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Extraordinary surface critical behavior induced by the symmetry-protected
topological states of a two-dimensional quantum magnet

Zhe Wang,1,2 Fan Zhang,1,2 and Wenan Guo 1,2,3,*

1Department of Physics, Beijing Normal University, Beijing 100875, China
2Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing 100875, China

3Beijing Computational Science Research Center, Beijing 100193, China

(Received 27 March 2023; revised 12 June 2023; accepted 28 June 2023; published 7 July 2023)

Using quantum Monte Carlo simulations, we study spin-1/2 diagonal ladders coupled by ferromagnetic
Heisenberg interactions. The model can also be viewed as usual ladders with ferromagnetic rung couplings
coupled by antiferromagnetic diagonal couplings. We show that the model hosts a striped magnetic ordered
phase and two topological nontrivial Haldane phases separated by two quantum critical points. We also show
that the two quantum critical points are all in the three-dimensional O(3) universality class irrelevant to the
topological properties of the Haldane phases. The properties of the surface formed by ladder ends in the two
Haldane phases are studied, showing that the surface states are both gapless due to the symmetry-protected
topological bulk states. We further demonstrate that extraordinary surface critical behaviors occur at both critical
points on such gapless surfaces without enhancing the surface coupling. Notably, the surface is not expected to
be ordered in the three-dimensional classical O(3) critical point, suggesting that the topological properties of the
Haldane phases are responsible for this surface critical behavior.
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I. INTRODUCTION

In the Landau-Ginzburg-Wilson paradigm, phases of mat-
ter are characterized by symmetry [1]. The universality class
(UC) of a critical point separating two phases is determined
by the difference in symmetries on either side of the critical
point and the dimensions of the system [2]. When a surface is
present, the local environment near the boundary is different
from that deep inside the bulk of the system; however, the
divergence of correlation length at a critical point makes the
influence of boundaries more pronounced; therefore, physical
quantities measured on the surface also show universal behav-
ior, which is called surface critical behavior (SCB) [3].

From the classical picture, there are ordinary, special, and
extraordinary SCBs [4–6]. The singularities of an ordinary
SCB is induced purely by the bulk criticality when the sur-
face orders simultaneously with the bulk. In the case that the
surface couplings are sufficiently enhanced, the surface may
order in advance of the bulk when the temperature is lowered.
The ordered surface exhibits extra singularities at the bulk
transition point. This is called the extraordinary SCB. The spe-
cial SCB is a multicritical point between the ordinary and the
extraordinary transitions. For a three-dimensional (3D) model
with continuous symmetry, extraordinary SCB does not apply
because it is not possible to have an ordered two-dimensional
(2D) surface. Recent research discovered that the surface ex-
hibits an extraordinary-log SCB with sufficiently enhanced
surface couplings at the critical point of the 3D O(N � 2)
UC [7–12]. Based on the mapping between a d-dimensional
quantum system and a (d + 1)-dimensional classical system,
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this general picture of SCBs should apply to a quantum critical
point (QCP).

However, distinct topologically ordered quantum phases
that cannot be distinguished by symmetry were discovered
since the study of the fractional quantum Hall effect. One
class of such phases has a symmetry-protected topological
(SPT) order, which cannot be mapped to a product state if only
symmetric perturbations are allowed [13–15]. The symmetries
of the perturbations are called the protecting symmetries. The
spin-1 Haldane chain [16,17] is the first example of such a sys-
tem. SPT phases are often characterized by a gap separating
excitations from the ground state in bulk and the presence of
gapless or degenerate edge modes. This connection between
bulk and edge properties, known as bulk-edge correspon-
dence, is caused by the topology of the state.

Now consider a critical point separating an SPT phase with
a symmetry G and a phase with symmetry spontaneously
broken to H in d dimensions. We may ask the following
questions: Does the topological order affect the UC of the crit-
ical point, which, according to the Landau-Ginzburg-Wilson
paradigm, should be determined by the difference of G and H
and the dimensionality d? Does the surface state of the SPT
phase affect the SCBs associated with the critical point?

These questions have attracted recent investigations
[18–20]. For the models studied previously, it was shown that
the topological order does not affect the UC of the critical
point. However, the gapless edge modes of the SPT phases
studied previously, when merging with the bulk critical mode,
lead to nonordinary SCBs at the (2 + 1)-D O(3) bulk critical
point, which is unexpected according to the quantum-classical
correspondence. Interestingly, nonordinary SCBs character-
ized by similar critical exponents are also found unexpectedly
at the (2 + 1)-D O(3) quantum critical point separating
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FIG. 1. The two-dimensional coupled diagonal ladders. The lat-
tice is bipartite with sublattices A (yellow circles) and B (blue
circles). (a) Periodic boundary conditions are applied in the x and y
directions. A diagonal ladder is shown inside the dashed rectangular
box. (b) Periodic boundary conditions are applied in the y direction,
while open boundaries are applied in the x direction to expose sur-
faces. Open circles denote spins on the surfaces. A usual ladder is
shown inside the dashed rectangular box. The interdiagonal-ladder
couplings or, equivalently, the rung couplings of the usual ladders,
J⊥, are indicated by blue lines, interusual-ladder couplings J1 by thin
red lines, and the couplings J > 0 by thick red lines.

topological trivial product states and the symmetry broken
phase [20–23], where the surface formed by the dangling spin
chain weakly coupled to the bulk at the product state is also
gapless according to the Lieb-Schultz-Mattis theorem [24].
The two nonordinary SCBs both have purely quantum but
different origins.

In Ref. [20], we studied the coupled diagonal ladder (CDL)
model, which is constructed by coupling the spin-1/2 di-
agonal ladders [25] antiferromagnetically (AFM) to form a

2D lattice, as illustrated in Fig. 1(a) with J⊥ > 0. In nature,
there are materials described by quasi-one-dimensional spin-1
chains or spin ladders [26,27]. The diagonal ladder is the
composite spin representation of a spin-1 Haldane chain, in
the sense that the low-energy spectra of the two systems are
identical [25]. When the ladders are weakly AFM coupled,
the ground state is a 2D SPT Haldane phase (DHAF) [28].
We showed that the critical point separating the topological
nontrivial phase and the Néel phase is in the (2+1)-D O(3)
UC, the same as that separating the topological trivial rung
singlet (RS) phase and the Néel phase, shown in Fig. 2(a). At
the QCP from the SPT Haldane phase to the Néel phase, we
found nonordinary SCBs on the surface formed by the ends
of ladders, which is attributed to the gapless edge mode of the
SPT phase.

The system can also be viewed as usual two-leg ladders
with AFM rung couplings J⊥ that are coupled by diagonal
AFM bonds, as illustrated in Fig. 1(b). Both the diagonal
ladder and the usual ladder with AFM rung couplings have
short-ranged valence bond (VB) ground states but with differ-
ent topologies, which are defined by the parity of the number
of VBs crossing an arbitrary line vertical to the ladder. The
ground state of the diagonal ladder is odd, with spin-1/2’s
localized at the ends of the ladder for open boundaries. How-
ever, that of the usual ladder with AFM rung couplings is even,
with no spin-1/2’s localized at the ends [25]. This explains
why the RS phase does not have a gapless edge mode at the
ends of the ladders, while the DHAF phase does.

A natural question arises: What are the properties of the
phase that diagonal ladders are ferromagnetically (FM) cou-
pled, i.e., J⊥ < 0 in Fig. 1(a); or, equivalently, what are the

FIG. 2. Phase diagrams for (a) J1 = 1 and (b) J⊥ = −1. (a) The FM-coupled diagonal-ladder Haldane phase (DHFM) and the striped
magnetic order phase (striped) are separated by the QCP J⊥c in the region of J⊥ < 0. The AFM-coupled diagonal-ladder Haldane phase
(DHAF), the antiferromagnetic phase (AFM), and the rung single phase (RS) are separated by two QCPs, J⊥1c and J⊥2c, in the region of J⊥ > 0.
(b) The usual-ladder Haldane phase (UH) and striped magnetic order phase (striped) are separated by QCP J1c. A cartoon of a representative
ground state is graphed in each phase. Thick-red lines denote spin singlets. The red and black solid circles represent the orientation of spins in
the striped phase and AFM phase and show a particular spin configuration favored by the interladder interactions matching the typical VB state
in Haldane phases. The circles in the Haldane phases indicate that two spin-1/2’s form a spin-1. The | and × in the Haldane phases represent
the ladder coupling.
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properties of the phase that usual ladders with FM rung cou-
plings (usual FM ladder with J⊥ < 0) are diagonally AFM
coupled, as illustrated in Fig. 1(b)?

Let us start with two limits: First, the usual FM ladders
are weakly AFM coupled, i.e., 0 < J1 � 1. Note that the
usual ladder with FM rungs behaves like a spin-1 chain and
its VB ground state is odd with spin-1/2’s localized at the
ends of the ladder for open boundaries [25]. The ground state
should be a 2D SPT Haldane phase [19,28] since the couplings
between ladders are weak. The diagonal couplings can be
considered effective FM couplings between neighboring spins
in different ladders and thus may lead to different properties
from the DHAF phase, reflected in the edge modes due to
the bulk-edge correspondence. This phase is referred to as
the usual ladder Haldane (UH) phase [see Fig. 2(b)]. Second,
the diagonal ladders are weakly FM coupled, i.e., |J⊥| � 1.
Again, we expect the ground state to be a 2D SPT Haldane
phase but equivalent to FM-coupled spin-1 chains. The FM
coupling may lead to different properties from the DHAF
phase, especially with different edge modes. We refer to this
phase as the FM-coupled diagonal ladder Haldane (DHFM)
phase [see Fig. 2(a)].

When the strength of the couplings between J1 and J⊥ are
comparable, it is natural to expect the system to transfer to a
magnetically ordered striped phase. Therefore, we expect the
phase diagrams sketched in Fig. 2. It is then valuable to check
whether the transitions from the two SPT Haldane phases
to the striped phase still obey the Landau-Ginzburg-Wilson
paradigm. Suppose the two SPT Haldane phases are topologi-
cally different from the DHAF phase studied in Ref. [20]; we
then ask whether the new SPTs induce different SCBs at the
critical points, considering the bulk-edge correspondence.

In this paper, we answer these questions using unbiased
quantum Monte Carlo (QMC) simulations [29,30]. We numer-
ically show the presence of the magnetically ordered striped
phase and the existence of two QCPs; one is between the
striped phase and the SPT DHFM phase and the other is
between the striped phase and the SPT UH phase. The crit-
ical exponents associated with the two QCPs are determined,
showing that they all belong to the (2+1)-D O(3) UC; this
fact reveals that the topological properties of the phases are
irrelevant. We then show that both SPT phases have gapless
edge modes on the surfaces formed by the ends of the ladders.
We further demonstrate that extraordinary SCBs are realized
at the two bulk critical points on the gapless surfaces with-
out enhancing surface couplings instead of the nonordinary
SCB found at the DHAF and Néel QCP in the AFM-coupled
diagonal ladders. This finding shows that the SPT UH phase
and the SPT DHFM phase are topologically different from the
SPT DHAF phase according to the bulk-edge correspondence.

This paper is organized as follows. We describe the model
and methods in Sec. II. Section III presents the results of
the bulk phase transitions and surface properties of the SPT
phase. We show detailed analyses of the SCBs in Sec. IV, then
conclude in Sec. V.

II. MODELS AND METHODS

We study the spin-1/2 Heisenberg model on coupled diag-
onal ladders; see Fig. 1(a). The system can also be viewed as

coupled usual ladders, as shown in Fig. 1(b). For convenience,
we write the Hamiltonian in terms of coupled diagonal ladders
as follows:

H =
∑
j=0

Hj + J⊥
∑
i, j=0

Si,2 j+1 · Si,2( j+1), (1)

where the first sum is over the diagonal ladders with Hj

describing the jth ladder written as follows:

Hj = J
∑
l=0,1

∑
i

Si,2 j+l · Si+1,2 j+l

+ J1

∑
i

[Si,2 j · Si+1,2 j+1 + Si,2 j+1 · Si+1,2 j], (2)

where l = 0, 1 denote two legs of the jth diagonal ladder;
J > 0 and J1 > 0 are intra-diagonal-ladder Heisenberg ex-
change interactions. The second sum describes the coupling
of the neighboring ladders with the interdiagonal-ladder cou-
plings J⊥. In terms of coupled usual ladders, J and J⊥ are
intrausual-ladder Heisenberg exchange interactions and J1 is
the interusual-ladder coupling. This study is restricted to the
ferromagnetic case J⊥ < 0 and set J = 1 to fix the energy
scale.

The lattice is bipartite, and the ferromagnetic couplings J⊥
do not introduce magnetic frustration; therefore, the model
can be studied using QMC simulations. In this paper, we use
stochastic series expansion QMC simulations with the loop
update algorithm [29,30] to study the bulk and SCBs of the
model. Note that the allowed vertices in the case of FM and
AFM bonds are different and the associated determinant loop
update algorithm has to be adjusted [31]. Periodic boundary
conditions applied in both the x and y lattice directions are
used to study bulk phase transitions. When the surface states
and SCBs are studied, periodic boundary conditions are ap-
plied along the y direction and open boundary conditions are
used along the x direction to expose the surfaces, as shown in
Fig. 1(b).

In our simulations, we reached linear size up to L = 128.
The inverse temperature scales as β = 2L, considering the
dynamic critical exponent z = 1 for the two critical points
studied. Typically, 108 Monte Carlo samples are taken for
each set of parameters.

III. BULK RESULTS

A. Symmetry-breaking phase and associated
bulk phase transitions

We study several physical quantities to investigate the bulk
symmetry-breaking phase and related phase transitions. In
a striped magnetic phase, the spin rotational symmetry is
spontaneously broken. The striped magnetization is used to
describe this order as follows:

mz
s (L) = 1

L2

∑
i

(−1)ix Sz
i , (3)

where ix = 1, 2, . . . , L is the x coordinate of the spin i. The
Binder cumulant U2 [32,33] is defined based on mz

s as follows:

U2(L) = 5

6

(
3 − 〈mz

s (L)4〉
〈mz

s (L)2〉2

)
, (4)
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FIG. 3. Binder cumulant U2 and spin stiffness multiplied by the
system size ρsL versus J⊥ or J1 for different system sizes. Error bars
are much smaller than the symbols. (a), (b) Results near the critical
point J⊥c for setting J1 = 1. (c), (d) Results near critical point J1c for
setting J⊥ = −1.

where U2(L) converges to 1 with increasing system size,
indicating the existence of the striped magnetic order, and
approaches zero with increasing system size, implying that
the system is in the magnetically disordered phase. At the
critical point, U2(L) is dimensionless and thus converges to
a constant.

The mean spin stiffness ρs(L) in the x and y directions is
calculated through the fluctuations of the winding number of
spin transport [34,35]. Similar to the Binder cumulant U2, ρs

is nonzero if the state is magnetically ordered and approaches
zero in the magnetically disordered state. The size dependence
of ρs(L) exactly at a QCP is expected to be as follows [36]:

ρs(L) ∼ L2−(d+z), (5)

where z = 1 is the dynamic exponent and d = 2 represents
the dimensions of the model. Therefore, ρs(L)L is expected to
be dimensionless at the critical point.

We plot ρs(L)L and U2(L) as functions of J⊥ or J1 for
different system sizes in Fig. 3. Since U2(L) and ρs(L)L are
dimensionless at a QCP, the crossings of curves for different
sizes roughly indicate the transition point. Apparently, the

model is in the striped state when J⊥ is less than −0.18 for the
setting J1 = 1 or when J1 is larger than 0.024 for the setting
J⊥ = −1.

We adopt the standard (L, 2L) crossing analysis for the
U2(L) and ρs(L)L curves to estimate the critical point and
critical properties; see, e.g., the Supplemental Material of
Ref. [37]. Let Q label U2 or ρsL; then we define the finite-size
estimator of the critical point J (Q)

c (L) as the crossing point of
Q curves for L and 2L, which drift toward the critical point Jc

in the following way:

J (Q)
c (L) = Jc + aL−1/ν−ω + · · · , (6)

where ν is the correlation length exponent, ω > 0 is an effec-
tive exponent for corrections to scaling, and a is an unknown
constant. At the crossing point J (Q)

c (L), the finite-size estima-
tor of the exponent ν is defined as follows:

1

ν (Q)(L)
= 1

ln 2
ln

(
s(Q)(2L)

s(Q)(L)

)
, (7)

where s(Q)(L) is the slope of the curve Q(L) at J (Q)
c (L). This

estimator approaches the exponent ν at speed L−ω as follows:

ν (Q)(L) = ν + bL−ω + · · · , (8)

where b is an unknown constant.
The analyses based on U2 and ρsL yield consistent esti-

mates of Jc and ν within the error bars. The results with higher
accuracy are selected as the final results and listed in Table I.
In particular, the final estimates of the two critical points
are [J⊥ = −1, J1c = 0.02482(2)] and [J⊥c = −0.18271(6),
J1 = 1].

To further determine the universal properties of the two
critical points, we then calculate the static spin structure factor
and the spin correlation at the longest distance in a finite
system at the two estimated critical points (J⊥c, J1 = 1) and
(J⊥ = −1, J1c ).

The two quantities are defined based on the spin correlation
function as follows:

C(ri j ) = 〈
Sz

i Sz
j

〉
, (9)

where ri j is the vector from site i to j. The static spin structure
factor at wave vector (π, 0) is used to describe the striped
order, which is defined as follows:

S(π, 0) =
∑
ri j

(−1)ix− jxC(ri j ), (10)

where ix, jx = 1, 2, . . . , L are the x coordinates of spins i and
j, respectively. The spin correlation function C(L/2, L/2) av-
erages C(ri j ) between two spins i and j at the longest distance
ri j = (L/2, L/2).

Using S(π, 0) and C(L/2, L/2), we extract the scaling
dimension yh of the striped magnetic field h conjugating to
the striped magnetization mz

s and the anomalous dimension η.
At a QCP, S(π, 0) and C(L/2, L/2) satisfy the following

finite-size scaling forms:

S(π, 0)/L2 ∼ L−2(d+z−yh )(1 + b1L−ω1 ) (11)

and

C(L/2, L/2) ∼ L−(d+z−2+η)(1 + b2L−ω2 ), (12)
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TABLE I. Bulk critical points and exponents. Reduced χ 2 (R-χ 2 = χ 2/d.o.f) and p value of χ 2 (P-χ 2) are listed below the corresponding
exponents. The universal exponents obtained by field theory (FT) and by Monte Carlo simulations (MC) on the 3D classical O(3) models are
also listed for comparison.

Jc(U2) Jc(ρsL) ν(U2) ν(ρsL) η yh

J⊥c −0.18271(6) −0.185(3) 0.72(5) 0.70(1) 0.0350(6) 2.483(2)
R/P-χ 2 0.86/0.46 0.58/0.63 0.50/0.74 1.09/0.36 0.51/0.90 1.5/0.12

J1c 0.02482(2) 0.025(2) 0.73(4) 0.70(3) 0.035(14) 2.483(2)
R/P-χ 2 0.46/0.63 0.31/0.74 0.66/0.57 0.36/0.88 0.90/0.55 1.23/0.27

FT [38] 0.7073(35) 0.0355(25)
MC [39] 0.7117(5) 0.0378(3)

where d = 2 is the spatial dimension, z = 1 is the dynamical
critical exponent, and ω1 and ω2 are the effective exponents
for corrections to scaling. The two exponents yh and η are not
independent and are expected to obey the following scaling
relation:

η = d + z + 2 − 2yh. (13)

Figure 4 shows the numerical results of S(π, 0)/L2 and
C(L/2, L/2) as functions of system size L at two critical
points. Fitting Eqs. (11) and (12) to the data of S(π, 0)/L2 and
C(L/2, L/2), respectively, we obtain the critical exponents yh

and η at the two critical points. In these fits, we find that
setting ω1 = 1 and ω2 = 1 yields good fits. The results are
also presented in Table I. The two pairs of yh and η agree well
and satisfy the scaling relations Eq. (13) within the error bars.

Compared with the best-known exponents of the 3D O(3)
UC [38,39], we conclude that both critical points belong to
the (2+1)-D O(3) UC. Combined with the previous numerical
results [20,40], these results further support that the topologi-
cal order does not change the UC of the bulk phase transition,
described by the Landau symmetry-breaking paradigm.

B. The Haldane phases and their surface states

We now look into the properties of the nonmagnetic phase
closer.

FIG. 4. C(L/2, L/2) and S(π, 0)/L2 versus system size L at the
quantum critical points (−1, J1c ) and (J⊥c, 1) on a log-log scale.
Error bars are much smaller than the symbols.

An S = 1/2 diagonal ladder, shown inside the dashed rect-
angular box in Fig. 1(a), is the composite spin representation
of an S = 1 chain [25]. Its ground state is described by the
AKLT state [17], a typical configuration of which is illus-
trated in Fig. 2(a) at small |J⊥|. A usual ladder with FM
rung coupling J⊥ < 0, shown inside the dashed rectangular
box in Fig. 1(b), also behaves like an S = 1 chain with a
gap to excitations. Therefore, the ground state can also be
represented by the AKLT state, with a typical VB configu-
ration shown in Fig. 2(b) at small J1. These two gapped states,
corresponding to odd integer spin chains, are well-known
SPT Haldane phases [16,41] with a SPT order [13,14]. With
open boundaries, the ground states have two spin-1/2 spins
localized at the ends of the ladder.

When the usual ladders with FM rung couplings are weakly
coupled, the system is still in the SPT Haldane phase (UH) due
to the gap, as illustrated in Fig. 2(b). Similarly, weakly cou-
pled diagonal ladders stay in the SPT Haldane phase due to the
gap. The antiferromagnetically coupled case (DHAF), shown
in Fig. 2(a), was studied in Ref. [20]. In the current paper,
we focus on the FM coupled case (DHFM), also illustrated in
Fig. 2 (a).

In 1D, Haldane phases are often characterized by a hidden
nonlocal order parameter, the so-called string order [25,42].
However, the string order parameter is fragile to arbitrary
weak higher-dimensional couplings between such chains or
ladders [14,43], which has been recently verified numerically
in 2D coupled spin-1 Haldane chain (CHC) model [19] and in
the 2D spin-1/2 CDLs model [20]. Nevertheless, the hallmark
of the SPT phase is the presence of nontrivial surface states
that are gapless or degenerate [44], which have been shown to
be present in the 2D CHCs [19] and in the 2D CDLs [20]. We
will show below that this is also true for the weakly FM-CDLs
and weakly diagonally coupled usual ladders with FM rung
couplings.

To study the surface states on the surfaces perpendicular
to the ladders [see Fig. 1 (b)], we calculate the surface par-
allel correlation C‖(L/2), which averages C(ri j ) between two
surface spins i and j at the longest distance L/2.

Figure 5 shows C‖(L/2) at (J⊥ = −1, J1 = 0.016) sitting
in the UH phase and (J⊥ = −0.08, J1 = 1) sitting in the
DHFM phase. In both cases, we see that C‖(L/2) decays with
system size L in a power law as follows:

C‖(L/2) ∼ L−p. (14)

We find p = 2.6(1) for the former case and p = 0.62(2) for
the latter case, meaning that both surface states are gapless.
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FIG. 5. Surface correlation C‖(L/2) versus system size L on a
log-log scale. C‖(L/2) are calculated at (J⊥ = −0.08, J1 = 1) in the
DHFM phase and (J⊥ = −1, J1 = 0.016) in the UH phase. Alge-
braically decaying with L is observed for both cases, showing two
gapless surface states.

Similar power-law decay occurs on the surface of the
DHAF phase [20]. Notably, the surface configurations are
different there, as mentioned in the Introduction. In the DHFM
phase, the interladder couplings are ferromagnetic J⊥ < 0
instead of AFM in the DHAF phase, while in the UH phase,
the ladders are coupled by diagonal AFM couplings, inducing
effective FM couplings between two neighboring spins in two
ladders. The vanishing in power law of the parallel surface
correlation demonstrates the naive idea of thinking of the
surface as a ferromagnetic chain of S = 1/2 spins localized
at the ends of the ladders, which is ordered, is incorrect. The
gapless surface states purely reflect the topological order of
the bulk.

IV. SURFACE CRITICAL BEHAVIORS

In this section, we study the SCBs at the two bulk critical
points at (J⊥ = −1, J1c ) and (J⊥c, J1 = 1).

In addition to the surface correlation C‖(L/2), we calculate
another spin correlation C⊥(L/2) and the squared ferromag-
netic surface magnetization m2

1(L), where C⊥(L/2) averages
C(ri j ) between spin i fixed on the surface and spin j located at
the center of the bulk, with ri j perpendicular to the surface and
| j − i| = L/2. The surface magnetization m1(L) is defined as
follows:

m1(L) = 1

L

∑
i∈surface

Sz
i , (15)

where the summation is restricted for spins on the surface.
At a bulk critical point, for ordinary, special, and ex-

traordinary SCBs, the finite-size scaling behavior of the two
correlations is characterized by two anomalous dimensions η‖
and η⊥, respectively [4], as follows:

C‖(L/2) = C‖ + a1L−(d+z−2+η‖ ) + a2L−1 + · · · (16)

and

C⊥(L/2) = b1L−(d+z−2+η⊥ ) + b2L−1 + · · · , (17)

where ai and bi are unknown constants, the 1/L terms are
the leading correction to scaling due to analytic contributions,
C‖ = 0 in ordinary or special SCBs, and C‖ 	= 0 characterizes
the long-range order on the surface in an extraordinary SCB.
The squared surface magnetization follows the scaling form
[4]

m2
1(L) = m2

1 + c1L−2(d+z−1−yh1 ) + c2L−1 + · · · , (18)

where yh1 is the scaling dimension of the surface field h1;
1/L is the leading contribution from analytic terms; ci are
unknown constants; and m2

1 should be equal to C‖, corre-
sponding to the squared magnetization on the surface in an
extraordinary SCB. For our model, d = 2 and z = 1.

The three exponents yh1, η‖, and η⊥ are different for ordi-
nary, special, and extraordinary transitions; however, they are
related through the following scaling relations [45]:

2η⊥ = η‖ + η (19)

and

η‖ = d + z − 2yh1, (20)

where η is the anomalous magnetic scaling dimension of
the bulk critical point in the d + z spacetime. We use these
physical quantities in the remainder of this section to examine
SCBs. Two extraordinary SCBs at different bulk critical points
are found.

For the 3D model with a continuous symmetry-breaking
critical point, classical theory does not support extraordinary
SCB because its 2D surface cannot be ordered; hence, no
special SCB is available. However, when quantum mechan-
ics sets in, it is possible that the (1+1)-D surface becomes
long-range ordered due to coupling to a (2+1)-D O(3) QCP
[46] and exhibits extraordinary SCBs. Numerical results have
found such extraordinary SCBs in different models [21,23].

A novel extraordinary-log SCB was proposed for a sur-
face critical state at a 3D O(N) critical point by Metlitski
[7] for 2 � N < Nc, in which the spin correlation decays
logarithmically, as follows:

C‖(L) ∝ log(L/L0)−q, (21)

where L0 is a nonuniversal constant. The surface magne-
tization m2

1(L) also decays logarithmically with the same
exponent q. This extraordinary-log SCB has been verified
numerically in the classical 3D O(3) model [8] and 3D O(2)
model [9]. This behavior was also found on the dangling-chain
surface in the spin-1 dimerized Heisenberg model [47], sug-
gesting that such SCB may apply to 2D QCP for the integer
spin model.

Previous studies [19,20] on QCPs between SPT phases and
O(3) symmetry-breaking phases in (2+1)-D have found that
the gapless edge modes of the SPT phases lead to nonordinary
SCBs that are unexpected according to the quantum-classical
correspondence. Such nonordinary SCBs show no surface
order and have different exponents from the ordinary SCB of
the 3D O(3) UC. The exponents are similar to the exponents
of the SCBs found at the (2+1)-D O(3) QCPs separating the
topological trivial product states and the symmetry-breaking
phase [20–23], where the surface is a dangling S = 1/2 chain
at the product state and thus is also gapless, according to the
Lieb-Schultz-Mattis theorem.
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FIG. 6. (a) Squared surface ferromagnetic magnetization m2
1 and

the correlations C‖(L/2) versus 1/L and (b) the correlations C⊥(L/2)
versus system size L on a log-log scale at two bulk critical points.
The lines are fits according to Eqs. (16)–(18).

In this paper, we have shown that the QCPs between the
striped phase and the two SPT phases (the UH and DHFM
phases) belong to the 3D O(3) UC. Both of them have gapless
edge modes on the surfaces formed by the ends of the lad-
ders, which are not dangling. In the next two subsections, we
will check the various SCBs listed above on these surfaces
and show that the gapless edge modes lead to unexpected
extraordinary SCBs, which suggests that the two SPT states,
i.e., DHFM and UH, are topologically different from the SPT
state (DHAF) studied in Ref. [20] and the SPT state of the
AFM-coupled spin-1 chain [19].

A. Surface critical behaviors at the QCP between the UH and
striped phases

We first study the SCBs associated with the bulk critical
point (J⊥ = −1, J1c ) separating the striped magnetic ordered
phase from the SPT UH phase.

The numerical results of C‖(L/2) and m2
1(L) as functions

of size L are graphed in Fig. 6(a) and C⊥(L/2) as a function
of L are plotted in Fig. 6(b).

Evidently, the extraordinary-log SCBs are excluded since
C‖(L/2) increases with size L. We then try to analyze C‖(L/2)
according to Eq. (16).

TABLE II. Finite-size scaling analysis of C‖(L/2), m2
1(L), and

C⊥(L/2) at bulk critical point J1c to obtain surface critical exponents
η‖, yh1, and η⊥. Correction term L−1 included in the fitting formula
Eqs. (16)–(18) are denoted by yes, not included are denoted by no.
Reduced χ 2 (R-χ 2) and p value of χ 2 (P-χ 2) are also listed.

Lmin η‖ R/P-χ 2

Yes 56 −0.33(5) 0.98/0.45
64 −0.34(8) 1.15/0.32
72 −0.3(1) 1.38/0.22

No 72 −0.29(1) 1.18/0.30
88 −0.30(2) 0.76/0.55
96 −0.30(3) 1.0/0.39

Lmin yh1 R/P-χ 2

Yes 48 1.69(8) 1.34/0.20
56 1.7(1) 1.08/0.37
64 1.7(2) 0.42/0.86

No 88 1.641(4) 1.71/0.14
96 1.64(1) 1.50/0.21
104 1.65(1) 0.53/0.59

Lmin η⊥ R/P-χ 2

Yes 80 −0.56(4) 0.55/0.70
88 −0.55(6) 0.61/0.61
96 −0.6(2) 0.49/0.61

No 80 −0.48(1) 1.88/0.09
88 −0.48(1) 0.83/0.51
96 −0.48(1) 1.00/0.39

Supposing η‖ < 0, we can ignore the L−1 term for large L.
Alternatively, if η‖ > 0, the second term in Eq. (16) can be
ignored for large L. In either case, as C‖(L/2) increases with
size L, it is evident that C‖ > 0. Fitting Eq. (16) with η‖, C‖,
and a1 free, ignoring the L−1 term, results in C‖ = 0.0124(6).
However, η‖ is near 0, making it difficult to separate the
singular parts from the analytic term 1/L. We have also tried
to include the 1/L term in Eq. (16) in the fitting; however, this
does not lead to a meaningful estimate of η‖.

We fit m2
1(L) according to Eq. (18) with yh1, m2

1, and c1 free,
ignoring analytic terms, resulting in m2

1 = 0.013(1), in good
agreement with C‖ within the error bars, thus supporting long-
range order on the surface. Unfortunately, in this fitting, we
find yh1 nearly 1.5; again, it is difficult to separate the singular
parts from the analytical correction 1/L.

With the long-range order on the surface determined, it
is tempting to fix C‖ = m2

1 = 0.0127 in the fitting formula
Eq. (16) for C‖(L) and Eq. (18) for m2

1(L), and fit for η‖ and yh1

again. By gradually excluding small sizes, we achieve stable
fits for both C‖(L) and m2

1(L), with the analytic correction
1/L term included and not included. The details of the fitting
procedure are presented in Table II. Our final estimate of
the exponent η‖ is η‖ = −0.30(3) and the exponent yh1 is
yh1 = 1.65(1). The two exponents obey the scaling relation
Eq. (20). However, these results are based on assuming values
of C‖ and m2

1; one should be cautious about the reliability of
these estimates.

The finite-size scaling form in Eq. (17) is used to fit the
data of C⊥(L/2). Stable fits are obtained for sufficiently large
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sizes and are also listed in Table II. Our final estimate of the
exponent η⊥ is η⊥ = −0.48(1). The result is consistent with
η⊥ = −0.5050(10) found in the extraordinary transition on
the dangling ladder surface of the 2D staggered Heisenberg
model [21].

However, the exponents η‖ = −0.30(3) and η⊥ =
−0.48(1) violate the relation in Eq. (19). Hence the value
of η‖ = −0.30(3), as well as yh1 = 1.65(1), become more
doubtful.

B. Surface critical behaviors at the QCP between the DHFM
and the striped phases

We then check the SCBs at the critical point (J⊥c, J1 = 1)
where the SPT DHFM phase transfers to the striped magnetic
ordered phase.

The numerical results of C‖(L/2) and m2
1 versus L are

plotted in Fig. 6(a).
The SPT DHFM state is the ground state of weakly FM-

CDLs. The diagonal ladder, similar to the usual ladder with
FM rungs, behaves like a spin-1 chain, and its VB ground
state is also odd [25]. As discussed in the Introduction, both
the DHFM state and the UH state can be regarded as FM-
coupled spin-1 chains. Therefore, we expect qualitatively the
same SCBs as those at the UH and the striped phase QCP
and exclude the extraordinary-log scenario. Nevertheless, we
have checked the extraordinary-log behaviors. Fitting C‖(L/2)
according to Eq. (21) yields q = 0.09(20), and similar fitting
to m2

1(L) yields q = 0.156(7). Hence, although we cannot
completely exclude the extraordinary-log SCB, we conclude
that such behavior is unlikely.

Fitting these data according to Eqs. (16) and (18) with the
same procedure as at critical point (J⊥ = −1, J1c ), we ob-
tain C‖ = 0.0275(3) and m2

1 = 0.028(2), which are consistent
within error bars. This indicates the existence of a long-range
order on the surface. Again, η‖ is found near 0 and yh1 ≈ 1.5.
It is difficult to separate the singular parts from the analytic
correction.

We then fix C‖ = m2
1 = 0.0275 in the fitting of Eqs. (16)

and (18) to C‖(L/2) and m2
1(L), respectively. We achieve a

stable fit with the 1/L term included or not included in the
fitting procedure for sufficiently large Lmin. The results are
listed in Table III. Our final estimates of the exponents are
η‖ = −0.22(7) and yh1 = 1.64(1). The two exponents satisfy
the scaling relation Eq. (20) and are consistent with the re-
sults at (J⊥ = −1, J1c ). Again, we have reservations about the
values of these exponents.

The numerical results of C⊥(L/2) as functions of L are
plotted in Fig. 6(b). Stable fits are obtained by gradually
excluding data of sizes smaller than Lmin. The procedure is
presented in Table III. Our final estimate is η⊥ = −0.498(2).
The exponent is consistent with the results at J1c as well as the
η⊥ = −0.5050(10) found in the extraordinary transition on a
special surface of the 2D staggered Heisenberg model [21].

Apparently, η‖ and η⊥ also challenge the relation in
Eq. (19). This fact makes the value of η‖ = −0.22(7), as well
as yh1 = 1.64(1), suspect; however, they agree with the corre-
sponding exponents found at the critical point (J⊥ = −1, J1c ).

It is instructive to compare the above SCBs to those on
the same surface at the critical point J⊥1c between the DHAF
phase and the AFM phase, see Fig. 2, which has been studied

TABLE III. Finite-size scaling analysis of C‖(L/2), m2
1(L), and

C⊥(L/2) at bulk critical point J⊥c to obtain surface critical exponents
η‖, yh1, and η⊥, respectively. Fits with correction terms L−1 included
are denoted by yes, those without L−1 term are denoted by no.
Reduced χ 2 (R-χ 2) and p value of χ 2 (P-χ 2) are also listed.

Lmin η‖ R/P-χ 2

Yes 44 −0.26(13) 0.34/0.97
48 −0.28(16) 0.37/0.96
56 −0.5(4) 0.26/0.97

No 72 −0.20(4) 0.23/0.96
80 −0.19(5) 0.27/0.93
88 −0.22(7) 0.27/0.90

Lmin yh1 R/P-χ 2

Yes 72 1.70(5) 0.32/0.89
80 1.71(6) 0.39/0.81
88 1.7(1) 0.52/0.66

No 72 1.63(1) 1.66/0.12
80 1.63(1) 1.03/0.39
96 1.64(1) 0.70/0.55

Lmin η⊥ R/P-χ 2

Yes 80 −0.52(2) 0.25/0.91
88 −0.52(3) 0.34/0.80
96 −0.53(4) 0.45/0.64

No 80 −0.497(1) 0.86/0.51
88 −0.498(2) 0.52/0.72
96 −0.499(2) 0.52/0.67

in our recent paper [20]. We found the parallel spin correlation
decays to zero in power law, C‖(L/2) ∼ L−(d+z−2+η‖ ), with
η‖ = −0.511(2), indicating that there is no surface order. The
scaling behavior of the surface staggered magnetic suscepti-
bility χs1(L) also suggests that the SCB is not extraordinary,
but nonordinary with exponent yh1 = 1.756(3). Furthermore,
in the Appendix, we present direct calculation of the surface
staggered magnetization m2

s1. The results show that the surface
staggered magnetization disappears at the thermodynamic
limit, which further supports the conclusion that the SCBs at
J⊥1c are different from those at the QCP J1c and J⊥c.

V. DISCUSSION AND CONCLUSION

Using QMC simulations, we have studied the spin-1/2
Heisenberg model on the 2D CDL lattice with tunable fer-
romagnetic interladder couplings. The model can also be
considered the spin-1/2 Heisenberg model on the 2D coupled
FM usual ladders with tunable AFM diagonal couplings. We
have studied the phases and phase transitions when the in-
terladder coupling is tuned. We have shown that the model
realizes two 2D SPT Haldane phases, the UH and the DHFM
phases, when the two kinds of ladders are weakly coupled
and that the model enters the striped magnetic ordered phase
when the couplings of the ladders are strong enough. We have
demonstrated that the two QCPs separating the SPT phases
and the striped phase are in the 3D O(3) UC; the topological
properties of the SPT phases do not affect the universal prop-
erties of the bulk phase transitions.
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We have also studied the surface states of the two SPT
phases and found gapless surface modes on the surfaces
formed by the ends of the ladders. Unlike the surface con-
figurations of the coupled Haldane chains[19] and that of the
spin-1/2 CDL model with ladder coupling J⊥ > 0 [20] in
the corresponding SPT Haldane phases, where the spin-1/2
excitations at the ends of the chains/ladders are coupled an-
tiferromagnetically, here the spin-1/2 excitations at the ends
of the ladders are coupled ferromagnetically. However, these
surface excitations should not be viewed as a 1D ferromag-
netic S = 1/2 chain, which is ordered. Instead, the gapless
surface modes in both SPT phases should be considered to
originate purely from the bulk-edge correspondence of the
topologically ordered bulk state.

We have focused on the SCBs at the two bulk critical
points. Unlike in the CHC model and the AFM-coupled
spin-1/2 CDL model, where the gapless edge modes of the
SPT phases induce nonordinary SCBs, we showed that the
gapless surface states of the UH and the DHFM SPT states
of the current model lead to extraordinary SCBs at the two
bulk QCPs with magnetically ordered surfaces. These results
show that the SPT state of the FM-coupled CDLs model
and the SPT state of the diagonally AFM-coupled FM usual
ladders are topologically different from the SPT state of the
AFM-coupled CDLs model according to the bulk-edge corre-
spondence of a topologically ordered state.

Finally, we would like to mention that an SPT state leading
to extraordinary SCB at a QCP is a surprise. To our knowl-
edge, there is no theoretical explanation for this. Therefore,
further investigations are called for.
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APPENDIX: STAGGERED SURFACE MAGNETIZATION
AT CRITICAL POINT J⊥1c BETWEEN THE DHAF

AND THE AFM PHASES

The staggered surface magnetization ms1(L) is defined as
follows:

ms1(L) = 1

L

∑
i∈surface

φiS
z
i , (A1)

where the summation is restricted on the surface, φi = ±1
depending on the sublattice to which i belongs.

Figure 7 shows the squared staggered surface magnetiza-
tion m2

s1(L) on the surface formed by the ends of coupled

FIG. 7. Squared staggered surface magnetization m2
s1(L) versus

(a) linear size L on a log-log scale and (b) 1/L at the bulk critical
point J⊥1c. The red symbol shows the extrapolated value at the
thermodynamic limit, which is zero within the error bar.

ladders referred to as the Y surface in Ref. [20] at the bulk
critical point J⊥1c.

We fit the data of the m2
s1(L) according to

m2
s1(L) = m2

s1 + c1L−2(d+z−1−yh1 ), (A2)

with m2
s1 set to zero and obtain a statistically sound fit with

yh1 = 1.74(1), which is coincident with yh1 = 1.756(3) ob-
tained from the scaling behavior of the staggered magnetic
susceptibility χs1 in our previous paper [20], as shown in
Fig. 7(a).

We have also tried to fit the data of m2
s1(L) according to

Eq. (A2) with m2
s1 free. We find m2

s1 = 0.001(2), which is zero
within the error bar, as illustrated in Fig. 7(b).

The finite and disappearing magnetization on the sur-
face indicates that the DHAF phase and DHFM, UH
phase are topologically different according to bulk-edge
correspondence.
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