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Giant magnetoresistance in helimagnets
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Magnetoresistance and ordinary Hall effects are studied depending on magnetic field, temperature, electron
concentration, and the orientation between the an electric field, magnetic field, and the spin spiral propagation
direction. The magnetic field is assumed to be lower than the pinning value Bpin. Solving the Boltzmann
equation for a nonequilibrium distribution function, we find the giant magnetoresistance in helimagnets by more
than one order of magnitude higher than in a ferromagnetic phase. The giant magnetoresistance is only observed
along the spin spiral propagation axis with a magnetic field directed perpendicular to this axis. The explanation of
this effect is given in terms of the spin separation of electrons along the spiral axis specific to a helical state. We
study ordinary Hall effect and find that the Hall constant remains almost unchanged compared to the free electron
model at the same electron concentration in low and high magnetic fields. We also observe the dramatic increase
in anisotropy in the longitudinal conductivity with an applied magnetic field. The temperature dependence reveals
the increase or decrease of magnetoresistance depending on electron concentration. We provide the explanations
of the found effects using the simple models.
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I. INTRODUCTION

Helimagnets are a class of materials with the unique mag-
netic structure called a spin spiral. In recent years, there has
been growing interest in understanding the properties of spin
spirals and their potential applications in spintronics [1–4].
Helimagnetism is related to skyrmions because they origi-
nate from the same interactions as spin spirals at different
temperatures and magnetic fields [5]. It is known from both
theoretical and experimental studies that the direction of a spin
spiral in the absence of a magnetic field is defined by crystal
symmetry. For example, it is a (111) direction in cubic MnSi
crystals [6–11]. In the presence of a magnetic field, there are
two possibilities: (a) the spiral propagation direction is still
pinned to the crystal axis, and (b) the spin spiral propagates
along the magnetic field and becomes conical, i.e., it acquires
a nonzero net magnetic moment. Case (a) is observed when an
applied external magnetic field is below the pinning value Bpin

which is defined by material, temperature, and the direction
of a magnetic field with respect to crystal axes, and case (b)
corresponds to magnetic fields with B > Bpin [6,12–18].

Helimagnetism can be caused by antisymmetric exchange
[19–22], frustrated magnetism [23], and RKKY/Kondo ef-
fects [24–27]. In the previous theoretical and experimental
investigations the origin of spin spirals was discussed [28–33].
The charge transport in helimagnets was experimentally
investigated for FeGe2 [34,35], Fe1−yCoyGe [36], MnSi
[37–40], Cu2OSeO3 [41], SrRuO3 [42], and for MnP it was
shown that the helicity can be controlled by electric current
[1]. Thus, it is important to provide a systematic approach
where these experimental data can be explained.

*yurid@uwyo.edu

To study megnetotransport in helimagnets, we use the
approach based on the kinetic Boltzmann equation for a
nonequilibrium distribution function. In the previous research
we employed the Boltzmann equation methodology to investi-
gate the anisotropy in the longitudinal conductivity originated
from the band structure distortion due to the helical and con-
ical spin spirals. We found how it depends on Fermi energy.
We also described the resistivity behavior at the phase transi-
tion from spin spiral to paramagnetic or ferromagnetic phases
[43,44]. In this research, we focus only on helical structures.
We assume Bpin to be high enough to study electron transport
properties in a broad range of magnetic fields (up to 10 T).
To investigate a temperature dependence of Hall effect and
magnetoresistance, we require a spin-spiral phase to exist up
to 90 K. It is important to emphasize that we only consider
helical magnetic phase without conical component. For ex-
ample, in MnP Bpin = 0 and the magnetic phase becomes
conical at any nonzero magnetic field and the proposed theory
becomes inapplicable [1,45].

To describe the transport properties in 3D conical magnetic
materials, we consider the following Hamiltonian [46]

Ĥ0 = Ĥcrys + Ĥhel = h̄2k2

2m
− JS0σ̂ × n(r)

= h̄2k2

2m
− JS(σx cos(κz) + σy sin(κz)), (1)

where J is an exchange integral between the conduction
electrons and localized magnetic moments S. Here σ is
the vector of the three Pauli matrices. The spiral period of
the localized spin rotation about the z axis is L = 2π/κ.
We organize this work as follows. In Sec. II we introduce
the theoretical approach to transport properties based on the
Boltzmann equation which is solved numerically using the
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original method based on the elimination of the derivative
of the distribution function. In Sec. III we present the results
of the calculations of magnetoresistance, ordinary Hall effect
and anisotropy in the longitudinal conductivity depending on
a magnetic field, temperature, electron density, and orientation
between an electric field, magnetic field, and helicity propaga-
tion direction. The qualitative explanations are also provided.

II. THEORETICAL AND COMPUTATIONAL
APPROACHES

Hamiltonian Eq. (1) can be exactly diagonalized where the
energy bands have the following form [44]:

ε1,2 = ε0
(
k + ez

κ

2

) + ε0
(
k − ez

κ

2

)
2

±
√

J2S2 + D2. (2)

Here ε0(k) is an unperturbed energy band and D = [ε0(k +
ez

κ

2 ) − ε0(k − ez
κ

2 )]/2. The eigenfunctions are expressed as
follows: (

�
↑(ν)
k (r)

�
↓(ν)
k (r)

)
=

(
aν (k)e−i κ2 z

bν (k)e+i κ2 z

)
ψ0k(r), (3)

where ψ0k is an unperturbed wavefunction, ν = 1, 2 is a band
index, and aν and bν are coefficients for spin-up and spin-
down contributions to the eigenstate

b2 = a1 = cos
X

2
, b1 = −a2 = sin

X

2
,

cos X = D√
J2S2 + D2

. (4)

For the transport calculations we employ the Boltzmann
equation with the relaxation rate due to electron-acoustic
phonon interaction [43,44]

− e

h̄
(E + [vν × B])∇k

(
f0(εν (k)) + f ν

1 (k)
)

=
∑
ν ′

∑
k′

(
W νν ′

kk′ f ν ′
1 (k′) − W ν ′ν

k′k f ν
1 (k)

)
. (5)

Here f0 is the equilibrium Fermi distribution function, f1 is
the nonequilibrium part of the total distribution function, E
is an applied electric field, B is an applied magnetic field, v is
an electron velocity, and ∇k is the gradient with respect to the
wavevector. The relative directions between the electric field,
magnetic field, and spin spiral axis are schematically shown
in Fig. 1.

The transition rates W νν ′
kk′ are defined as follows:

W νν ′
kk′ = (2π/h̄)

∣∣〈k′, ν ′, N ′
q j

∣∣�V
∣∣k, ν, Nq j

〉∣∣2
δ(εν (k) − εν ′ (k′)).

(6)
In this equation, �V is the electron-acoustic phonon interac-
tion potential. Nq j is the population number of phonons with
the wavevector q and the branch j determined from the Bose
distribution function

Nq j = 1

e
εph
kBT − 1

. (7)

Index ν denotes an energy band number (ν = 1, 2). As
soon as the transition rates are found and Boltzmann equa-
tion [Eq. (5)] is solved, we can determine the electric current

FIG. 1. Directions between the electric field E, magnetic field B,
and spin spiral axis κ.

density

jνi = e
1

(2π )3

∫
f ν
1 vν

i d3k, (8)

where vν
i is a velocity projection (i = x, y, z) determined as

vν
i = ∂εν (k)/h̄∂ki.

To solve the Boltzmann equation [Eq. (5)], we have ex-
panded it to the lowest order of f1

− e
∂ f0

∂ε
E × vν − e

h̄
[vν × B] × (∇k f ν

1 (k)
)

=
∑
ν ′

∫ (
W νν ′

kk′ f ν ′
1 (k′) − W ν ′ν

k′k f ν
1 (k)

) d3k′

(2π )3 . (9)

Equation (9) is a linear integrodifferential matrix equation for
f1. For numerical purposes it is important to eliminate the
derivative ∇k f ν

1 . Thus, we multiply left- and right-hand sides
of Eq. (9) by both the delta function of energy δ(ε(k) − ε0),
and some differentiable function gn(k, ν), which will be de-
fined below. We then integrate the equation over k. The
gradient term on the left-hand side can be transformed using
the integration by parts resulting in the following integral form
of the Boltzmann equation∑

ν

∫
f ν
1 (k)K (k, ν)

d3k

(2π )3

= −
∑

ν

∫
δ(εν (k) − ε0)gn(k, ν)

∂ f0

∂εν (k)
E × vν d3k

(2π )3 ,

(10)

where the kernel K (k, ν) is defined as follows:

K (k, ν) = e

h̄
δ(εν (k) − ε0)[vν × B] × ∇kgn(k, ν)

+ 2π

h̄

∑
ν ′

∫ ∣∣V ν ′ν
k′k

∣∣2
δ(εν (k) − ε0)δ(εν ′

(k′) − ε0)

× (gn(k′, ν ′) − gn(k, ν))
d3k′

(2π )3
. (11)

Here we express the transition rates W νν ′
kk′ in accordance with

Eq. (6). Equation (10) is the inhomogeneous Fredholm in-
tegral equation of the first kind. We solve it numerically in
piecewise-constant approximation. The set of functions {gn} is
chosen to provide a set of N independent equations where N is
the number of points to be considered on the constant energy
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FIG. 2. Band structures for ε1 and ε2 for three different cases: (a) the ferromagnetic phase where ε1,2(k) are paraboloids, (b) a helical state
where ε1(k) has one nonparabolic minimum h̄2

κ
2/2m < 2JS, and (c) a helical state where ε1(k) has two symmetric minima h̄2

κ
2/2m > 2JS.

The blue color corresponds to the spin-↓ projection and the red color represents the spin-↑ projection. The mixture of the spin-up and spin-down
states is shown in the middle region.

surface. To choose the functions gn, we consider the two
options: (a) grn,νn (k, ν) = δννn exp (irn · k), which is equiva-
lent to the Fourier transform and (b) the product of the three
Gaussian functions in the k space

gkn,νn (k, ν) = δννn g(kx − knx )g(ky − kny)g(kz − knz ),

g(k − kn) = 1√
2πw

e− 1
2w2 (k−kn )2

, (12)

where w is the width of the Gaussian function. In the limit of
w → 0, Eq. (10) transforms to Eq. (9). Both sets of functions
provide the same numerical results, from which we conclude
that the approach employed in this paper is trustworthy. The
Gaussian functions are chosen for the calculations.

To solve the Boltzmann equation [Eq. (10)], we have writ-
ten original code where the relaxation rates are considered
within the first Born approximation with respect to electron-
acoustic phonon interaction. We have used nonparabolic ε1(k)
and ε2(k) as defined in Eq. (2) for the solution of the
Boltzmann equation. The numerical simulations include the
calculation of a constant energy surface, which contains mul-
tiple subsurfaces. For each (ν, k) and (ν ′, k′) at the energy
surface, the transition rates have been found. The first order
correction to the distribution function has been calculated and
substituted into the expression for the current [see Eq. (8)].
Then the conductivity and resistivity tensors have been
computed.

For the calculations, we consider a parabolic form for
unperturbed energy band ε0(k) [the first term of Hamiltonian
Eq. (1)]. ε1,2(k) are presented in Fig. 2. As shown in Fig. 2(a),
ε1,2(k) are symmetric paraboloids in a pure ferromagnetic
state. The helical state with the single minimum in ε1(k)
(h̄2

κ
2/2m < 2JS case) is depicted in Fig. 2(b). As shown in

Fig. 2(c), ε1(k) has two symmetric minima in the kz direction
for a helical state h̄2

κ
2/2m > 2JS. The two-minima shape of

ε1(k) is a saddle rather than a Mexican-hat shape discussed
in Ref. [47] for the Rashba effect. Indeed, in the x and y
directions ε1,2(k) are still parabolas. The blue and red colors
stand for spin-down and spin-up states, respectively.

III. RESULTS AND DISCUSSION

In this section we present the results of the numerical
calculations using the original code described above. Here

we discuss the anisotropy in the longitudinal conductivity, the
ordinary Hall effect, and the magnetoresistance. For calcula-
tions we have chosen the following values of the parameters:
the spiral period L = 2π/κ = 3.7 nm and the effective mass
m = 0.5me. The conductivity and the Hall constant are nor-
malized by σ0 = 671 �−1 cm−1 and R0 = 0.0015 � cm T−1,
respectively.

A. Anisotropy in the longitudinal conductivity

In Fig. 3 we present σ⊥ = (σzz − σxx )/2 with respect to
chemical potential at different magnetic fields. The magnetic
field is aligned with the spin spiral propagation direction
while Ex = Ez, Ey = 0. As shown in Fig. 3, the magnetic field
substantially increases the perpendicular current value by one
order of magnitude at B = 3 T. Indeed, the larger the magnetic
field, the smaller σxx. Thus, σ⊥ = (σzz − σxx )/2 increases with
magnetic field. The shape of the curves in Fig. 3 was discussed
in the prior work [43]. The sharp increase at μ = 0.1 eV can
be explained by the contribution of the upper band.

FIG. 3. Fermi energy dependence of the anisotropy in the lon-
gitudinal conductivity in the absence (the blue curve) and in the
presence (the orange and green curves) of the different magnetic
fields.

014405-3



ZADOROZHNYI, RIVLIS, AND DAHNOVSKY PHYSICAL REVIEW B 108, 014405 (2023)

FIG. 4. Inverse ordinary Hall constant depending on the electron density for different structures: ferromagnetic (FM), helical (HM) with
magnetic field along the spin spiral propagation direction, and helical with magnetic field perpendicular to the spin spiral propagation direction.
The exchange integrals, J = 0.07 and J = 0.02 eV, are taken at magnetic fields (a) B = 0.2 T and (b) B = 10 T. The temperature is T = 40 K.

B. Hall effect

For the normal Hall effect, ρxy(−B) = −ρxy(B). The re-
sults of the calculation of the Hall constant R (ρxy = RB) with
respect to electron concentrations are shown in Fig. 4.

In this figure we consider the following cases: the blue
and orange lines stand for the ferromagnetic phase at = 40 K
with the exchange integral J = 0.07 eV and J = 0.02 eV,
respectively [see Fig. 2(a)]. The green line corresponds to
the shallow double minimum (J = 0.07 eV) helical case with
B ‖ z [see Fig. 2(b)]. The red line corresponds to sharp
double-minimum (J = 0.02 eV) helical case with B ‖ z [see
Fig. 2(c)]. The purple line represents the shallow double min-
imum (J = 0.07 eV) helical case with B ‖ x [see Fig. 2(b)].
The brown line corresponds to the sharp double-minimum
(J = 0.02 eV) helical case with B ‖ x [see Fig. 2(c)]. As
shown in Fig. 4, all cases have similar dependencies. Thus, we
conclude that the two-band structure and helicity do not con-
tribute to the Hall effect. For a free electron in high magnetic
field R ≈ −1/(ecn), where e is the electron charge, c is the
speed of light, and n is the electron density. This result remains
the same in the helical case. Because the main formula for R
is mass and τ independent at high magnetic fields, we would
expect that in the helical case the dependencies with electron
concentration remain close to those of the free electron model.

We have obtained the expression for the Hall constant in
the weak field approximation ωcτ 
 1, where ωc is the cy-
clotron frequency. In the same manner as derived in Anselm,
Chap. 9, for the ferromagnetic case [see Fig. 2(a)] [48]

R ≈ −
(
n1

〈
τ 2

1

〉 + n2
〈
τ 2

2

〉)
ce(n1〈τ1〉 + n2〈τ2〉)2

. (13)

Here n1,2 are electron densities in the spin-up and spin-down
ferromagnetic states, correspondingly. n = n1 + n2. 〈τ1,2〉 are

the average relaxation times defined as follows (in the high
temperature limit):

〈τ 〉 = 4

3
√

π

∫ +∞

0
τ (x)e−xx3/2dx. (14)

In the numerical calculations we use all temperatures instead
of the high temperature approximation. As shown in Fig. 4(a),
at the electron density corresponding to the Fermi energy
close to the upper band, we find the drop in 1/R in the pure
ferromagnetic case at low magnetic fields(

1

R

)
hel

>

(
1

R

)
FM

. (15)

This effect can be explained from the following consider-
ations: the contribution of the lower band is higher when the
second band is included. Indeed, τ1,2 ∼ ε

−1/2
1,2 and n1,2 ∼ ε3/2.

Hence, 1/R is proportional to the following expression

1

R
∼ (ε1 + ε2)2

√
ε1 + √

ε2
. (16)

As shown in Fig. 2(c), the two bands can be presented as
two shifted identical parabolas with the densities n1 = n2 =
n/2. Hence, (1/R)hel ∼ n = n1 + n2. In the ferromagnetic
case near the bottom of the upper band n1 � n2 and, there-
fore, ε1 � ε2. (1/R)FM ∼ n1 − n2/3

1 n1/3
2 < n. Consequently,

we conclude that (1/R)FM grows slower than n. Additionally,
it is important to understand why at higher electron densi-
ties two lines in Fig. 4(a) are parallel. Indeed, if we assume
J 
 ε1,2, we provide the expansion for ε1,2 = ε0 ± J:(

1

R

)
FM

∣∣∣∣
J
ε1,2

∼ n

(
1 − J2

8ε2
0

)
. (17)
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Thus, the main term gives the same slope and the two lines are
approximately parallel. We expect them to converge at very
high values of ε1,2. As shown in Fig. 4(b), for high magnetic
fields ωcτ � 1, the helicity doesn’t contribute to the electron
density dependence of 1/R. We find the generalization of
the high field dependence of Hall constant to ferromagnetic
case

1

R
= −ecn = −ec(n1 + n2). (18)

All the lines in Fig. 4(b) are very close to one another.

C. Magnetoresistance

In this subsection we study the magnetoresistance depend-
ing on the magnetic field, electron density, temperature, and
the angles between the electric field, magnetic field, and he-
licity propagation vector. We show that these dependencies
are more dramatic than the Hall effect. Before describing the
results of the calculations, we present a theory for a magne-
toresistance in a ferromagnet in weak (ωcτ 
 1) and strong
(ωcτ � 1) magnetic fields. We generalize the derivation pre-
sented in the book of Anselm, Chap. 9 [48].

For weak magnetic fields in ferromagnetic state (no helic-
ity)

�ρ

ρ
=

(
Be

mc

)2 (n1〈τ1〉 + n2〈τ2〉)
(
n1

〈
τ 3

1

〉 + n2
〈
τ 3

2

〉) − (
n1

〈
τ 2

1

〉 + n2
〈
τ 2

2

〉)2

(n1〈τ1〉 + n2〈τ2〉)2
. (19)

For strong magnetic fields the magnetoresistance is field inde-
pendent in ferromagnetic state

�ρ

ρ
= (n1〈τ1〉 + n2〈τ2〉)

(
n1

〈
1
τ1

〉 + n2
〈

1
τ2

〉)
(n1 + n2)2

− 1. (20)

In Fig. 5 we demonstrate the dependence of the mag-
netoresistance on an applied magnetic field for different
temperatures in the range of 20 K � T � 90 K. According
to Eq. (19) we observe quadratic dependence of magnetore-
sistance for all orientations and temperatures at low fields.
For higher magnetic fields we find that the magnetoresis-
tance approaches the plateaus in accordance with Eq. (20). At
high temperatures and weak magnetic fields, the temperature
dependence of the relaxation rate is τ ∼ T −3/2. Therefore,
�ρ/ρ ∼ T −3. The higher the temperature, the lower the
magnetoresistance is at low fields. At low and medium tem-
peratures the plateau value at high fields is temperature
dependent [49].

In Fig. 6 we present the magnetoresistance depending on
an applied magnetic field at very low electron concentrations
where εF is close to the bottom of the lower band in the
shallow double minimum case. Because of the high elec-
tron effective mass in the z direction the low magnetic field
range is extended to higher magnetic fields [see Eq. (20)],
and therefore, we do not observe the plateaus in the mag-
netoresistance in Fig. 6(c). In the x and y directions the
effective masses are lower than in the z directions and the
weak magnetic field range is shorter, and we can observe
the plateaus for low temperatures as shown in Figs. 6(a)
and 6(b). The giant magnetoresistance is found in Fig. 6(c)
where the magnetic field is applied along the x axis and
the magnetoresistance is calculated along the spin spiral
propagation direction, z axis. The magnetic field diverts the
electrons clockwise as shown in Fig. 7. However, kz must
be always positive for spin-up electrons and negative for
spin-down electrons. The transitions from kz > 0 to kz <

0 and vice versa are forbidden by the spin conservation.
Therefore, the magnetic field can rotate the electrons to the
point where kz ≈ 0 as shown in Fig. 7, therefore depleting
the concentration of electrons moving in the z direction.

Thus, the magnetoresistance in the z direction becomes much
higher.

In Fig. 8 the concentration of electrons is such that the
Fermi energy is slightly above the maximum of the lower band
as shown in the insertion of Fig. 8(a). In Figs. 8(a) and 8(b)
the low field range exhibiting the parabolic behavior is very
narrow. In the intermediate and higher fields the �ρ/ρ almost
reaches the plateaus. According to Askerov [49], the lower
the temperature, the lower the plateau value is. However, in
Fig. 8(c) the dependence is reversed. Moreover, the value of
magnetoresistance is one order of magnitude higher than those
of presented in Figs. 8(a) and 8(b). The inverse temperature
dependence can be explained by the depletion of electrons
moving in the z direction. The forbidden transition from the
spin-up to the spin-down state, i.e., from kz > 0 to kz < 0,
and vice versa, can be allowed due to the electron-phonon
scattering. This probability increases with temperature. The
higher the scattering probability, the lower magnetoresistance
in the z direction is.

In Fig. 9 we present the dependence of magnetoresis-
tance with electron density for B = 10 T at T = 40 K and
J = 0.07 eV that corresponds to the shallow double minimum
lower band in helimagnetic phase [see Fig. 2(b)]. The blue line
represents the ferromagnetic structure. The bands are shown
in Fig. 2(a). The orange curve describes the magnetoresistance
along the x axis with magnetic field applied along the z axis
in the helimagnetic phase. The green and red curves stand
for magnetoresistance along y and z axes, respectively, with
magnetic field applied along the x axis. At low concentrations,
i.e., small chemical potentials, there is the high temperature
limit for all cases shown in Fig. 9. Therefore, the magne-
toresistance is high [49]. The magnetoresistance drops with
chemical potential below the minimum of the upper band.
To explain such a drop, we consider the ferromagnetic case.
We use Eq. (20) where n2 = 0 (no upper band). At low
temperatures the average 〈τ 〉 = τ (εF ) and 〈1/τ 〉 = 1/τ (εF ).
Then it is easy to show that �ρ/ρ = 0. When εF reaches
the bottom of the upper band, there is the high temperature
limit in averages for 〈τ2〉 and therefore, the magnetoresistance
increases. When the concentration of electrons is high enough,
the high temperature limit turns into a low temperature one

014405-5



ZADOROZHNYI, RIVLIS, AND DAHNOVSKY PHYSICAL REVIEW B 108, 014405 (2023)

FIG. 5. Magnetic field dependence of the magnetoresistance in
helical structures at different temperatures (a) in the x direction
where the magnetic field is applied along the z axis (spin spiral
propagation direction), (b) in the y direction where the magnetic
field is applied along the x axis, and (c) in the y direction where the
magnetic field is applied along the x axis. J = 0.07 eV and the Fermi
energy is taken near the bottom of the upper energy band shown in
the insertion.

FIG. 6. Magnetic field dependence of the magnetoresistance in
helical structures at different temperatures (a) in the x direction
where the magnetic field is applied along the z axis (spin spiral
propagation direction), (b) in the y direction where the magnetic
field is applied along the x axis, and (c) in the y direction where the
magnetic field is applied along the x axis. J = 0.07 eV and the Fermi
energy is taken near the bottom of the lower energy band shown in
the insertion.
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FIG. 7. Constant energy cross-section taken at the bottom of the
lower band. The magnetic field is directed inward. The black arrows
indicate the direction of the electron motion due to the magnetic
field. The red and blue colors correspond to spin-up and spin-down
electrons, respectively. The blue and red arrows indicate the regions
of accumulation of the electrons at kz ≈ 0.

and the magnetoresistance becomes

�ρ

ρ

∣∣∣∣
highfield

= n1n2

(n1 + n2)2

(
τ1

τ2
+ τ2

τ1
− 2

)
. (21)

At very large electron concentration τ1 ≈ τ2 and �ρ/ρ = 0.
When the helicity is included, the curves do not exhibit the
peak in the magnetoresistance at higher concentrations. In-
deed, at high chemical potentials, ε(k) can be represented by
two parabolas shown in Figs. 2(b) and 2(c). In this case there
is no gap between them, and therefore, the peak from the
second band is not observable. Another important feature is
huge magnetoresistance described by the red curve in Fig. 9.
Such an increase can be explained from the considerations
based on Fig. 7. As discussed above, the electrons are rotated
by the magnetic field in the yz plane and tend to accumulate
at kz ≈ 0. Thus, the concentration of electrons in the z direc-
tion is depleted and the magnetoresistance in the z direction
increases compared to that of calculated in the y direction.

In Fig. 10 we describe the magnetoresistance when B =
10 T, T = 40 K, and J = 0.02 eV corresponding to the two
minima band structure for the lower band in helical phase as
shown in Fig. 2(c). If we compare the dependencies presented
in Fig. 10 with that of presented in Fig. 9, we find the new
qualitative feature, the zero values in the red curve in range of
concentration 0.005 < n < 0.01. The peak in the red curve is
located between the maximum if the lower band and minimum
of the upper one. The rest of the curves exhibit the similar
dependencies. To explain the existence of the low values of
magnetoresistance for the red curve, we use the following
consideration: if the Fermi energy is lower than the maximum
of the lower band, there are two temperature limits, the high
temperature limit (low electron concentration) and the low
temperature limit (high electron concentrations). The former
exhibits the peak in magnetoresistance, the latter demonstrates
the vanishing values. Then, if the chemical potential is above
the maximum of the lower band, we find the increase in the
magnetoresistance. Such an increase can be explained in terms
of the considerations described by Fig. 7.

IV. CONCLUSIONS

In this work we have studied magnetoresistance and Hall
effect at different temperatures, electric concentrations, and

FIG. 8. Magnetic field dependence of the magnetoresistance in
helical structures at different temperatures (a) in the x direction
where the magnetic field is applied along the z axis (spin spiral
propagation direction), (b) in the y direction where the magnetic
field is applied along the x axis, and (c) in the y direction where
the magnetic field is applied along the x axis. J = 0.02 eV and the
Fermi energy is taken near the peak of the lower energy band shown
in the insertion.
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FIG. 9. Electron concentration dependence of the magnetoresis-
tance at magnetic field B = 10 T and temperature T = 40 K for
J = 0.07 eV. The red line represents the ferromagnetic case, the
blue line corresponds the helical spiral with B along the spin spiral
propagation direction, the orange line stands for the spin spiral with
B along the x axis perpendicular to the spin spiral propagation direc-
tion, calculated along the y direction and the green curve represents
the helical state with B along the x axis calculated along the z axis,
i.e., the spin spiral propagation direction.

magnetic fields in helimagnets solving the Boltzmann equa-
tion in the presence of electric and magnetic fields. For
relaxation, we have considered the electron-acoustic phonon
interaction. To solve the equation we have written original
code.

We have found that anisotropy in the longitudinal conduc-
tivity σzz − σxx drastically increases with the magnetic field
along the z axis because of the decrease of σxx matrix element.

We have calculated how 1/R depends on n for different
field geometry in helimagnets and compared the results with
the free electron model for high and low magnetic fields. We
have found almost no differences for all cases. However, there
is the feature at low magnetic fields where the inverse Hall
constant is slightly below for the ferromagnetic case for elec-
tron concentrations corresponding to the bottom of the upper
energy band. We have explained this deviation using Eq. (13).

FIG. 10. Electron concentration dependence of the magnetore-
sistance at magnetic field B = 10 T and temperature T = 40 K for
J = 0.02 eV. The red line represents the ferromagnetic case, the
blue line corresponds the helical spiral with B along the spin spiral
propagation direction, the orange line stands for the spin spiral with
B along the x axis perpendicular to the spin spiral propagation direc-
tion, calculated along the y direction and the green curve represents
the helical state with B along the x axis calculated along the z axis,
i.e., the spin spiral propagation direction.

The more dramatic effects occur in magnetoresistance.
We have found the giant magnetoresistance (more than one
order of magnitude higher than that of the ferromagnet) in
the spin spiral propagation direction, the z axis, when the
magnetic field is applied perpendicular to it. There is a
special feature of helimagnets when the bands are spin sep-
arated in the kz direction. This property allows the electron
concentration to be depleted in the kz direction increasing
the magnetoresistance (see Fig. 7). In high magnetic fields
we observe the dramatic behavior of magnetoresistance with
concentration (see Fig. 10) and found that the giant mag-
netoresistance exists only in the specific range of electron
concentrations.
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