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Magnetic phase recognition of artificial kagome spin ice through initial magnetization curve
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Artificial spin ices (ASIs) are designable arrays of interacting nanomagnets that span a wide range of magnetic
phases. Here, we demonstrate that the phase of an artificial kagome spin ice can be identified through its initial
magnetization curve. As a proof of concept, micromagnetic simulations of these curves were performed starting
from representative microstates of different phases of the system. We show that the curves are characterized by
phase-specific features in such a way that a supervised classification algorithm predicts the phase of the initial
microstate with good reliability. Moreover, most curves associated with paramagnetic and spin ice 1 phases are
recognizable simply by visual inspection. This achievement represents a different strategy for identifying phases
in ASIs that is easier and more accessible than magnetic imaging techniques normally used for this task.
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I. INTRODUCTION

Artificial spin ices (ASIs) have proliferated over the past
15 years [1–3]. They are collections of interacting mon-
odomain nanomagnets arranged in designable lattices defined
by lithography. In turn, their behavior can be related to several
spin lattice models [2]. The ability to directly probe their
microstates and to tune their geometry and interactions has
made it possible to study the associated statistical mechan-
ics in an unprecedented way. As a result, a wide range of
phases have been theoretically predicted and experimentally
observed. For example, ASIs can exhibit not only standard fer-
romagnetic [4–6] and antiferromagnetic [5–7] phases but also
more exotic long-range orderings related to the particular lat-
tice geometry [8–14]. Even more interesting are the nontrivial,
correlated disordered states they can host due to frustration,
such as the ones characteristic of icelike models [15–20], spin
liquids [11,18,21,22], spin glasses [23,24], Coulomb phases
[18,21,25,26], and string phases [27].

The experimental investigation of the phase diagrams of
ASIs is mostly done through magnetic imaging techniques,
such as magnetic force microscopy and x-ray photoemission
electron microscopy [1–3]. They enable the visualization of
each magnetic moment’s orientation in real space and possibly
in real time. This allows one to know the precise microstates
that the system accessed, which is normally impossible when
working with bulk materials. In theory, one has all the knowl-
edge required to characterize the occurring phases, phase
transitions, and kinetics with this information. For example,
a common experiment involves first demagnetizing the sam-
ple through a magnetic field protocol to bring the array of
nanomagnets to a certain frozen configuration. Then, taking
the sample to the proper microscope, it is possible to identify
the phase and even the effective temperature of the system
by comparing properties extractable from images, such as
magnetic moment correlations and vertex populations, with
predictions of spin models [11,28–30].
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However, there are some practical drawbacks to this image-
based strategy. Good high-contrast images can take hours
or even days to acquire, taking into account procedures like
sample preparation, microscopy calibration, and image pro-
cessing. Additionally, some experiments can be carried out
only in a small number of particular locations, such as syn-
chrotron light sources. Given this, it makes sense to have
quicker and easier ways to ascertain the thermodynamic char-
acteristics of ASIs.

The purpose of this work is to propose a strategy to iden-
tify the phase of an ASI through its initial magnetization
curve, which can be readily measured by several standard
magnetometry techniques. Despite their versatility and easy
handling, magnetization curves have not been used for this
task. The main reason is that the measured magnetization is a
property of the whole sample, making it extremely difficult to
infer any microstate.

In the following, we focus on an artificial kagome spin
ice (AKSI), made up of nanomagnets arranged on a kagome
lattice. This is a good ASI prototype to study because the
corresponding spin model is known to have a particularly
rich phase diagram with four phases [31–33]. At high tem-
peratures, the system is in a paramagnetic (PM) phase,
characterized by an uncorrelated disorder. By lowering the
temperature, it smoothly accesses a spin liquid phase referred
to as spin ice 1 (SI1). In this regime, the system is still
disordered at large length scales but locally obeys the kagome
ice rules, meaning each vertex has a two-in/one-out or one-
in/two-out spin configuration. As the system cools down,
it undergoes a phase transition into the intriguing spin ice
2 (SI2) phase, a new spin liquid phase with a number of
fascinating properties. Quite interestingly, here, the spins fluc-
tuate only through collective loop moves, preserving the ice
rules but also giving rise to long-range ordering of magnetic
charges. At a still lower temperature, the system experiences
another phase transition and reaches its sixfold degenerate
ground state with long-range order (LRO) of both spins and
charges.

Our primary hypothesis is that the initial magnetization
curve of AKSI retains characteristics related to its starting
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point in such a way that the phase of the initial microstate can
be deduced solely from the curve. If one applies a magnetic
field to drive AKSI from a given microstate to saturation,
the exact way the system evolves depends on the initial mi-
crostate. On the other hand, microstates of the same phase
obey characteristic constraints, as described in the last para-
graph. Thus, it is reasonable to expect that evolutions initiating
at microstates of the same phase have a greater resemblance
to one another than evolutions initiating at microstates of
different phases. In turn, the magnetization curves of these
processes should also present phase-specific features.

In this work, we provide a proof of concept for this hypoth-
esis. Several microstates were randomly generated for each
AKSI phase through Monte Carlo simulations (Sec. II A),
and the initial magnetization curves starting from such states
were numerically calculated via micromagnetic simulations
(Sec. II B). We show that most PM and SI1 curves can be read-
ily recognized from the graphs, but distinguishing between
the low-energy, charge-ordered phases is more challenging
(Sec. III A). To address this issue, six parameters were de-
fined and calculated for each curve (Sec. III B), allowing us
to visualize phase signatures in the curves more precisely
from the distribution of the parameters (Sec. III C). Using
the parameters as curve features, a supervised classification
algorithm is able to recognize the associated phase of the
curves with significant accuracy (Sec. III D). A brief physical
discussion of the parameters is presented in Sec. III E. This
accomplishment paves the way for novel methods of phase
recognition in ASIs, and we anticipate that it will spur addi-
tional experimental work.

II. SIMULATIONS

A. Monte Carlo simulations

A proper description of the effective thermodynamics of an
AKSI must take into account the dipolar interaction between
the nanomagnets [2,28,34]. Thus, we consider the dipolar
Hamiltonian

H = −
∑

i �= j

Ji jSiS j, (1)

with

Ji j = −μ0m2

4π

êi · ê j − 3(êi · r̂i j )(ê j · r̂i j )

r3
i j

, (2)

where mSk is a magnetic dipole of magnitude m, located at
rk , associated with an Ising spin Sk = Sk êk allowed to point
only along direction êk with Sk = ±1. A pair of spins Si and
S j , separated by ri j = r j − ri, has the corresponding dipolar
coupling strength Ji j .

From this dipolar model, we sampled 20 distinct mi-
crostates for five temperatures of each of the four phases of
the system. This amounts to four sets of 100 microstates,
with each set representing a given phase. The microstates
were randomly generated by performing Monte Carlo simu-
lations of a 12 × 12 kagome lattice with periodic boundary
conditions. We employed the Metropolis algorithm with both
single spin flip and spin loop flip dynamics and used 200
Monte Carlo steps per spin (MCS/spin) for thermaliza-
tion. The temperatures were chosen to be well spaced but

also as distant as possible from the transition temperatures.
The latter were estimated through the peaks of the specific
heat (shown in the Supplemental Material [35]) and were
found to be kBT/|J1| ∼ 2.0 for PM/SI1, ∼0.17 for SI1/SI2,
and ∼0.089 for SI2/LRO, where J1 is the nearest-neighbor
coupling strength.

We emphasize that the sets of microstates associated with
the PM, SI1, and SI2 phases are representative samples of
these extensively degenerate phases.1 Indeed, the spin corre-
lations of the selected microstates distribute well around the
thermodynamic mean values of the dipolar model, as shown
in Fig. 1. The latter were calculated from independent Monte
Carlo simulations for a greater number of temperatures using
∼103 to ∼104 MCS/spin for measurements, which averaged
between 300 and 3000 microstates depending on temperature.

On the other hand, the long-range ordered ground state is
only sixfold degenerate. However, our supervised classifica-
tion algorithm needs a training set with more than just six data
sets to be able to identify a given phase, making it impossible
to include the true LRO phase in our statistical analysis. To
circumvent this issue, we exploited the fact that our simulated
kagome lattice is still able to fluctuate for temperatures not
very much below its SI2/LRO transition temperature. Thus,
for each of the five chosen LRO temperatures, we waited long
enough for the system to access 20 new distinct configura-
tions. As a result, we collected 100 distinct microstates that
are actually a mixture of LRO and SI2 phases but have con-
siderable predominance of LRO. Namely, at least 85% of the
spins obey the LRO pattern, and the remaining part respects
only SI2 constraints [35]. Because of this, we will refer to
this phase as “quasi-long-range order” (QLRO). Correspond-
ingly, the QLRO spin correlations are centered slightly off the
characteristic LRO values but are still markedly different from
those of the other phases, as can be seen in Fig. 1.

B. Micromagnetic simulations

The whole set of 400 distinct microstates was used as the
initial states in micromagnetic simulations of an analogous
12 × 12 kagome lattice of nanomagnets. In order to do that,
we set the magnetization of each nanomagnet to be uniform
with the same orientation of the corresponding spin of the
microstate, as illustrated in Fig. 2, and then the system was
relaxed. For each initial state, the initial magnetization curve
was calculated by applying the field in the y direction (see
Fig. 2). In addition, we considered stadium-shaped nanomag-
nets with a length of 300 nm, width of 100 nm, and thickness
of 20 nm. Open boundary conditions were used because that
is the case in a real sample. The simulations were performed
with MUMAX3 [35,36], using edge smoothing,2 cells with di-
mensions of 4.4 × 4.2 × 20 nm3, and material parameters of
permalloy: saturation magnetization Ms = 8 × 105 A/m and
exchange stiffness Aex = 1 × 10−11 J/m.

1They were sampled at each 10 MCS/spin, which is longer than
the autocorrelation time of the system.

2Simulations without edge smoothing provided similar results, with
the initial magnetization curves approximately shifted rigidly to the
right.
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FIG. 1. Spin correlations Cn = 〈Si · S j〉n between nth neighbors of kagome spin ice for n = 1, 2, 3a, 3b, 4, 5 (as indicated in the left panel)
as a function of temperature T . Gray dots are the values for each sampled microstate, white dots are the averages over the 20 microstates
sampled at the same temperature, and solid black lines are the thermodynamic means of the dipolar model.

III. PHASE RECOGNITION THROUGH THE INITIAL
MAGNETIZATION CURVE

A. Initial magnetization curves

Figure 3 shows the averages over the 100 initial magne-
tization curves of each phase, which gives a general view of
how different the curves are based on their associated phase.
For 25 � μ0H � 50 mT, the curves differ from one another
for more than one standard deviation, except between SI2 and
QLRO. Thus, it is safe to say that one can distinguish between
PM, SI1, and SI2 combined with QLRO directly by looking
at the graphs.

FIG. 2. One of the initial states of micromagnetic simulations of
a 12 × 12 kagome lattice (a unit cell is highlighted in the bottom left).
The arrows indicate the spins of a microstate representative of the SI1
phase, taken from Monte Carlo simulations. To set the initial state, a
uniform magnetization was assigned to each nanomagnet following
the same orientation of the corresponding spin, and the system was
relaxed. The initial magnetization curve was simulated by applying a
magnetic field μ0H in the y direction. The color code represents the
local direction of the magnetization.

Distinguishing SI2 from QLRO curves by eye is much
more challenging because they have considerable overlap.
This makes intuitive sense because the microstates of these
phases are more similar to one another because they share
more characteristic constraints (namely, ice rules and charge
ordering). Besides that, it is desirable to have a way to
recognize each phase that is less subjective than visual
inspection.

FIG. 3. Average initial magnetization curves of each AKSI
phase, calculated from the 100 curves associated with each phase.
Uncertainty represents one standard deviation.
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FIG. 4. (a) One of the initial magnetization curves starting from a SI2 microstate. It shows the three intervals separated by the boundary
fields μ0Hb1 and μ0Hb2. (b) Lag interval, where we perform a linear fit to extract the initial magnetic susceptibility χi as the angular coefficient.
(c) Growth interval, where we calculate the growth length sg, the growth field μ0Hg, the inflection field μ0Hflex, and the growth slope αg of the
linear fit performed in the magnetization’s steep rise region. (d) Saturation interval, where magnetization is well fitted by the law of approach
to saturation.

B. Curve parameters

To address these issues, we defined common parameters
for all curves. Each curve was divided into three regions
separated by the first and second boundary fields μ0Hb1 and
μ0Hb2, respectively, as shown in Fig. 4(a). We call the lag
interval [Fig. 4(b)] the first part of the magnetization curve
for H � Hb1, where the behavior is essentially linear. In
this region, the curve is well fitted by a straight line whose
angular coefficient can be identified as the initial magnetic
susceptibility χi.

The growth interval [Fig. 4(c)], corresponding to Hb1 �
H � Hb2, begins at H = Hb1, where the curve starts to de-
viate from its initial linear trend, and ends at H = Hb2, where
the sample starts to approach saturation. In this interval, the
curve’s behavior is more complex, containing most of its
particular features. Here, we considered the following four
parameters: (i) the growth length sg, defined as the arc length
of the curve; (ii) the inflection field μ0Hflex, defined as the
lowest field of an inflection point; (iii) the growth field μ0Hg,
taken to be the field at which a steeper increase of magneti-
zation occurs; and (iv) the growth slope αg, which represents
the average slope of the curve in the subinterval of steeper
increase of magnetization and is calculated as the angular co-
efficient of the linear regression shown in Fig. 4(c). A detailed
explanation of how all parameters were computed is given in
the Supplemental Material [35].

Finally, in the saturation interval [Fig. 4(d)], where H �
Hb2, the magnetization follows the well-known law of ap-
proach to saturation [37]. However, this interval does not carry
any information about the initial configuration since the mag-
netic moments of all nanomagnets are already nearly aligned
with the field and all curves practically coincide.

C. Parameter distribution

The following six parameters have proved useful in iden-
tifying the AKSI phases: μ0Hb1, χi, sg, μ0Hflex, μ0Hg, and

αg. Figure 5 displays the distribution of these parameters for
each phase. Note how the PM and SI1 distributions of most
parameters are well separated from one another and from
those of SI2 and QLRO. This is particularly clear in the μ0Hg

distribution [Fig. 5(d)]. However, for all cases, the SI2 and
QLRO distributions are centered at very close values and have
considerable overlap.

Another way to visualize the parameter distribution comes
from applying a principal component analysis (PCA) to
our data. In this method, the parameters describe a six-
dimensional space, where each of our curves is represented by
a point. In this space, the vector for which the variance of the
projected points is maximized is called the first principal com-
ponent; its orthonormal vector that maximizes the variance is
called the second principal component. The two-dimensional
subspace spanned by the first and second principal compo-
nents, shown in Fig. 6, is the plane that better represents the
data distribution. This dimensionality reduction retains mean-
ingful features of the original data and allows one to visualize
clusters of points with common properties. Indeed, one sees
again that the sets of points for PM, SI1, and SI2 combined
with QLRO are well separated, whereas the individual SI2 and
QLRO sets overlap. It is also worth noting that the greater the
phase degeneracy is, the wider its distribution of parameters
is, and consequently, the larger its cluster is.

D. Supervised classification algorithm

The distributions shown in Figs. 5 and 6 suggest that it
is possible to identify the associated phase of each curve,
with the exception of distinguishing between SI2 and QLRO.
To really verify this, the parameters of ∼70% of the curves
were used as a training data set for a supervised classification
algorithm, the so-called support vector machine [35,38], to
classify the remaining ∼30% of the test curves.

The performance of the classifier is summarized in Table I.
As expected, the algorithm correctly predicted the phase of
all 34 PM and 38 SI1 test curves. In addition, it correctly
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FIG. 5. Normalized distributions for each phase of the (a) first boundary field μ0Hb1, (b) initial magnetic susceptibility χi, (c) growth length
sg, (d) growth field μ0Hg, (e) inflection field μ0Hflex, and (f) growth slope αg.

determined the phase of 24 out of the 27 SI2 test curves,
whereas the other 3 were misclassified as QLRO; it correctly
determined the phase of 25 out of the 33 QLRO curves,
whereas the other 8 were misclassified as SI2. This distinction
between SI2 and QLRO is astonishingly good: considering the
apparent equivalence between the curves of those phases, a
mistake percentage of only ∼20% is impressive. Moreover,

FIG. 6. PCA scatterplot of the points representing the six param-
eters of each initial magnetization curve. The data variances with
respect to the first and second principal components are, respectively,
75% and 13% of the total variance.

some of the errors may be related to the mix of LRO and SI2
in the QLRO microstates.

E. Physical discussion

Finally, we address some of the physics underlying our six
parameters. Figure 7 shows how they change as a function
of the effective temperature. Even when the change is not
monotonic, one sees that, as the temperature increases, χi

increases [Fig. 7(a)] and μ0Hb1, μ0Hflex, and μ0Hg decrease
[Figs. 7(b), 7(f), and 7(d), respectively]. All these general
trends indicate that the magnetic behavior of the AKSI gets
softer with increasing effective temperature. We also observe
that μ0Hb2 remains practically constant (see the Supplemental
Material [35]), which is reasonable since the saturation field
should be the same for demagnetized initial states. As a con-
sequence of the magnetic softening with effective temperature
and of the constancy of μ0Hb2, αg decreases, and sg increases
with temperature, as can be seen in Figs. 7(e) and 7(c).

TABLE I. Performance metrics of the support vector machine
classifier for identifying the AKSI phase from parameters of initial
magnetization curves. Accuracy is 0.92.

Precision Recall F1 score

Paramagnetic 1.00 1.00 1.00
Spin ice 1 1.00 1.00 1.00
Spin ice 2 0.75 0.89 0.81
Quasi-long-range order 0.89 0.76 0.82
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FIG. 7. Dependence on effective temperature T of the (a) first boundary field μ0Hb1, (b) initial magnetic susceptibility χi, (c) growth
length sg, (d) growth field Hg, (e) inflection field μ0Hflex, and (f) angular coefficient αg. Gray dots are the parameter values for each sampled
microstate, black curves are the averages over all microstates sampled at the same temperature, and uncertainties represent one standard
deviation.

IV. CONCLUSION AND PERSPECTIVES

This study’s key finding is that the AKSI’s initial magne-
tization curve preserves a significant amount of information
on the phase of its original microstate. We showed that such
curves may be utilized to assist with the identification of the
phases using a supervised classification algorithm. Even so,
more research with larger samples is needed to assess how
the separation between the SI2 and QLRO phases improves
when the SI2 proportion in the mixed SI2/LRO microstates
decreases. Also, in order to better understand the parameter
distributions and see how they react at the critical points,
it would be intriguing to include temperatures closer to the
phase transitions.

Furthermore, it would be rather simple to apply similar re-
search to different ASI geometries. By examining the patterns
shared by a certain collection of magnetization curves, which
might be challenging to recognize by eye, one may be able to
decode the physics inherent in a particular ASI magnetization
process. On the other hand, imperfections inevitably present
in experimental samples, such as roughness and grains, are
known to affect the magnetization curve [39,40], so their
impact on the recognition process should also be addressed.

Our findings thus open the door to the experimental deter-
mination of ASI magnetic phases using only magnetometry
techniques, which are more widely utilized and user-friendly
than the magnetic imaging methods often employed for this
type of study. Moreover, the phase recognition could be car-
ried out right after a field-driven demagnetization protocol,

using the same magnetometer. However, this does not mean
that the proposed strategy completely replaces imaging ex-
periments because certain insights into the physics of ASIs
may be gained only by knowing the precise microstate—and
not only its phase. Rather, the best investigation approach is
probably a combination of both tools. For example, one may
wish to measure the magnetization curve to quickly verify
whether the sample is in the desired phase before probing
it with complementary images. We are confident that, once
improved, this will grow into a potent analysis method for
studying complex magnetic phases, possibly expanding future
experimental studies.

As a final remark, we note that a very interesting extension
of this work would be the development of unsupervised clas-
sification algorithms instead of supervised ones. This would
be especially useful for investigating new ASIs for which the
phase diagram is still unknown. The algorithm would be able
to separate measured magnetization curves into groups that
are not predefined and thereby identify distinct phases.
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