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High-performance descriptor for magnetic materials: Accurate discrimination of magnetic structure
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The magnetic structure is crucial in determining the physical properties inherent in magnetic compounds. We
present an adequate descriptor for magnetic structure with proper magnetic symmetry and high discrimination
performance, which does not depend on artificial choices for coordinate origin, axis, and magnetic unit cell in
crystal. We extend the formalism called “smooth overlap of atomic positions” (SOAP), providing a numerical
representation of atomic configurations to that of magnetic moment configurations. We introduce the descriptor
in terms of the vector spherical harmonics to describe a magnetic moment configuration and partial spectra from
the expansion coefficients. We discuss that the lowest-order partial spectrum is insufficient to discriminate the
magnetic structures with different magnetic anisotropy, and a higher-order partial spectrum is required in general
to differentiate detailed magnetic structures on the same atomic configuration. We then introduce the fourth-
order partial spectrum and evaluate the discrimination performance for different magnetic structures, mainly
focusing on the difference in magnetic symmetry. The modified partial spectra that are defined not to reflect
the difference of magnetic anisotropy are also useful in evaluating magnetic structures obtained from the first-
principles calculations performed without spin-orbit coupling. We apply the present method to the symmetry-
classified magnetic structures for the crystals of Mn3Ir and Mn3Sn, which are known to exhibit anomalous
transport under the antiferromagnetic order, and examine the discrimination performance of the descriptor for
different magnetic structures on the same crystal.

DOI: 10.1103/PhysRevB.108.014403

I. INTRODUCTION

The recent significant advance in research using machine-
learning techniques in quantum chemistry and condensed
matter physics gets benefits from the development of high-
performance descriptors that transform the structural infor-
mation of molecules and crystals to data-style representations
friendly to machine-learning applications. Various descriptors
have been proposed for atomic configurations of molecules
and crystals [1–8] and applied to the analysis of nonmagnetic
materials [9,10].

For magnetic compounds, magnetic structure is crucial in
determining their physical properties, and it must be taken
into account as additional degrees of freedom in the de-
scriptor. So far, only a few descriptors have been proposed
to describe magnetic compounds, including the information
on magnetic moments on each atomic site. “Moment ten-
sor potentials,” “atomic symmetry functions,” and ‘smooth
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overlap of atomic positions (SOAP)” have been recently
developed to encode the characters of magnetic materials
[11–13]. These descriptors are applicable to distinguish dif-
ferent collinear magnetic structures, whose spin moments on
each atomic site are parallel or antiparallel, having either
up or down-spin moments. However, in the more general
cases including noncollinear magnetic structures, the descrip-
tors must properly preserve the information on the directions
of magnetic moments to analyze the macroscopic magnetic
properties. The anomalous/topological Hall effect, nonrecip-
rocal charge transport, and magnetoelectric effect are such
examples, which are characterized by magnetic symmetry
according to Neumann’s principle.

Domina et al. discuss a straightforward extension of the
power spectrum of SOAP [5], in which the multidimensional
vector is used to express atomic positions from the expansion
coefficients of spherical harmonics for atomic density, and
the power spectrum is calculated for magnetic configurations
on atomic clusters [13]. However, as discussed in the present
paper, the power spectrum calculated from the magnetization
density is insufficient to characterize the magnetic structures
on the high-symmetry atomic systems, and a higher-order par-
tial spectrum is required to distinguish the magnetic structures
with different magnetic symmetries. In this paper, we discuss
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four types of partial spectra, i.e., second- and fourth-order
partial spectra referred to as power spectrum and trispectrum,
respectively, and those modified to neglect the difference of
magnetic anisotropy in the magnetic structures and investigate
the discrimination performance of those partial spectra for the
high-symmetry magnetic structures. We also show that the
modified partial spectra are useful in classifying the magnetic
structures obtained from the first-principles calculations with-
out considering the spin-orbit coupling.

The paper is organized as follows. Section II provides
the formulation to transform the magnetic structure to partial
spectra. In Sec. II A, we define the magnetization density
representing magnetic structures and provide the multipole
expansion of the magnetization density with the explicit form
of the expansion coefficients, as discussed in the literature
[13]. In Sec. II B, we derive the partial spectra from the second
and higher-order similarity kernels defined by the overlap
integral of different magnetic environments. In Sec. II C, we
discuss that the modified partial spectra that are defined not
reflecting the difference in magnetic anisotropy. Section III
discusses the discrimination performance of the magnetic
structures on the same atomic configurations. In Sec. III A, we
discuss the basic behavior of partial spectra for the parameters
introduced in the calculations by using magnetic configu-
rations on a simple one-dimensional crystal structure. In
Sec. III B, the method is applied for the symmetrized magnetic
structures classified according to the magnetic symmetries
defined on the crystals of Mn3Ir, which has a simple cubic
structure, and Mn3Sn, a hexagonal structure. The numerical
tests for the magnetic compounds provide the knowledge of
the appropriate choice of the derived magnetic partial spectra
depending on magnetic environments. The new representation
scheme of the magnetic moment configurations thus provides
a solid foundation for machine learning, which is applicable
to the study of magnetic materials, as summarized in Sec. IV.

II. FORMULATION

This section provides formulations for transforming a
given magnetic structure on the atomic cluster or crystal into a
multidimensional vector. The outline of the procedure is, first,
convert the magnetic moment configuration to a magnetiza-
tion density and, second, expand the magnetization density by
vector spherical harmonics with appropriate radial functions
and, finally, construct the partial spectrum from the expansion
coefficients in a similar way to obtain the partial spectrum
from the expansion coefficients for the spherical harmonics
expansion of the atomic density in SOAP [5]. We also intro-
duce an averaging process for the magnetic partial spectra to
eliminate dependencies on artificial choices of the coordinate
origin in atomic clusters or crystals and discuss the appropri-
ate methods.

A. Multipole expansion of local magnetic environment

Magnetic structures are usually represented by magnetic
moment vectors with a certain order on discretely arranged
atoms. To obtain the continuous vector function that character-
izes the magnetic structure, we convert the magnetic moment
configurations to the magnetization density by introducing the

Gaussian function, choosing the coordinate’s origin at one of
the atomic positions as follows:

m(r) =
N∑

j=1

e−α(r−R j )2
m j, (1)

where r is spatial position, R j is the position of the jth atom,
m j is the magnetic moment at the jth atom, and α= 1

2σ 2 with
a variance parameter σ .

The magnetization density is expanded with a set of vector
spherical harmonics Y L

�m(r̂) (� � 1, −� � m � �, L = � − 1,

�, � + 1) and radial functions φnl (r) as

m(r) =
∑
nL�m

cnL�mφn�(r)Y L
�m(r̂). (2)

The vector spherical harmonics Y L
�m are written with ordinary

spherical harmonics Y�m(r) and the Clebsh-Gordan coeffi-
cients 〈�1m1; �2m2|�3m3〉 as follows [14]:

Y L
�m(r̂) =

L∑
M=−L

1∑
σ=−1

〈LM; 1σ |�m〉YLM (r̂)e1σ , (3)

where e1σ are the spherical unit vectors satisfying the or-
thogonality relation e∗

1σ · e1σ ′=δσσ ′ and are expressed with the
Cartesian unit vectors as follows:

e1−1 = 1√
2

(ex − iey),

e10 = ez, e11 = − 1√
2

(ex + iey). (4)

Since Clebsh-Gordan coefficients 〈�1m1; �2m2|�3m3〉 have fi-
nite values only if m1 + m2=m3, Eq. (3) is written as follows:

Y L
�m(r̂) =

1∑
σ=−1

〈L m − σ ; 1 σ |� m〉YLm−σ (r̂)e1σ , (5)

where 〈L m − σ ; 1 σ |� m〉 = 0 for | m − σ |> L. The vector
spherical harmonics have the orthogonality relation∫

d�Y L∗
�m (r̂) · Y L′

�′m′ (r̂) = δLL′δ��′δmm′ , (6)

from the relations e∗
1σ · e1σ ′ = δσσ ′ ,

∫
d�Y ∗

�m(r̂)Y�′m′ (r̂)
= δ��′δmm′ , and the unitary relation

∑
Mσ 〈� m |LM; 1 σ 〉

〈LM; 1 σ |�′ m′〉 = δ��′δmm′ . Eq. (3) is written with the
Cartesian bases from Eq. (4), as follows:

Y L
�m(r̂) =

∑
μ=x,y,z

L∑
M=−L

C�m
LMμYLM (r̂)eμ, (7)

where

C�m
LMx = 1√

2
(〈LM; 1 − 1|�m〉 − 〈LM; 11|�m〉),

C�m
LMy = −i√

2
(〈LM; 1 − 1|�m〉 + 〈LM; 11|�m〉), (8)

C�m
LMz = 〈LM; 10|�m〉 .

Some forms of radial functions φn� are suggested for the
formula of SOAP in earlier works [5,15]. We here adopt the
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radial functions suggested by Bartók et al. [5], which do not
depend on angular momentum �, φn� = φn, and are orthonor-
malized in the range (0, rcut):∫ rcut

0
φn(r)φn′ (r)r2dr = δnn′ . (9)

Considering the relation e−α(r+R j )2 = 4πe−α(r2+R2
j )∑

�m B�(2αrR j )Y�m (r̂)Y ∗
�m(R̂ j ) and the orthogonality relations

of Eqs. (6) and (9), the expansion coefficients cnL�m in Eq. (2)
are obtained from Eqs. (1) and (2) as follows:

cnL�m = 4π

∫ rcut

0

N∑
j=1

{
e−α(r2+R2

j )BL(2αrR j )Y L∗
�m(R̂ j ) · m j

}
× φn(r)r2dr, (10)

where BL is the modified Bessel function.
When the i-th atom located at the origin has a finite mag-

netic moment, the contribution from the central atom, c(0)
nL�m,

is included in Eq. (10) with Rj = 0. From the modified Bessel
functions BL(Rj = 0) = 1 for L=0 and 0 for L �= 0 and vector

spherical harmonics Y 0
00=0 and Y 0

1m=
√

1
4π

e1m, we obtain the
analytic forms of the contribution from the central magnetic
atom in Eq. (10) as

c(0)
n01m =

√
4π

∫ rcut

0
r2

{
e−αr2

e∗
1m · mi

}
φn(r)dr. (11)

B. Partial spectra of local magnetic environment

Here, we derive the partial spectra of magnetization den-
sity, which are multiple-dimensional vectors characterizing
the corresponding magnetic configuration. The basic proce-
dure to derive the partial spectra is similar to those discussed
in SOAP [5], except that we address the distribution of axial
vectors, but there are some points to be noted. We define an
overlap integral between two magnetization distributions m(r)
and m′(r) as follows:

S(m, m′) ≡
∫

drm∗(r) · m′(r). (12)

The rotational invariants quantifying the similarity of the two
magnetization densities are then obtained as follows:

k(ξ )(m, m′) =
∫

dR̂ | S(m, R̂m′) |ξ , (13)

where R̂ is the rotation operation. We refer to the
quantity k(ξ )(m, m′) as ξ -th order similarity kernel of
m and m′. We note that k(ξ )(m, m′) in Eq. (13) for
odd ξ , which may be defined such as k(3)(m, m′) =∫

dR̂S∗(m, R̂m′)S(m, R̂m′)S(m, R̂m′), is always zero when
the magnetic structure under consideration has, for instance,
a two-fold rotation R̂2 symmetry satisfying R̂2m(r) = −m(r)
due to S(m, R̂2m′) = −S(m, m′). R̂m in Eq. (13) is calculated
by using the transformation relation of the vector spherical
harmonics for the rotation operation R as

R̂Y L
�m =

∑
m′

Y L
�m′D�

m′m(R̂), (14)

where D�
mm′ is the matrix elements of the unitary represen-

tation matrix of the rotation operation for vector spherical
harmonics, D�, satisfying the relation

D�†(R̂)D�(R̂) = I. (15)

From Eqs. (2), (6), (9), and (14), the overlap integral in
Eq. (13) is calculated as follows:

S(m, R̂m′) =
∑
nL�

∑
mm′

c∗
nL�mc′

nL�m′D�
mm′ (R̂). (16)

We here introduce the inner product of the multidimen-
sional vectors A and B, whose complex components are
identified by multiple indices as follows:

〈A, B〉 =
∑

μ

A∗
μBμ, (17)

where μ represents all the indices specifying the components.
The second-order similarity kernel of magnetization densities
m and m′ is then obtained as

k(2)(m, m′) =
∫

dR̂S∗(m, R̂m′)S(m, R̂m′)

=
∑
nn′

∑
LL′

∑
�

(PnLn′L′�)∗P′
nLn′L′�

= 〈P, P′〉 , (18)

where P and P′ are considered vectors composed of the fol-
lowing elements:

PnLn′L′� =
√

8π2

2� + 1

∑
m

c∗
nL�mcn′L′�m

=
√

8π2

2� + 1
〈cnL�, cn′L′�〉 . (19)

To derive Eqs. (18) and (19), we used Eq. (16) and the relation∫
dR̂D�1∗

m1m′
1
(R̂)D�2

m2m′
2
(R̂) = 8π2

2�1 + 1
δ�1�2δm1m2δm′

1m′
2
. (20)

We refer to P (P′) as a magnetic power spectrum for mag-
netization density m (m′), which is similar to that defined for
atomic densities [5]. As discussed after Eq. (13), the similarity
kernel of Eq. (13) vanishes for odd ξ when the magnetic
structure has specific symmetry. Therefore the bispectrum that
can be derived from Eq. (13) for ξ = 3, as discussed for SOAP
in Ref. [5], is not appropriate as the descriptor of the magnetic
structure. The fourth-order similarity kernel is also derived
from Eq. (13) as follows:

k(4)(m, m′) =
∫

dR̂{S∗(m, R̂m′)S(m, R̂m′)}2

=
∑

γ1γ2γ3γ4

�1+�3∑
�=|�1−�3|

(Tγ1γ2γ3γ4�)∗T ′
γ1γ2γ3γ4�

= 〈T , T ′〉 , (21)
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where the multidimensional vector T (T ′), referred to as mag-
netic trispectrum, has the vector elements:

Tγ1γ2γ3γ4� =
√

8π2

2� + 1

∑
m

g∗
γ1γ2�mgγ3γ4�m

=
√

8π2

2� + 1
〈gγ1γ2�

, gγ3γ4�
〉 . (22)

The γi represents the set of ni, Li, �i, i.e., γi={ni, Li, �i}, and
� runs from max{| �1 − �2 |, | �3 − �4 |} to min{�1 + �2, �3 +
�4} and the vector elements of gγ1γ2�

are

gγ1γ2�m =
∑

m′
cγ1m′cγ2m−m′ 〈�1m′; �2m − m′|�m〉 , (23)

where m takes integer values from −� to �. To derive
Eqs. (21)–(23), we used the relation

D�1
m1m′

1
(R̂)D�2

m2m′
2
(R̂) =

�1+�2∑
�=|�1−�2|

∑
mm′

〈�1m1�2m2|�m〉

× 〈�1m′
1�2m′

2|�m′〉 D�
mm′ (R̂) (24)

in addition to Eqs. (16) and (20).
The name “trispectrum” for the quantity of Eq. (22) is

taken after a terminology in signal theory, as similar to “power
spectrum” and “bispectrum” [16]. As discussed in Sec. III B,
a higher-order partial spectrum is necessary to distinguish the
magnetic structures given by the same atomic configuration,
for instance, magnetic structures only with different magnetic
anisotropies.

C. Modified partial spectrum irrespective of
magnetic anisotropy

In the derivation of the partial spectra in the previous sub-
section, it was assumed that the magnetic moments rotate in
accordance with the spatial rotation of the crystal. The cou-
pling between crystal axes and magnetic moment is realized
through the spin-orbit interaction, which is a relativistic effect.
Meanwhile, first-principles calculations for magnetic systems
are often implemented without taking spin-orbit interaction
to make the calculations faster or to understand the magnetic
states with the simplified picture of the spin space. In the
absence of spin-orbit interaction, the rotation of magnetic
moments and crystal axes can be performed independently.
As a result, magnetic structures arising from rotations in spin
have the same total energy.

It is thus useful to introduce the modified partial spectrum
representation, which does not distinguish the magnetic struc-
tures only with different magnetic anisotropy. To obtain such
a partial spectrum, we expand the magnetization density with
the product function of the normal spherical harmonics and
the unit vector as the bases of the classical spin space as

m(r) =
∑
n�mσ

cn�mσφn(r)Y�m(r̂)e1σ . (25)

From Eqs. (1) and (25), the expansion coefficients cn�mσ are
calculated as follows:

cn�mσ = 4π

∫ rcut

0

N∑
j

{
e−α(r2+R2

j )B�(2αrR j )Y
∗
�m(R̂ j )e∗

1σ · m j
}

× φn(r)r2dr. (26)

The contribution from the i-th magnetic atom located at the
origin with Rj = 0, c(0)

n�mσ , in Eq. (26) is finite only for
�=m=0 and has the analytic form as follows:

c(0)
n00σ =

√
4π

∫ rcut

0
r2{e−αr2

e∗
1σ · mi}φn(r)dr. (27)

The magnetic structures only with different magnetic
anisotropy are transformed with each other through a rotation
of the spin moments only in the spin space. Therefore the par-
tial spectra to characterize magnetic moment configurations
irrespective of magnetic anisotropy are given by the following
similarity kernel:

k
(ξ )

(m, m′) =
∫

dR̂
∫

dR̂s | S(m, R̂R̂sm′) |ξ , (28)

where the rotation operator for magnetization density now
works separately for the spatial coordinate (R) and spin co-
ordinate (Rs) as follows:

R̂R̂sm(r) =
∑
n�mσ

cn�mσ φn(r)
∑
m′σ ′

Y�m′e1σ ′D�
m′m(R̂)Ds

σ ′σ (R̂s).

(29)

Equation (28) leads to the power spectrum for ξ = 2 as

Pnn′� =
√

8π2

2� + 1

√
8π2

3
〈cn�, cn′�〉 , (30)

and the trispectrum for ξ = 4:

T
� j
n1�1n2�2n3�3n4�4

=
√

8π2

2� + 1

√
8π2

2 j + 1

〈
g� j

n1�1n2�2
, g� j

n3�3n4�4

〉
,

(31)

where

g� j
n1�1n2�2mσ =

�∑
m′=−�

j∑
σ ′=− j

cn�m′σ ′cn′�′m−m′σ−σ ′

× 〈�1m′; �2m − m′|�m〉 〈 1σ ′; 1σ − σ ′| jσ 〉,
(32)

where � runs from |�1 − �2| to �1 + �2 and j from 0 to 2.

D. Elimination of origin choice dependency

As a descriptor, the magnetic partial spectrum should not
depend on the artificial choices of the origin of the coor-
dinate in the atomic system. To eliminate the origin choice
dependency of the magnetic partial spectra in Secs. II B and
II C, we redefine the partial spectra by taking the average of
the expansion coefficients over origin choices at all atoms in
the atomic cluster or the crystal’s unit cell. The average of
atomic positions can be applied directly for the expansion
coefficients ci

nL�, where i indicates the atomic site chosen as
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the coordinate’s origin, similar to the partial power spectrum
for atomic positions [5], such as

P(in)
nLn′L′� =

√
8π2

2� + 1

1

N2

〈(
N∑

i=1

ci
nL�

)
,

(
N∑

j=1

c j
n′L′�

)〉
, (33)

T (in)
γ1γ2γ3γ4�

=
√

8π2

2� + 1

1

N2

〈(
N∑

i=1

gi
γ1γ2�

)
,

(
N∑

j=1

g j
γ3γ4�

)〉
,

(34)

where N is the number of atoms in the atomic cluster or the
crystal’s unit cell. One other way of origin-choice average
over the atomic positions for the product of the expansion
coefficients is given as follows:

P(out)
nLn′L′� =

√
8π2

2� + 1

1

N

N∑
i=1

〈
ci

nL�, ci
n′L′�

〉
, (35)

T (out)
γ1γ2γ3γ4�

=
√

8π2

2� + 1

1

N

N∑
i=1

〈
gi
γ1γ2�

, gi
γ3γ4�

〉
. (36)

We refer to the average implemented in Eqs. (33) and (34) as
the inner average and those in Eqs. (35) and (36) as the outer
average.

The inner average for the power spectrum can be zero for
specific magnetic structures, such as the typical antiferromag-
netic configuration whose magnetic moments are alternating
on each sublattice. Hereafter, we take the outer average for
the power spectrum and the inner average for the trispectrum.
This redefines the second- and fourth-order similarity kernels
with the power spectrum P and trispectrum T as follows:

k(2)(m, m′) =
∑
nn′

∑
LL′

∑
�

(
P(out)

nLn′L′�

)∗
P′(out)

nLn′L′�

= 〈P, P′〉 , (37)

k(4)(m, m′) =
∑

γ1γ2γ3γ4

�1+�3∑
�=|�1−�3|

(
T (in)

γ1γ2γ3γ4�

)∗
T ′(in)

γ1γ2γ3γ4�

= 〈T , T ′〉 . (38)

As discussed in Sec. III, the power spectrum P is insuf-
ficient to fully distinguish magnetic structures with distinct
magnetic symmetries in the same atomic configuration, and
a higher-order spectrum is necessary to distinguish such mag-
netic structures through the overlap of magnetization densities
at different atomic sites.

III. NUMERICAL RESULTS

In this section, we demonstrate the parameter depen-
dence and discrimination performance of the magnetic partial
spectra derived in Sec. II for the magnetic structures in high-
symmetry crystals. To measure the similarity of magnetization
density, we use the normalized similarity kernels defined as
follows:

K (2)(m, m′) = 〈P, P′〉√〈P, P〉
√

〈P′, P′〉
, (39)

K (4)(m, m′) = 〈T , T ′〉√〈T , T 〉
√

〈T ′, T ′〉
, (40)

where P (P′) and T (T ′) are the power spectrum and trispec-
trum for the magnetization density m (m′). We also define
the normalized similarity kernels irrespective of magnetic
anisotropy by using P, P

′
, T , T

′
, derived in Sec. II C, instead

of P, P′, T , T ′ in Eqs. (39) and (40) as K
(2)

(m, m′) and
K

(4)
(m, m′), respectively.

These similarity kernels take the positive value in the range
[0,1] since the similarity kernel is derived from Eq. (13) or
(28) with even ξ . We have implemented the calculations of
SOAP with magnetic alignment by modifying the Python
library, DScribe [15].

A. Parameter dependence of the similarity kernels

In this section, we discuss how the similarity kernel K (2)

and K (4), defined by Eq. (39) with the power spectrum P
and (40) with the trispectrum T , respectively, behave in the
application for magnetic configurations on simple crystals.
Note that K (2) and K (4) contain four parameters: the width of
the magnetization distribution σ (i.e., α), the number of radial
basis functions nmax, the maximum angular momentum of the
vector spherical harmonics �max, and rcut as the cutoff for the
radial integration in Eq. (10). We will discuss these parameter
dependences of K (2) and K (4) and show that nmax and �max

need to be sufficiently large to achieve convergence, while
appropriate values for σ and rcut must be chosen according
to an individual purpose.

Let us first discuss the simplest case, a one-dimensional
chain with spins placed at intervals of 1 Å along the x axis,
and consider the similarity kernel between the FM and AFM
ordered systems. In Fig. 1, we show the similarity kernels K (2)

and K (4). Here, we fix the two pairs of parameters, namely, σ

and nmax [(a) and (c)], and σ and �max [(b) and (d)], and change
other parameters. In all cases, K (2) and K (4) converge as nmax

or �max become larger. The convergence is faster for �max than
for nmax since we are working with a one-dimensional chain
where angular dependence is less significant. On the other
hand, K (2) and K (4) change from 1 to 0 as rcut increases. This
can be understood from Eq. (10), which suggests that a small
rcut including only one spin in the region cannot distinguish
the FM and AFM states. Here, K (2) and K (4) show almost the
same rcut dependence, with the only difference being that K (4)

approaches zero faster than K (2).
Figures 2(a) and 2(b) show the σ and rcut dependence of

K (2) and K (4), respectively, with converged values of �max and
nmax. We can see that increasing σ shifts the crossover point
between the FM and AFM states to larger values of rcut. In
the large σ limit, K (2) ∼ K (4) ∼ 1 regardless of the value of
rcut. This is reasonable with Eqs. (10), as well as Eqs. (39)
and (40). Namely, e−α(r+R j )2

factor becomes constant in the
large σ limit, resulting in a constant factor change depending
on the magnetic structure. As this constant change is lost
in the normalization in Eqs. (39) and (40), the resulting K
shows no distinction between FM and AFM configurations.
These findings imply that the appropriate choice of σ and rcut

is needed for the magnetic partial spectra to get meaningful
information about the magnetic structure. To get more insight,
we show the normalized similarity kernels, K (2) and K (4),
between the FM order and several AFM orders in Figs. 2(c)
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FIG. 1. The rcut dependence of the similarity kernels for the
ferromagnetic (FM) and antiferromagnetic (AFM) systems. (a)–
(d) show the K (2) and K (4) values as a function of �max with fixed
nmax = 6 or nmax with fixed �max = 7. The magnetic moments are
ordered along the z axis on each atomic site in the one-dimensional
periodic lattice with 1 Å interval along the x axis.

and 2(d). Here, AFM1, AFM2, AFM3, and AFM4 correspond
to ↑↓, ↑↑↓↓, ↑↑↑↓↓↓, and ↑↑↑↑↓↓↓↓ periodic magnetic
structures, respectively, in the one-dimensional crystal. Ob-
viously, AFM4 is closer to FM than AFM3, while AFM1 is
the farthest from FM, indicating that accurate discrimination
among these states is crucial when comparing similarity with
FM. When we use σ = 1.0 Å, as shown in Figs. 2(c) and
2(d), the four states can be distinguished by using rcut ∼ 3
with K (2). In contrast, with trispectrum, K (4), the differences
between the four states are relatively small compared to K (2)

for large rcut, but they can still be distinguishable. The results
indicate that the power spectrum is a better descriptor than
the trispectrum for this specific purpose, as it allows for more
apparent discrimination of these magnetic configurations.

Based on these results, we propose the following strategies
for determining appropriate values of rcut and σ .
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σ = 0.5
σ = 1.0
σ = 1.5
σ = 2.0
σ = 2.5
σ = 3.0

Power spec., nmax=6, max=7

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

K
(4

)
(m

F
M
,m

A
F
M

)

rcut (Å)
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FIG. 2. Similarity kernels with different values of σ , using
nmax = 6 and �max = 7 for FM and AFM configurations on the one-
dimensional crystal, (a) K (2) and (b) K (4). (c) and (d) compare the
similarity kernels for FM and different AFMi magnetic patterns,
where the magnetic moments have opposite signs per i-atomic sites.
σ = 1.0 Å, nmax = 6, and �max = 7 are used.

(1) First, set rcut depending on the purpose. For example,
when classifying the magnetic structures, rcut should be cho-
sen based on their typical spatial scale to be distinguished.

(2) Then, σ should be chosen so that the most distinct typ-
ical magnetic structures realized within the chosen rcut, such
as the conventional FM and AFM states, approach K ∼ 0.

Up to now, K (2) and K (4) do not show a significant differ-
ence. However, for the purpose of distinguishing the magnetic
structures with different magnetic symmetries, we will show
that K (4) would be a better descriptor than K (2).

Figure 3 displays the angle dependence of the similarity
kernels between simple ferromagnetic orders along the x axis
and different directions of magnetic moments in polar co-
ordinates (θ, φ) on a simple body center cubic, tetragonal,
and hexagonal lattices with their origin (θ = 0, φ = 0) set

014403-6



HIGH-PERFORMANCE DESCRIPTOR FOR MAGNETIC … PHYSICAL REVIEW B 108, 014403 (2023)

0.0

0.2

0.4

0.6

0.8

1.0

[1,0,0] [0,1,0] [0,0,1] [1,1,0]

K
(2

)
(m

,R
sm

)

Magnetic moments direction (Cub. axis)

σ=1.0
σ=2.0
σ=3.0
σ=4.0
σ=5.0
σ=6.0

0.0

0.2

0.4

0.6

0.8

1.0

[1,0,0] [0,1,0] [0,0,1] [1,1,0]

K
(4

)
( m

,R
sm

)

Magnetic moments direction (Cub. axis)

σ=1.0
σ=2.0
σ=3.0
σ=4.0
σ=5.0
σ=6.0

0.0

0.2

0.4

0.6

0.8

1.0

[1,0,0] [0,1,0] [0,0,1] [1,1,0]

K
(4

)
(m

,R
sm

)

Magnetic moments direction (Tetra. axis)

σ=1.0
σ=2.0
σ=3.0
σ=4.0
σ=5.0
σ=6.0

0.0

0.2

0.4

0.6

0.8

1.0

[1,0,0] [0,1,0] [0,0,1] [1,1,0]

K
(4

)
( m

,R
sm

)

Magnetic moments direction (Hex. axis)

σ=1.0
σ=2.0
σ=3.0
σ=4.0
σ=5.0
σ=6.0

(a)

(b)

(c)

(d)

FIG. 3. The spin rotation dependence of the normalized similar-
ity kernels between the magnetization density of the ferromagnetic
structure along the (100) axis, denoted by m, and those of the rotated
magnetic moments, given by Rs(θ, φ)m. The results are presented
for (a) K (2) and (b) K (4) on a simple BCC lattice with lattice constant
a = 1.0 Å, (c) K (4) on a body center tetragonal lattice with a = 1.0
Å and c = 1.5 Å, and (d) K (4) on a hexagonal lattice with a = 1.0 Å
and c = 1.5 Å, using nmax = 4, �max = 6, and rcut = 5.0 Å.

to the x axis. In all crystal systems, the crystal a axis is set
to 1 Å, and the c axis of tetragonal and hexagonal lattices
is set to 1.5 Å. The plots show that, while the second-order
similarity kernels K (2) do not show any difference for the
magnetic anisotropy, the similarity kernel K (4) captures the
difference from magnetic anisotropy. Note that the difference
is captured through the overlap of the magnetization density
around neighboring atoms since some extent of σ is required
to capture the difference of magnetic anisotropy, as shown in
Fig. 3. As shown in the following subsection, K (4) has better
discrimination performance than K (2) for magnetic anisotropy,
though K (2) is not entirely useless for differentiating magnetic
structures that differ only in magnetic anisotropy.

Note that the modified partial spectra insensitive to mag-
netic anisotropy are designed not to reflect the anisotropy
difference even for the higher-order partial spectra. As a re-
sult, K

(2)
and K

(4)
both show 1.0 for any (θ , φ) as well as

the plots of K (2) in Fig. 3(a). The difference of the magnetic
anisotropy for the rotation along the z axis for the hexagonal
lattice is not reflected even for the fourth-order partial spec-
trum K (4), as shown in Fig. 3(d), implying that the magnetic
partial spectrum with the order higher than four is neces-
sary to capture such a difference. Differentiating magnetic
anisotropy is essential for classifying magnetic symmetries of
the magnetic alignments on the same atomic configurations,
as discussed in Sec. III B.

B. Discrimination performance for magnetic structures with
distinct magnetic symmetries

Magnetic symmetries of the magnetic systems determine
whether or not various physical properties of magnetic ma-
terials occur, such as anomalous Hall and Nernst effect,
electromagnetic effect, and magnetic Kerr effect. The ability
to distinguish different magnetic symmetries of a descriptor
is thus crucial to analyze the physical properties of magnetic
materials by using machine learning.

Although the expansion coefficients cnLlm of the vector
spherical harmonics for magnetization density in Eq. (2)
contain all information on magnetic environments, some in-
formation may be lost through the procedure of constructing
the partial spectra from the expansion coefficients. To exam-
ine the ability to capture magnetic symmetry in the current
scheme, we investigate the similarity kernels for the magnetic
structures classified according to the symmetries of magnetic
structures in high symmetry crystals, cubic Mn3Ir and hexag-
onal Mn3Sn. The crystal structures of Mn3Ir and Mn3Sn
belong to the space group Pm3m (O1

h, No. 221), and P63/mmc
(D4

6h, No. 194), respectively. The lattice constants are a =
3.77 Å for Mn3Ir and a = 5.665 Å and c = 4.531 Å for
Mn3Sn. The magnetic structures of Mn3Ir and Mn3Sn, which
are classified according to the irreducible representations of
their respective crystal point groups (Oh for cubic Mn3Ir and
D6h for hexagonal Mn3Sn), were generated using the cluster
multipole method described in Ref. [17]. With the method,
the magnetic structure bases classified by multipoles sym-
metrized according to the irreducible representations of the
crystallographic point group are systematically generated by
first generating magnetic structures on virtual atomic clusters
belonging to the point group that conforms to the multipole
moments symmetrized according to the point group, and then
mapping them onto atoms in the crystal in a way that preserves
convertibility with respect to the point group operations [17].
For Mn3Ir, the magnetic structures with different magnetic
symmetries within the same multipoles are produced by tak-
ing the linear combination of the generated magnetic bases as
explained in Ref. [18]. In each magnetic structure, the size of
the magnetic moment was normalized to one at each magnetic
site. The symmetrized magnetic structures for cubic Mn3Ir
and hexagonal Mn3Sn are shown in Figs. 4 and 5, respec-
tively. Additional details regarding the crystal and magnetic
structures can be found in Ref. [19].
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FIG. 4. Symmetrized magnetic structures generated on Mn3Ir
crystal by cluster multipole method with magnetic moment normal-
ized to unity [17].

Several potential approaches can be considered for apply-
ing this method to crystals comprising various atom species.
Here, we will take the simplest approach and treat only the
magnetic atoms of interest, the Mn atoms, and ignore the
other atoms, implying that the presence of nonmagnetic atoms
affects the formation of the magnetic structure even though it

β

ν

FIG. 5. Symmetrized magnetic structures generated on Mn3Sn
crystal by cluster multipole method with each finite magnetic mo-
ment normalized to unity [17].

is not treated explicitly. This method makes it possible to com-
pare the crystals composed of different crystal structures and
atomic species as demonstrated by comparing the magnetic
structures of Mn3Ir and Mn3Sn later.

Figures 6 and 7 show the correlation tables of the normal-
ized similarity kernels K

(2)
, K (2), K

(4)
, and K (4) calculated for

the symmetrized magnetic structures of Figs. 4 and 5, respec-
tively. The similarity kernels K (ξ ) (ξ = 2 and 4) show better
resolution to distinguish the different magnetic structures than
those designed to neglect the magnetic anisotropy, K

(ξ )
, for

the same ξ , and the fourth-order similarity kernels show
better resolution than the second-order ones. Thus K

(2)
has

the least ability to distinguish the magnetic structure, while
K (4) demonstrates the maximum capability to distinguish the
different magnetic structures, as discussed in detail below.

The magnetic dipole structures of Nos. 1–3 in Figs. 4
and 5 are ordinary ferromagnetic structures along different
axes and differ only in magnetic anisotropy. In Fig. 4, since
the magnetic structures No. 5 and No. 6 are obtained by 90◦

of spin rotation on each atom of No. 8 and No. 9, respec-
tively, those two magnetic structures differ only in magnetic
anisotropy. Similarly, in Fig. 5, the magnetic structures of No.
5 and No. 7 differ from No. 6 and No. 8, respectively, in
magnetic anisotropy. As a result, the K

(ξ )
evaluate that they

are equivalent for those magnetic structures irrespective of the
order ξ , as shown in Figs. 6 and 7 for ξ = 2 and 4. In addition,
K

(2)
and K

(4)
barely reflect the magnetic structural differences

that go beyond the magnetic anisotropy, such as No. 5 and 6
in Fig. 4 and No. 4 and 5 in Fig. 5, by showing the value
close to 1.0. K (2) shows moderate discrimination performance
for magnetic structures with different magnetic symmetries
and succeeds in finding differences in magnetic anisotropy,
but it still fails to discriminate several magnetic structures
that involve differences in magnetic anisotropy. K (4) shows
significantly better discrimination performance for magnetic
structures distinct from both magnetic symmetry and mag-
netic anisotropy. However, even with the K (4), it is hard to
distinguish the difference in the hexagonal in-plane magnetic
anisotropy between Nos. 2 and 3 and between Nos. 17 and 18,
as discussed in Sec. III A, suggesting a partial spectrum of the
order higher than four is required to distinguish the difference
of the hexagonal in-plane magnetic anisotropy.

As mentioned above, the similarity of the local mag-
netic environment can be evaluated for different magnetic
compounds with different crystal structures by focusing on
specific magnetic ions that both compounds contain. Figure 8
provides the correlation table between the magnetic structures
of Mn3Ir in Fig. 4 and those of Mn3Sn in Fig. 5, using σ = 1.0
and 4.0 Å with nmax = 4, �max = 6, and rcut = 5.0 Å. For
σ = 1.0 Å, the width of the magnetization density around
each Mn atom is small, and there is little overlap between
the magnetization densities coming from different magnetic
atoms, resulting in the dominant contribution of Eq. (11) for
the trispectrum, Eqs. (34) and (23). In this case, the differ-
ence in the magnetic structures is reflected only through the
averaging procedure of the origin choice in Eq. (34), and the
ferromagnetic structures can not be distinguished even for the
different crystals. In Fig. 8, No. 4 of Mn3Ir and No. 15 of
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FIG. 6. Pair plots of normalized similarity kernels of the power spectrum and trispectrum with σ = 4.0 Å, nmax = 4, �max = 6, and rcut = 5
Å for the magnetic structures corresponding to Fig. 4 for (a) K

(2)
, (b) K (2), (c) K

(4)
, and (d) K (4).

FIG. 7. Pair plots of normalized similarity kernels of the power spectrum and trispectrum with σ = 4.0 Å, nmax = 4, �max = 6, and rcut = 5 Å
for magnetic structures corresponding to Fig. 5 for (a) K

(2)
, (b) K (2), (c) K

(4)
, and (d) K (4).
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FIG. 8. Pair plots of normalized similarity kernel K (4) between the symmetrized magnetic structures of Mn3Ir and of Mn3Sn, shown in
Figs. 4 and 5. The calculations use nmax = 4, �max = 6, and rcut = 5 Å with (a) σ = 1.0 and (b) 4.0 Å.

Mn3Sn are evaluated as closer to ferromagnetism than the
others. This reflects that these magnetic structures have finite
magnetizations in their ferrimagnetic structure. The magneti-
zation densities broadened with a value of σ = 4.0 Å lead to
significant overlap between the magnetization densities from
different magnetic atoms. This causes the difference in the
partial spectra for the distinct magnetic environments around
the Mn atoms in Mn3Ir and Mn3Sn, increasing discrimination
performance for both compounds even in the case of ferro-
magnetic structures, as depicted in Fig. 8(b).

IV. SUMMARY

We have developed a theory of descriptors for magnetic
structures invariant to arbitrary choices of the coordinate
axis, crystal unit cells, and origin choices. Higher-order par-
tial spectra are essential to discriminate different magnetic
structures that share the same atomic positions, especially
with differences in magnetic anisotropy. We have also de-
rived the fourth-order partial spectrum, referred to as the
trispectrum, and compared its properties to the second-order
partial spectrum, i.e., the power spectrum. The trispectrum
effectively distinguishes magnetic structures only with mag-
netic anisotropy difference, though the power spectrum cannot

discriminate them. Therefore the trispectrum is necessary
to accurately classify magnetic symmetries relevant to the
physical properties of magnetic materials. Additionally, we
have derived alternative partial spectra irrelevant to magnetic
anisotropy and confirmed their effectiveness. These mod-
ified partial spectra are particularly useful for classifying
magnetic structures obtained from first-principles calculations
without spin-orbit coupling. Our theory of descriptors for
magnetic structures thus provides a powerful tool for accu-
rately classifying magnetic structures and paves the way for
new applications in materials science and engineering by ma-
chine learning.
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