1/3. To confirm this, we note that the point of differ-
ence between σ̃xxx and σ̃yxx in Eq. (12) is in the azimuthal
integrals in momentum space. Performing these, we find
that σ̃xxx ∝ my

∫ 2π

0 dφq cos4 φq = (3π/4)my, while σ̃yxx ∝
−mx

∫ 2π

0 dφq cos2 φq sin2 φq = −(π/4)mx, with φq the az-
imuthal angle in momentum space. Thus, for an arbitrary
orientation of the magnetization, this gives the simple—yet
general—relation

ζ̃
(2)
⊥

ζ̃
(2)
‖

= −1

3
cot θm, (14)

with θm the angle between the projected magnetization onto
the layer plane and the applied electric field (see Fig. 1). And
comparison of the transverse UMR coefficient when m = x
and the longitudinal UMR coefficient when m = y readily
yields the ratio −1/3 observed in Fig. 4. This simple relation

014411-4



QUANTUM UNIDIRECTIONAL MAGNETORESISTANCE PHYSICAL REVIEW B 108, 014411 (2023)

reflects the common physical origin of the longitudinal and
transverse QUMRs, and may serve as an additional transport
signature of the quantum nonlinear transport effect.

VI. MATERIALS CONSIDERATIONS

The most promising materials systems to observe the
QUMR effect are probably bilayers consisting of a heavy
metal and a FI, such as Au|YIG (Yttrium iron garnet) and
β − Ta|YIG. These systems possess a magnetic interface with
sizable Rashba SOC and exchange interaction—two essential
ingredients for generating the QUMR.

In principle, the QUMR may also arise in metallic bilayers
comprising a heavy metal and a ferromagnetic metal, but it
would be accompanied by other nonlinear effects. One main
competitor is the spin-Hall UMR [11,18,20], arising from the
spin accumulation built in the ferromagnetic-metal layer due
to spin-current injection driven by the spin Hall effect [33–35]
in the heavy-metal layer. For a typical metallic bilayer, such as
Pt|Co, the corresponding UMR coefficient is about ζ (2) ∼ 1
Å/V, about the same order of magnitude as the predicted
QUMR in a typical NM|FI bilayer. Other nonlinear effects
that may intertwine with the QUMR include the anomalous
Nernst effect [36] and spin Seebeck effect [37–40], arising
from a vertical temperature gradient ∇T (∝ E2) across the fer-
romagnetic layer induced by Joule heating. Extra care would
thus be needed to separate these contributions to the nonlinear
resistance from the QUMR in metallic magnetic bilayers [41].

VII. CLOSING REMARKS

In conclusion, we have explored the quantum transport of
electrons in the nonlinear response regime, and predicted a
QUMR effect in NM|FI bilayers, which originates from the
interference between electron waves approaching and reflect-
ing off a magnetic interface with Rashba SOC.

Several appealing properties of the QUMR have been
identified, enabling both electric and magnetic control of
the nonlinear magnetotransport effect. Significantly, the
emergence of the QUMR effect entails variations in both
longitudinal and transverse resistances whenever the direction
of the electric field is reversed. Moreover, the QUMR is also
sensitive to the orientation of magnetization of the FI layer,
as the phase difference between the scattering waves can be
tuned by the magnetization through its coupling with the spin
angular momenta of conduction electrons in the NM layer.

As a final remark, we have restricted ourselves to zero tem-
perature in the initial study of the QUMR effect. To examine
finite temperature effects, one needs to consider the influ-
ence of fluctuating scatterers on the phase coherence of the
quantum magnetotransport in the nonlinear response regime,
which warrants future theoretical and experimental research.
And from an applications perspective, we envision this work
will open new avenues for developing future quantum spin-
tronic devices.
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APPENDIX A: SCATTERING AMPLITUDE MATRICES

In this Appendix, we derive the scattering matrix through
two equivalent methods. The first approach involves imposing
appropriate boundary conditions directly on the wave func-
tion and its spatial derivative. The main advantage of this
approach is that the scattering amplitudes may be obtained in
a rather straightforward manner. The second method requires
the single-particle electron propagator, which, in turn, allows
for a relatively transparent generalization to the case with
disorder. This generalization is the focus of the last part of
this section.

1. Reflection matrix from wave function

Consider a 3D electron gas in the scattering potential
[21,22]

V̂scat.(z) = αR

h̄
δ(z)σ̂ · (p̂ × z) − Jexδ(z)σ̂ · m + Vb�(−z),

(A1)

where αR and Jex are the coefficients of the interfacial Rashba
spin-orbit coupling (SOC) and exchange interaction, respec-
tively, and Vb is the height of the energy barrier, which
is greater than the Fermi energy of electrons in the NM
layer.

The general scattering state, given by Eq. (3), reads

ψscat. =
{

eiq·ρ (e−ikzz + eikzzR̂q)χ, z > 0 (NM layer),

eiq·ρeκzz T̂qχ, z < 0 (FI layer),
(A2)

where q[=(kx, ky)] and ρ[=(x, y)] are the wave- and position-
vectors in the x − y plane, wherein the system is translation-
ally invariant and allows propagation of plane waves, kz is the
z component of the wave vector of the propagating wave in the
NM layer, and κ−1

z [= (2mVb/h̄2 − k2
z )−1/2] characterizes the

decay length of the evanescent wave in the FI layer. R̂q and T̂q
are 2×2 matrices in spin space, which describe, respectively,
the spin-dependent reflection and transmission amplitudes,
and the spinors χ can be taken as an arbitrary superposition
of the eigenspinors that satisfy σ̂ · m χ± = ±χ±.

The wave function obeys the following boundary condi-
tions at the Rashba interface:

ψscat.(ρ, 0+) = ψscat.(ρ, 0−), (A3a)

d

dz
ψscat.(ρ, 0+) − d

dz
ψscat.(ρ, 0−) = σ̂ · Qqψscat.(ρ, 0),

(A3b)

where Qq = ηRq×z − ξexm—as shown in Fig. 5—with ηR ≡
2mαR/h̄2 a dimensionless constant characterizing the strength
of the interfacial Rashba SOC and ξex ≡ 2mJex/h̄2 the
rescaled exchange interaction. Eliminating χ and eiq·ρ from
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FIG. 5. Plots of the dimensionless vectors ηRq×z/kF , ξexm/kF

and Qq/kF = (ηRq×z − ξexm)/kF for the unit vectors (a) q×z/kF =
x and (b) q×z/kF = y. Parameters used: ηR = ξex/kF = 0.2 and
θm = cos−1(m · x) = π/4.

Eqs. (A3a) and (A3b), we obtain a set of equations for the
scattering amplitude matrices:

1 + R̂q = T̂q, (A4a)

−ikz(1 − R̂q) − κzT̂q = σ̂ · QqT̂q. (A4b)

Solving the set of equations, one can obtain the general ex-
pression of the reflection amplitude matrix as follows:

R̂q = Q2
q − (

κ2
z + k2

z

) + 2ikzσ̂ · Qq

(κz − ikz )2 − Q2
q

. (A5)

Introducing the change of variables ϕq = arcsin(2kzκz/κq)
and ϑq = arcsin(2kzQq/κq) with κ

2
q = [Q2

q − (κ2
z + k2

z )]2 +
(2kzQq)2, and using the unit vector nq= Qq/Qq, the reflection
matrix is recast in the form

R̂q = ei(ϕq+ϑqσ̂·nq ), (A6)

which is Eq. (4) presented in the main text.

2. Reflection matrix from propagator

a. Propagator without interfacial effects

Let us rewrite the Hamiltonian given by Eq. (2) as

Ĥ = H0 + V̂ int
q δ(z), (A7a)

H0 = h̄2k2

2m
+ Vb�(−z), (A7b)

V̂ int
q = αR σ̂ · q × z − Jexσ̂ · m, (A7c)

where q is the in-plane momentum and V̂ int
q is the interaction

potential at the interface and consists of the interfacial Rashba
SOC and exchange interactions. For the unperturbed system,
H0, the general scattering state for electrons with momentum
k = (q, k1) incident on the interface from the NM reads

ψk(r) = φk1/κ (z)eiq·ρ, (A8)

where

φk1/κ (z) =
{

e−ik1z + ar (k1, κ )eik1z, z > 0 (NM),

at (k1, κ )eκz, z < 0 (FI).
(A9)

Here, κ quantifies the decay rate of the wave function in the
FI and r = (ρ, z) is the position vector, with ar and at the
reflection and transmission amplitudes, respectively. These
may be obtained from the boundary conditions on the wave
function

φk1 (0+) = φκ (0−), (A10a)

d

dz
φk1 (0+) = d

dz
φκ (0−), (A10b)

which imply

ar (k1, κ ) = ik1 + κ

ik1 − κ
, (A11)

and at = 1 + ar . The retarded unperturbed Green’s function
is

G0,R(ε) = (ε − H0 + iδ)−1, (A12)

which gives rise to the real-space propagator

G0,R(r, r′; ε) ≡ 〈r | G0,R(ε) | r′〉 =
∑

k

ψk(r)ψ∗
k (r′)

ε − εk + iδ
, (A13)

where εk = h̄2k2/2m + Vb�(−z). Inserting Eq. (A8) into
Eq. (A13), we obtain the decomposition

G0,R(r, r′; ε) =
∑

q

eiq·(ρ−ρ′ )g0,R
q (z, z′; ε), (A14)

which, for correlations in the NM layer, leads to the solution

g0,R
q (z > 0, z′ > 0; ε)

=
∑

k1

φk1 (z)φ∗
k1

(z′)

ε − εk + iδ

= m

ih̄2kz(ε)
[eikz (ε)|z−z′| + ar (kz, κz )eikz (ε)(z+z′ )]. (A15)

Here, k1 = ±kz(ε) are the poles of the propagator at energy
ε, with kz(ε) =

√
[k(ε)]2 − q2, k(ε) =

√
2m|ε|/h̄2, κz(ε) =√

k2
b − [kz(ε)]2, and kb =

√
2mVb/h̄2.

Before proceeding to include interfacial effects, we also
add the contribution of the bulk scatterers to the propagator.
This can be achieved by modifying the Hamiltonian as H0 →
H0 + �B(r), where �B(r) is the local self-energy due to bulk
impurity scattering, resulting in a local scattering time τ (r) =
−h̄/2Im[�B(r)] and a reduction of the propagator as [24]

G0,R(r, r′; ε) → G0,R(r, r′; ε)exp

[
−

∫
�[r,r′]

ds′′

2l (r′′)

]
, (A16)

which arises as a result of the damping of the electron wave
function as it propagates along the straight path �[r, r′] con-
necting the points r and r′, and accounts for the average
scattering encountered by the electron. Here, l (r) = vF τ (r)
is the local scattering length of the conduction electrons. In
the NM layer, the loss of momentum associated with the
damping of the wave function corresponds to the replacement
kz → kz

√
1 + ikF /k2

z ln � kz + i kF
2kzln

at the Fermi level, where
ln is the mean free path of the conduction electrons and kF =√

2mεF /h̄2 is the Fermi wave number. Thus, the unperturbed
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propagator now reads

g0,R
q (z, z′; ε) = m

ih̄2kz(ε)
[eikz (ε)|z−z′|e−k(ε)|z−z′ |/2kz (ε)ln

+ ar (kz, κz )eikz (ε)(z+z′ )e−k(ε)(z+z′ )/2kz (ε)ln ].
(A17)

b. Including interfacial potential

In the presence of spin-dependent interactions at the inter-
face, the propagator is now a 2×2 matrix in spin space, which
can be found using the Dyson equation

ĜR(r, r′; ε) = Ĝ0,R(r, r′; ε) +
∫

dr1Ĝ0,R(r, r1; ε)

× V̂ int
q δ(z1)ĜR(r1, r′; ε), (A18)

where

Ĝ0,R(r, r′; ε) = G0,R(r, r′; ε)σ̂0. (A19)

Inserting Eq. (A14) into Eq. (A18), and introducing the anal-
ogous decomposition

ĜR(r, r′; ε) =
∑

q

eiq·(ρ−ρ′ )ĝR
q(z, z′; ε), (A20)

the Fourier-transformed Dyson equation reads

ĝR
q(z, z′; ε) = ĝ0,R

q (z, z′; ε) + ĝ0,R
q (z, 0; ε)V̂ int

q ĝR
q(0, z′; ε),

(A21)

so that for interfacial correlations (z, z′ = 0), the decomposed
propagator is obtained as

ĝR
q = ([

ĝ0,R
q

]−1 − V̂q
)−1 = 2m

h̄2 [(ikz − κz )σ̂0 − σ̂ · Qq]−1.

(A22)

However, spin-dependent scattering at the interface results in
spin-dependent reflection of the electron wave function, so
that Eq. (A17) may be generalized to

ĝR
q(z, z′; ε) = m

ih̄2kz(ε)
[eikz (ε)|z−z′|e−k(ε)|z−z′ |/2kz (ε)ln

+ R̂qeikz (ε)(z+z′ )e−k(ε)(z+z′ )/2kz (ε)ln ], (A23)

where R̂q is the reflection matrix. Equating Eq. (A23) at
z, z′ = 0 to Eq. (A22), we arrive at the general form of the
reflection matrix

R̂q = Q2
q − (

k2
z + κ2

z

) + 2ikzσ̂ · Qq

(ikz − κz )2 − Q2
q

, (A24)

or, equivalently,

R̂q = ei(ϕq+ϑqσ̂·nq ), (A25)

in agreement with Eq. (A6), which was derived directly from
the wave function.

3. Including interfacial disorder

Having derived the reflection matrix from the Green’s func-
tion in the absence of interfacial disorder, we now proceed

to calculate the disordered propagator by taking into account
interfacial impurities, which, in general, lead to both specular
and diffuse scattering off the bilayer interface. This calcula-
tion is done in two equivalent ways: Once from the transition
matrix, and then from a self-energy calculation. From the
latter approach, we then derive the general form of the dis-
ordered reflection matrix.

a. Dressed propagator from transition matrix

Recall the Dyson equation given by Eq. (7) in the main
text,

ˆ̃GR(r, r′; ε) = ĜR(r, r′; ε) +
∫

dr1ĜR(r, r1; ε)

× V̂ imp(r1) ˆ̃GR(r1, r′; ε), (A26)

where ˆ̃GR(r, r′; ε) is the dressed propagator in the presence
of both disorder and interfacial interaction, and V̂ imp(r) =
V̂ imp(ρ)δ(z) is the interfacial impurity potential, for which
we assume the white noise distribution 〈V imp(ρ)〉 = 0 and
〈V imp(ρ)V imp(ρ′)〉 = γ 2δ(ρ − ρ′) [42], where the parame-
ter γ , or its dimensionless counterpart ηγ = (2mγ /h̄2)2,
characterizes the strength of the impurity interaction and
〈· · ·〉 here denotes the configurational average over impurity
positions.

Disorder at the interface destroys the in-plane periodicity
of the system so that the propagator is no longer diagonal in
momentum space and is instead decomposed as

ˆ̃GR(r, r′; ε) =
∑
q,q′

ei(q·ρ−q′ ·ρ′ ) ˆ̃gR
qq′ (z, z′; ε). (A27)

Inserting Eq. (A27) into Eq. (A26), the Dyson equation is
decomposed as

ˆ̃gR
qq′ (z, z′; ε) = ĝR

q(z, z′; ε)δqq′

+ ĝR
q(z, 0; ε)T̂qq′ (ε)ĝR

q′ (0, z′; ε), (A28)

where the transition matrix T̂qq′ obeys the integral equation

T̂qq′ (ε) = V̂ imp
qq′ +

∑
q1

V̂ imp
qq1

ĝR
q1

(ε)T̂q1q′ (ε). (A29)

Here, ĝR
q(ε) ≡ ĝR

q(0, 0; ε) and the Fourier transform of the
impurity potential is given by

V̂ imp
qq′ =

∫
dρ e−iρ·(q−q′ )V̂ imp(ρ). (A30)
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For completeness, we also note the white noise distribution
relations in momentum space〈

V̂ imp
qq′

〉 = 0, (A31a)〈
V̂ imp

qq′ V̂ imp
q′′q′′′

〉 = γ 2 δq+q′′,q′+q′′′ . (A31b)

Upon ensemble averaging, translation invariance is restored
and the disorder-averaged propagator becomes diagonal in
momentum space,

〈 ˆ̃GR(r, r′; ε)〉 =
∑

q

eiq·(ρ−ρ′ ) ˆ̃gR
q(z, z′; ε), (A32)

where we have used the definition 〈 ˆ̃gR
qq′ (z, z′; ε)〉 ≡

ˆ̃gR
q(z, z′; ε)δqq′ . Taking the configurational average of

Eq. (A28), the dressed propagator reads

ˆ̃gR
q(z, z′; ε) = ĝR

q(z, z′; ε) + ĝR
q(z, 0; ε)T̂ (ε)ĝR

q(0, z′; ε),
(A33)

with the configurational average of the transition matrix
defined as 〈T̂qq′ 〉 ≡ T̂ δqq′ , which is found by taking the
ensemble average of Eq. (A29) and using the Born approxi-
mation, leading to the solution

T̂ (ε) = γ 2
∑

q

ĝR
q(ε). (A34)

Thus, the dressed propagator is obtained. Below, we arrive
at the same result from a self-energy calculation, which is
slightly more convenient for deriving the dressed reflection
matrix.

b. Dressed propagator and reflection matrix from self-energy

Consider the configurational average of Eq. (A26),

〈 ˆ̃GR(r, r′; ε)〉

= ĜR(r, r′; ε) +
∫

dr1

∫
dr2 ĜR(r, r1; ε)

× 〈V̂ imp(r1)ĜR(r1, r2; ε)V̂ imp(r2) ˆ̃GR(r2, r′; ε)〉. (A35)

Using Eq. (A32) and applying the expansion [43]

〈V̂ imp(r1)V̂ imp(r2) ˆ̃GR(r2, r′; ε)〉
= 〈V̂ imp(r1)V̂ imp(r2)〉〈 ˆ̃GR(r2, r′; ε)〉 + vertex corrections,

(A36)

Equation (A35) is decomposed as

ˆ̃gR
q(z, z′; ε) = ĝR

q(z, z′; ε) + ĝR
q(z, 0; ε) ˆ̃�imp(ε) ˆ̃gR

q(0, z′; ε),

(A37)

where ˆ̃�imp(ε) is the configurationally averaged irreducible
self-energy and is given, within the Born approximation, by

ˆ̃�imp(ε) = γ 2
∑

q

ĝR
q(ε). (A38)

Note that this is equivalent to the diagonal elements of the
disorder-averaged transition matrix, Eq. (A34), as one would
expect [44].

Solving Eq. (A37) for the disordered propagator at z, z′=0,
we find

ˆ̃gR = [(ĝR)−1 − ˆ̃�imp]−1 = [(
ĝ0,R

q

)−1 − (
V̂ int

q + ˆ̃�imp
)]−1

.

(A39)

Thus, in analogy with Eq. (A23), the dressed propagator may
be expressed as

ˆ̃gR
q(z, z′; ε) = m

ih̄2kz(ε)
[eikz (ε)|z−z′|e−k(ε)|z−z′ |/2kz (ε)ln

+ ˆ̃Rqeikz (ε)(z+z′ )e−k(ε)(z+z′ )/2kz (ε)ln ], (A40)

where, using the decomposition ˆ̃�(ε) = �̃
imp
μ (ε)σ̂ μ with μ =

0, x, y, z and introducing the change of variables �̃
imp
μ (ε) ≡

h̄2ξ̃μ(ε)/2m, the dressed reflection matrix reads

ˆ̃Rq =
Q̃2

q − (
κ̃2

z + k̃2
z

)(
1 + 2iIm ξ̃0

κ̃z+ik̃z

) + 2ikzσ̂ · Q̃q

(κ̃z − ik̃z )2 − Q̃2
q

, (A41)

with k̃z(ε) ≡ kz(ε) − Im ξ̃0(ε), κ̃z(ε) ≡ κz(ε) + Re ξ̃0(ε) and
Q̃q ≡ Qq + ξ̃(ε).

Introducing the change of variables ϕ̃q = arcsin[2(κ̃zk̃z +
Q̃q,R · Q̃q,I )/κ̃q], ϑ̃q = arcsin(2kzQ̃q,R/νq) and ϑ̃ ′

q =
arcsin(2kzQ̃q,I/ν

′
q) with Q̃q,R = Re(Q̃q), Q̃q,I = Im(Q̃q)

and

κ̃
2
q = (

Q̃2
q,R − Q̃2

q,I − κ̃2
z + k̃2

z

)2 + 4(Q̃q,R · Q̃q,I + κ̃zk̃z )2,

(A42a)

ν2
q = [

Q̃2
q,R − Q̃2

q,I − κ̃2
z − k̃2

z − 2k̃zIm(ξ̃0)
]2 + (2kzQ̃q,R)2,

(A42b)

ν ′2
q = 4[Q̃q,R · Q̃q,I − κ̃zIm(ξ̃0)]2 + (2kzQ̃q,I )

2, (A42c)

the dressed reflection matrix is reexpressed as

ˆ̃Rq = eiϕ̃q

κ̃q
(νqeiϑ̃q σ̂·ñq,R + iν ′

qeiϑ̃ ′
q σ̂·ñq,I ), (A43)

which is Eq. (8) in the main text. Here, we have introduced
the unit vectors ñq,R = Q̃q,R/Q̃q,R and ñq,I = Q̃q,I/Q̃q,I, cor-
responding to the real and imaginary parts of the vector Q̃q,
respectively. As a useful consistency check, it is worth noting
that in the limit of vanishing disorder, νq, κ̃q → κq, while

ν ′
q → 0, hence ˆ̃Rq → R̂q and Eq. (A25) is reobtained.

Before moving on, we present a brief derivation of the dis-
order averaged irreducible self-energy, which is useful when
doing explicit calculations of physical quantities. Inserting
Eq. (A23) into Eq. (A38) and using the previously introduced
change of variables, we find

ˆ̃ξ (ε) = 1

8π2i
ηγ

∫
d2q

1

kz
(1 + R̂q), (A44)

with ηγ the dimensionless strength of the interfacial impurity
interaction. Keeping terms up to first order in the Rashba SOC
and exchange constants in the reflection matrix R̂q, given by
Eq. (A24), and integrating up to the cutoff qmax = k, we obtain
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the result

ξ̃0 � −1

6
ηγ k

[
1 − (1 − �2)

3
2

�
+ i�2

]
, (A45a)

ξ̃ � −1

8
ηγ ηexk{2�2(1 − �2) + i[sin−1(�)

−�(1 − 2�2)
√

1 − �2]}m, (A45b)

where ηex ≡ ξex/k is the dimensionless exchange constant and
� = k/kb = √|ε|/Vb is a dimensionless quantity that mea-
sures the ratio of the electron’s wavelength k =

√
2m|ε|/h̄2

to the wavelength associated with the potential barrier, kb =√
2mVb/h̄2. Note that at the Fermi level, we have ηex = ξex/kF

and � = kF /kb.

APPENDIX B: QUADRATIC RESPONSE THEORY

As magnetotransport effects that respond quadratically to
an applied electric field, unidirectional magnetoresistances
(UMRs) and nonlinear Hall effects cannot be captured within
the formalism of linear response theory. In the language of
diagrammatic response theory, this implies that, instead of
the well-known two-photon bubble diagrams that are widely
used to calculate linear responses [44,45], a formal quantum
calculation of UMRs and nonlinear Hall effects mandates the
use of response diagrams that have three external photon legs,
namely triangle diagrams, three-photon bubble diagrams, and
three-photon-vertex diagrams [25–27].

In this Appendix, we present the quadratic conductivity
tensors—both with and without interfacial disorder—in mixed
real and momentum space, which is required for the study of
quantum interference of electrons at the interface of a bilayer
system. Then, through a physically relevant approximation,
we derive an analytical expression for the conductivity tensor
and show that it may be expressed entirely in terms of the

FIG. 6. Diagrammatic structure of the (bare) quadratic responses
in the absence of interfacial disorder. Together, panels (a)–(c), along
with their j ↔ k counterparts, comprise the undressed conductivity
tensor σi jk . Here, red (blue) arrowed lines represent retarded (ad-
vanced) propagators, while black wavy lines are external photon legs.

interference velocity—even in the presence of bulk and inter-
facial disorder. This confirms the role of quantum interference
in generating the longitudinal and transverse QUMRs and
suggests the robustness of these nonlinear magnetoresistances
against disorder effects.

1. Conductivities without interfacial disorder

Let us first consider the simpler case where interfacial
disorder is absent. In general, both the Fermi sea and the Fermi
surface will contribute to the nonlinear transport. However,
in the weak disorder limit, we may neglect the Fermi sea
contribution and focus on the Fermi surface contribution [45].
For a Hamiltonian such as that given by Eqs. (A7), which
is at most quadratic in momentum, as shown in Fig. 6, the
local quadratic conductivity thus consists of terms arising
from triangle diagrams, σ

(a)
i jk (r), as well as from three-photon

bubble diagrams, σ
(b)
i jk (r), so that the total conductivity is

σi jk (r) = σ
(a)
i jk (r) + σ

(b)
i jk (r), (B1)

where the real-space representations of the individual conduc-
tivities read [26]

σ
(a)
i jk (r) = −e3h̄2

π

∫ ∞

−∞
dε ∂ε f

∫
dr1 · · ·

∫
dr5

× Im{Tr[〈r|v̂i|r1〉 ∂εĜR(r1, r2; ε) 〈r2|v̂ j |r3〉 ĜR(r3, r4; ε) 〈r4|v̂k|r5〉 ĜA(r5, r; ε)]} + ( j ↔ k), (B2a)

σ
(b)
i jk (r) = −e3h̄2

2π

∫ ∞

−∞
dε ∂ε f

∫
dr1 · · ·

∫
dr3 Im{Tr[〈r|v̂i|r1〉 ∂εĜR(r1, r2; ε) 〈r2|v̂ jk|r3〉 ĜA(r3, r; ε)]} + ( j ↔ k), (B2b)

with ∂ε ≡ ∂/∂ε and the advanced propagator related to the
retarded one as

ĜA(r′, r; ε) = [ĜR(r, r′; ε)]†. (B3)

In Eqs. (B2), the replacement j ↔ k ensures the intrinsic per-
mutation symmetry of the quadratic response function. And
the first- and second-order velocity operators are given by

v̂i = 1

h̄
∂ i

kĤ0, (B4a)

v̂i j = 1

h̄2 ∂ i
k∂

j
kĤ0, (B4b)

with ∂ i
k ≡ ∂/∂ki. For in-plane momenta, this leads to the real-

space representations

〈r|v̂i|r1〉 = h̄

m

∑
q

qieiq·(ρ−ρ1 )δ(z − z1), (B5a)

〈r|v̂i j |r1〉 = 1

m
δi jδ(r − r1). (B5b)
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Applying Eq. (A20), the conductivities now read

σ
(a)
i jk (z) = −2e3h̄5

πm3

∫
d2q

(2π )2

∫ ∞

−∞
dε ∂ε f

∫ ∞

0
dz′

∫ ∞

0
dz′′ qiq jqkIm

{
Tr

[
∂ε ĝR

q(z, z′; ε)ĝR
q(z′, z′′; ε)ĝA

q(z′′, z; ε)
]}

, (B6a)

σ
(b)
i jk (z) = − e3h̄3

πm2

∫
d2q

(2π )2

∫ ∞

−∞
dε ∂ε f

∫ ∞

0
dz′ qiδ jk Im

{
Tr

[
∂ε ĝR

q(z, z′; ε)ĝA
q(z′, z; ε)

]}
. (B6b)

Inserting Eq. (A23) into Eqs. (B6), the analytical form of the nonlinear conductivities in terms of the reflection matrix may be
obtained, which turns out to be rather cumbersome. In the limit ln  λF , with λF = 2π/kF the Fermi wavelength in the NM
layer, the highest-order terms in the mean free path will dominate the transport and the conductivities may be approximated as

σ
(a)
i jk (z) = −2e3m

π h̄3 l2
n

∫
d2q

(2π )2

∫ ∞

−∞
dε ∂ε f qiq jqk

(
2k2 + k2

z

k4k3
z

− h̄2

m

1

k2kz
∂ε

)
Re(e2ikzzTrR̂q), (B7a)

σ
(b)
i jk (z) = −2e3m

π h̄3 l2
n

∫
d2q

(2π )2

∫ ∞

−∞
dε ∂ε f qiδ jk

1

k2kz
Re(e2ikzzTrR̂q). (B7b)

Using the approximation ∂ε f � −δ(ε − εF ) and the expression for the interference velocity at the Fermi level

〈v̂(q, z)〉I−R = 2h̄q
m

Re(e2ikz,F zTrR̂q), (B8)

with kz,F =
√

k2
F − q2, Eqs. (B7) are recast in the form

σi jk (z; m) = 2e3m2

π h̄4k2
F

l2
n

∫
d2q

(2π )2

1

kz,F

[
q jqk

(
2

k2
z,F

+ 1

k2
F

− h̄2

m
∂εF

)
+ δ jk

]
〈v̂i(q, z)〉I−R. (B9)

In this form, we readily see the central role played by the interference velocity 〈v̂(q, z)〉I−R in generating the nonlinear response.
Next, we study the effect of the interfacial disorder on the nonlinear response.

2. Including interfacial disorder

We now consider the contributions of impurities at the bilayer interface. In the presence of interfacial disorder, the propagator
is no longer diagonal in momentum space and the conductivities generalize to

σ̃
(a)
i jk (z) = − e3h̄5

πm3

[∫
d2q

(2π )2 · · ·
∫

d2q′′′

(2π )2

] ∫ ∞

−∞
dε ∂ε f

∫ ∞

0
dz′

∫ ∞

0
dz′′ qiq

′
jq

′′
k

× Im
{
Tr

[
∂ε

ˆ̃gR
qq′ (z, z′; ε) ˆ̃gR

q′q′′ (z′, z′′; ε) ˆ̃gA
q′′q′′′ (z′′, z; ε)

]} + ( j ↔ k), (B10a)

σ̃
(b)
i jk (z) = − e3h̄3

2πm2

[∫
d2q

(2π )2 · · ·
∫

d2q′′

(2π )2

] ∫ ∞

−∞
dε ∂ε f

∫ ∞

0
dz′ qiδ jkIm

{
Tr

[
∂ε

ˆ̃gR
qq′ (z, z′; ε) ˆ̃gA

q′q′′ (z′, z; ε)
]} + ( j ↔ k). (B10b)

To calculate the specular and diffuse contributions of Eqs. (B10), one needs to calculate configurational averages of products
of two and three propagators, which we symbolically express in the condensed notation 〈 ˆ̃G2〉 and 〈 ˆ̃G3〉. Let us also reexpress
Eq. (A26) in the condensed form

ˆ̃G = Ĝ + ĜV̂ imp ˆ̃G. (B11)

We then have

〈 ˆ̃G2〉 = 〈(Ĝ + ĜV̂ imp ˆ̃G)2〉 � 〈 ˆ̃G〉2 + 〈(ĜV̂ impĜ)2〉, (B12a)

〈 ˆ̃G3〉 = 〈(Ĝ + ĜV̂ imp ˆ̃G)3〉 � 〈 ˆ̃G〉3 + 〈(ĜV̂ impĜ)2〉Ĝ + 〈(ĜV̂ impĜ)Ĝ(ĜV̂ impĜ)〉 + Ĝ〈(ĜV̂ impĜ)2〉, (B12b)

where we have retained only the leading order contributions to the vertex corrections. In Eqs. (B12), terms containing separately

averaged propagators, 〈 ˆ̃G〉2
and 〈 ˆ̃G〉3

, correspond to momentum-preserving scatterings. Hence, they constitute the specular
contribution to the conductivity tensor. The vertex corrections, however, contain momentum-mixing terms and contribute to
the diffuse scattering. A summary of these contributions are presented in Fig. 7, in which we diagrammatically highlight the
approximations to the renormalized propagators and velocity vertex functions.

As we neglect mixing terms—which appear at higher order in the interfacial disorder parameter—the dressed conductivity
tensor σ̃i jk may be expressed as

σ̃i jk = σ̃
spec
i jk + σ̃ diff

i jk , (B13)
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FIG. 7. (a)–(c) Leading-order contributions to the dressed conductivity tensor, where double-arrowed lines represent dressed propagators.
The purple shaded areas correspond to dressed vertices, while the leading-order disorder vertex corrections are represented by dotted purple
lines. (d) The dressed propagator within the Born approximation.

where, here and henceforth, we omit the ensemble-averaging brackets 〈· · ·〉 for simplicity. Below, we present explicit calculations
of the specular and diffuse contributions to the nonlinear response tensor.

a. Specular contribution

In the presence of specular scattering alone, as shown in Eqs. (B12), the dressed conductivity is obtained in a straightforward
manner by simply replacing the bare propagators in Eqs. (B6) with their dressed counterparts as

σ̃
(a),spec
i jk (z) = −2e3h̄5

πm3

∫
d2q

(2π )2

∫ ∞

−∞
dε ∂ε f

∫ ∞

0
dz′

∫ ∞

0
dz′′ qiq jqkIm

{
Tr

[
∂ε

ˆ̃gR
q(z, z′′; ε) ˆ̃gR

q(z′′, z′; ε) ˆ̃gA
q(z′, z; ε)

]}
, (B14a)

σ̃
(b),spec
i jk (z) = − e3h̄3

πm2

∫
d2q

(2π )2

∫ ∞

−∞
dε ∂ε f

∫ ∞

0
dz′ qiδ jk Im

{
Tr

[
∂ε

ˆ̃gR
q(z, z′; ε) ˆ̃gA

q(z′, z; ε)
]}

. (B14b)

Note that with the approximation ∂ε f � −δ(ε − εF ), Eqs. (B14) reduce to Eqs. (10) presented in the main text.
Similarly, the analytical approximation is obtained by the simple replacement of the reflection matrix R̂q in Eqs. (B7) with

its disordered counterpart ˆ̃Rq, given by Eq. (A41)—or equivalently, Eq. (A43). We thus arrive at the generalized result given by
Eq. (12),

σ̃
spec
i jk (z; m) = 2e3m2

π h̄4k2
F

l2
n

∫
d2q

(2π )2

1

kz,F

[
q jqk

(
2

k2
z,F

+ 1

k2
F

− h̄2

m
∂εF

)
+ δ jk

]
〈 ˆ̃vi(q, z)〉I−R, (B15)

where the dressed interference velocity is given by

〈 ˆ̃v(q, z)〉I−R = 2h̄q
m

Re(e2ikz,F zTr ˆ̃Rq). (B16)

b. Diffuse correction

We now present the diffuse corrections to the conductivity tensor, which are all the diagrams in Fig. 7 (along with their j ↔ k
counterparts) that include vertex corrections. Following Eqs. (B12), we conclude that the diffuse corrections corresponding to
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dressed triangle diagrams, σ̃
(a),diff
i jk , and dressed three-photon bubble diagrams, σ̃

(b),diff
i jk , can be expressed as

σ̃
(a),diff
i jk (z) = − e3h̄5

πm3

∫ ∞

−∞
dε ∂ε f Im{Tr[P̂i jk (z; ε)]} + ( j ↔ k), (B17a)

σ̃
(b),diff
i jk (z) = − e3h̄3

2πm2

∫ ∞

−∞
dε ∂ε f Im{Tr[Ŝi jk (z; ε)]} + ( j ↔ k), (B17b)

where

P̂i jk (z; ε) = P̂ (1)
i jk (z; ε) + P̂ (2)

i jk (z; ε) + P̂ (3)
i jk (z; ε), (B18)

with

P̂ (1)
i jk (z; ε) =

(
h̄2

2m

)2

ηγ

∫
d2q

(2π )2

∫
d2q′

(2π )2

∫ ∞

0
dz′

∫ ∞

0
dz′′ q′

iq jqk

× ∂ε

[
ĝR

q′ (z, 0; ε)ĝR(0, z′, q; ε)
]
ĝR

q(z′, z′′; ε)ĝA
q(z′′, 0; ε)ĝA

q′ (0, z; ε), (B19a)

P̂ (2)
i jk (z; ε) =

(
h̄2

2m

)2

ηγ

∫
d2q

(2π )2

∫
d2q′

(2π )2

∫ ∞

0
dz′

∫ ∞

0
dz′′ qiq

′
jqk

× ∂ε

[
ĝR

q(z, 0; ε)ĝR
q′ (0, z′; ε)

]
ĝR

q′ (z′, 0; ε)ĝR
q(0, z′′; ε)ĝA

q(z′′, z; ε), (B19b)

P̂ (3)
i jk (z; ε) =

(
h̄2

2m

)2

ηγ

∫
d2q

(2π )2

∫
d2q′

(2π )2

∫ ∞

0
dz′

∫ ∞

0
dz′′ qiq jq

′
k

× ∂ε

[
ĝR

q(z, z′; ε)
]
ĝR

q(z′, 0; ε)ĝR
q′ (0, z′′; ε)ĝA

q′ (z′′, 0; ε)ĝA
q(0, z; ε), (B19c)

and

Ŝi jk (z; ε) =
(

h̄2

2m

)2

ηγ

∫
d2q

(2π )2

∫
d2q′

(2π )2

∫ ∞

0
dz′ qiδ jk∂ε

[
ĝR

q(z, 0; ε)ĝR
q′ (0, z′; ε)

]
ĝA

q′ (z′, 0; ε)ĝA
q(0, z; ε). (B20)

While an analytical approximation to Eqs. (B17) is rather intractable, a numerical calculation reveals that the diffuse correction
to the UMR coefficients tends to counteract the specular corrections arising from the interfacial disorder. However, the diffuse
contributions turn out to be at least two orders of magnitude smaller than the overall UMR coefficient strengths. Thus, they will
not affect the main physical results and may safely be neglected in the present study.
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