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Meron configurations in easy-plane chiral magnets
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We demonstrate the existence and study in detail the features of chiral bimerons which are static so-
lutions in an easy-plane magnet with the Dzyaloshinskii-Moriya interaction. These are skyrmionic textures
with an integer topological charge, and they present essential analogies to the meron configurations in-
troduced in the context of quark confinement in the O(3) nonlinear σ model. We employ a Möbius
transformation to show that, for weak chirality, bimeron configurations approach Belavin-Polyakov solu-
tions characterized by tightly bound vortex and antivortex parts of the same size. Stronger chirality induces
a larger difference in the vortex and antivortex sizes and also a detachment of merons, suggesting the
possibility for a topological phase transition. Exploiting the fact that bimerons of opposite topological
charges may exist in the same material, we demonstrate numerically a mechanism to generate meron
pairs.
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I. INTRODUCTION

Merons are localized configurations that possess one-half
topological charge, and they are relevant in theories ranging
from high-energy physics to condensed matter. Their name
reflects the fact that a meron can be considered as a part
(greek: μερoς ) of a soliton with an integer topological charge
[1,2]. For large distances or large couplings, the formation
of merons is favored due to their logarithmically divergent
energy, and they are considered to offer a possible mechanism
leading to quark confinement.

In magnetic films with the chiral Dzyaloshinskii-Moriya
(DM) interaction, topological solitons with integer-valued
topological charge are magnetic skyrmions [3–5]. Merons
were introduced in the context of the nonlinear O(3) σ model,
a prototype model corresponding to the time-independent
Landau-Lifshitz equation, in Ref. [2]. Under Möbius transfor-
mations, an axially symmetric skyrmion of topological charge
equal to unity is decomposed into two spatially separated
merons that may have different sizes.

We study chiral ferromagnets with easy-plane anisotropy
which support skyrmionic configurations consisting of two
merons, known as bimerons [6–13]. Bimeron structures have
also been studied in antiferromagnets [14,15] and in nonchiral
magnets [16–19]. The two constituent parts are a vortex and
an antivortex of different polarities, each contributing one-
half of the topological charge. While a single vortex may be
energetically favored by the DM interaction, it is a challenging
problem whether a composite configuration including vortices
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of both windings, i.e., a vortex and an antivortex, yields a
stable configuration.

Bimeron structures have been observed in confined ge-
ometries [8,19] as well as in antiferromagnetic α−Fe2O3

films [20]. Observations of square lattices of chiral
merons [21] have been reported in Ref. [22], and their
stabilization was investigated within a Ginzburg-Landau
model [23].

The chiral bimerons presented here are directly related
to the meron configurations constructed in Ref. [2]. First,
the configuration is asymmetric (the two merons have dif-
ferent sizes), and a Möbius transformation gives a skyrmion
including two scales. Second, tuning the chirality param-
eter allows detaching of the constituent parts. A further
remarkable feature is that the far field of the chiral bimeron
is algebraic, like the O(3) σ model, despite the pres-
ence of anisotropy which typically induces exponential
decay.

We exploit the possible coexistence of oppositely charged
bimerons in DM magnets, and we numerically demonstrate a
remarkable process for the smooth generation of a bimeron.
A straightforward iteration of this mechanism can yield a
proliferation scheme for bimerons that overcomes topological
constraints, opening the possibility for a topological phase
transition such as the Berezinskii-Kosterlitz-Thouless (BKT)
transition.

The paper is organized as follows. In Sec. II, the model for
easy-plane chiral ferromagnets is presented. In Sec. III, the
numerical solutions for bimerons are given. In Sec. IV, details
of the bimeron profile are discussed, and the relation to the
O(3) merons is quantified. In Sec. V, a mechanism for the
generation of bimerons is discussed. Section VI contains our
concluding remarks.
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FIG. 1. Ground states and phase transitions for an easy-plane
chiral ferromagnet vs model parameter λ. We have the polarized state
for λ < λNF, a nonflat spiral for λNF < λ < λF, and a flat spiral for
λ > λF.

II. EASY-PLANE CHIRAL MAGNETS

We consider a ferromagnetic film with easy-plane
anisotropy and the DM interaction. The magnetic energy is

E = A
∫

∂μm · ∂μm d2x + K
∫

m2
3 d2x

+ D
∫

êμ · (∂μm × m) d2x, (1)

where m = (m1, m2, m3) is the normalized magnetization
vector, μ = 1, 2, êμ denotes the unit vectors in the respective
directions, A is the symmetric exchange parameter, K is the
anisotropy parameter, and D is the DM or antisymmetric
exchange parameter.

The dynamics of the magnetization vector is described
by the Landau-Lifshitz equation as obtained from the energy
functional Eq. (1). Using 	w = √

A/K as the unit of length,
we obtain the dimensionless form:

∂τ m = −m × heff + αm × ∂τ m, (2)

where we include Gilbert damping with parameter α, and the
effective field reads

heff = �m − m3ê3 − 2λ(êμ × ∂μm) (3)

and includes the dimensionless DM parameter:

λ = D

2
√

AK
. (4)

This model appears to be like that for easy-axis ferromagnets
where a spiral is the ground state for a strong enough DM
interaction [3]. In this spiral solution, the magnetization vector
rotates in the plane perpendicular to the direction in which
the magnetization varies; hence, we may call this a flat spiral.
Despite the apparent similarity of the models, the present case
of easy-plane anisotropy allows for an additional phase [24],
where the phase transitions occur at two critical values of the
DM parameter [25]:

λNF = 1
2 , λF ≈ 0.705. (5)

As illustrated in Fig. 1, for a weak DM interaction, λ < λNF,
the fully polarized state is the ground state with the magne-
tization vector aligning with an easy-plane direction (without
loss of generality, we may assume m = ê1). By increasing λ,

we enter an intermediate phase in the form of a nonflat spiral
at λ = λNF. The spiral presents a rotation of the projection
of m on the ê2-ê3 plane as we move along the x axis, and at
the same time, the component m1 oscillates around a nonzero
value. The period of the spiral tends to infinity for λ → λNF

(from above), while the component m1 approaches unity in
the same limit. As λ increases above λNF, m1 decreases, and
it vanishes at λ = λF, where the flat spiral is obtained with m
perpendicular to ê1 and rotating in the ê2-ê3 plane. For λ > λF,
the flat spiral is the ground state, and its period decreases with
increasing λ.

III. BIMERON SOLUTIONS

In a magnetic film (a two-dimensional system), skyrmionic
textures [26–29] and vortices are excited states above
the polarized state in the regime 0 < λ < λNF. For vortices,
the winding of the in-plane magnetization vector, as we rotate
around the vortex center, may follow the same or the opposite
sense of rotation. We define accordingly the winding number
or vortex number κ = ±1. We call vortices those with a pos-
itive winding number and antivortices those with a negative
winding number. The sign of the out-of-plane component of
the magnetization in the central region of the vortex (vortex
core) defines the vortex polarity. For a vortex with positive
winding, the orientation of the in-plane magnetization com-
ponent with respect to the radial direction gives the helicity.

In chiral magnets, certain vortex configurations are en-
ergetically favored by the DM interaction, as this gives a
negative contribution for particular swirling magnetic config-
urations. This is analogous to the effect of the DM interaction
for skyrmions. This means that a vortex (or a skyrmion) with
only one of the two possible windings can be an energy mini-
mum. Specifically, for the energy as given in Eq. (1), vortices
are favored for positive polarity and helicity −π/2 or negative
polarity and helicity π/2. Regarding the vortex profile, it
is an unusual fact that the magnetization field for a chiral
vortex decays following a power law, as shown by standard
asymptotic analysis [25]. This is due to the DM interaction
and despite the presence of anisotropy that typically gives
exponential decay for vortex configurations. No isolated static
antivortex solutions are found within the model described by
Eq. (1).

Magnetic configurations are characterized by the skyrmion
number defined as

Q = 1

4π

∫
q d2x, q = m · (∂1m × ∂2m), (6)

where q is a topological density, and it plays the role of the
local vorticity. Vortices have Q = ± 1

2 , where the sign depends
on their winding number and polarity. The question arises
whether solutions that represent stable skyrmions, i.e., topo-
logical solitons with an integer skyrmion number, are possible
in the easy-plane case.

Skyrmionic textures with Q = ±1 may be constructed
from a vortex paired with an antivortex of opposite polar-
ity. Using the stereographic projection of the magnetization
vector:

� = m1 + im2

1 + m3
, (7)
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such configurations are given by the rational map:

�μ = z − ia1

z − ia2
, (8)

where a1, a2 ∈ R, and z = x + iy is the position variable on
the complex plane, gives a vortex centered at position (x, y) =
(0, a1) and an antivortex centered at (0, a2). Since the abso-
lute position of the resulting two-vortex configuration can be
shifted by simple spatial translations, only their separation,
given by the difference a1 − a2, is significant. The vortex
exhibits a positive out-of-plane magnetization, i.e., m3 > 0,
whereas the antivortex is characterized by m3 < 0.

Within the O(3) nonlinear σ model, configurations ob-
tained by rational maps such as in Eq. (8) are exact solutions.
Solutions described by Eq. (8) necessarily feature symmetric
vortex and antivortex configurations having the same size. The
two vortices are considered merons, each occupying one-half
of the plane. Consequently, we can assign to each meron a
radius (assume a1 > a2):

R = a1 − a2

2
. (9)

To find static bimerons, we apply an energy minimization
algorithm. This is equivalent to simulating Eq. (2) with
maximum damping. Due to the long range of bimeron con-
figurations, we employ stretched coordinates ξ, η, where x =
tan ξ, y = tan η with −π/2 < ξ, η < π/2, resulting in a lat-
tice in x, y with nonuniform spacing that effectively extends to
infinity in all directions. We typically use a 400 × 400 square
lattice with a minimum spacing of 0.08 (in dimensionless
units) at the origin.

We use as an initial condition the form of Eq. (8). The nu-
merical relaxation results in asymmetric meron pairs, i.e., two
merons of different sizes. Figure 2 shows two example con-
figurations obtained for two different values of the parameter
λ. The vortex has an almost axially symmetric profile around
its center, while the antivortex is elongated. The elongation is
more pronounced for larger values of λ, as in Fig. 2(a), while
the antivortex profile is getting closer to an axially symmetric
one for lower values of λ, as in Fig. 2(b).

The antivortex elongation has been noted in Refs. [6,7], and
it is apparent in numerical results showing vortex collections
in Ref. [28]. In Ref. [30], an elongated vortex is found as
an exact solution in a specific solvable σ model with DM
interaction and easy-plane anisotropy. The apparent similarity
is promising to explain the present numerical results, but the
connection of the model in Eq. (2) with the solvable σ model
is not straightforward.

We find that the bimeron solutions exhibit an algebraically
(power law) decaying far field with |�| ∼ 1/r2. The algebraic
decay is shared with the merons of Eq. (8) for the O(3)
model, which actually give |�| ∼ 1/r. A corresponding result
is found by standard asymptotic analysis that gives an alge-
braic behavior for a single chiral vortex configuration [25].
The power law for a single vortex or a bimeron configuration
is an unusual behavior as the presence of anisotropy typically
induces exponential decay in vortex configurations.

While m3 < 0 at the antivortex core region, m3 becomes
positive in a region well below the antivortex. The domain
with m3 > 0 can be discerned in Fig. 2 by the change in

FIG. 2. Static bimeron solution of the model given in Eq. (2).
Vectors show the projection of the magnetization (m1, m2) on the
plane. Contour plots for m3 are colored, where red indicates m3 > 0
and blue indicates m3 < 0. The center of the bimeron, defined to be
at the point where m1 = −1, is at the origin. The skyrmion number
is Q = 1. (a) A bimeron for parameter value λ = 0.4. The centers of
the vortex and antivortex, defined to be at the point where m3 = ±1,
are located on the y axis, at y = 1.66 and −1.01, respectively, in units
of 	w. (b) A bimeron for λ = 0.32. The vortex center is at y = 0.71
and the antivortex at y = −0.56.

the color well below the antivortex core region. For exam-
ple, for λ = 0.4, we have m3 > 0 below y = −3.43 on the
y axis. This feature represents a difference between the chiral
bimeron configuration and the configuration in Eq. (8) at large
distances.

Bimeron solutions are found for a range of parameter
values. We present results for bimeron configurations down
to λ = 0.28. It is numerically challenging to find bimeron
solutions for small λ as an increasingly finer spatial resolution
would be needed. Figure 3 shows the distances of the vortex
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FIG. 3. Distances of the vortex (upper, blue line) and the antivor-
tex (lower, red line) centers from the bimeron center as a function of
the parameter λ. Points present numerical results, connected by solid
lines. For small λ, the vortex and the antivortex are progressively
placed more symmetrically on either side of the bimeron center. For
λ � 0.5, at the point of transition to the nonflat spiral, the vortex is
expected to get completely detached.

and antivortex centers (the points where m3 = ±1) from the
bimeron center (the point where m1 = −1) as λ is varied.
As the value of λ decreases, the centers of the vortex and
antivortex approach each other, and they move progressively
to locations symmetrically placed on opposite sides of the
bimeron center.

We expect that bimerons exist down to λ → 0. In this
limit, the DM and anisotropy energy terms decrease, and the
exchange term dominates. Thus, the configuration is expected
to approach the rational map given in Eq. (8) with a decreasing
distance between the merons, that is, a1 − a2 → 0. This pic-
ture is supported by the results in Fig. 3. The issue is discussed
further in Sec. IV.

A larger parameter λ gives a larger separation between the
two merons. After the phase transition to the nonflat spiral, for
λ � λNF = 1

2 , we expect no bimeron solutions. Specifically,
for λ � λNF, a single vortex has negative energy [25], and
it is expected to detach completely from the antivortex. As
seen in Fig. 3, this behavior is supported by the numerical
simulations which converge to bimeron configurations with
increasing meron separation as λ → λNF.

Figure 4 shows the energy of the bimeron as a function of
the parameter λ. The DM and anisotropy energies decrease in
absolute value, and they go to zero (from negative and positive
values, respectively) as λ → 0, and the bimeron size goes to
zero, too. The exchange energy decreases, and it approaches
the value 4π for λ → 0, which is the value for the bimeron
profile in Eq. (12). For small λ, the total energy approaches the
value E = 4π , thus supporting the argument that the bimeron
configuration is given by Eq. (12) with a → 0. A similar

FIG. 4. The energy of the bimeron as a function of the parameter
λ. Results from numerical simulations are given by circles. The
dotted line shows the asymptotic result as obtained analytically in
Eq. (10) for the axially symmetric skyrmions, and it is shown for
comparison.

situation has been studied for the axially symmetric skyrmion
where the asymptotic result for the energy is [31,32]

E = 4π

(
1 + λ2

ln λ

)
, λ � 1. (10)

In Fig. 4, we tentatively plot Eq. (10), and we find that it is in
agreement with the present numerical results for small λ. This
can be explained by the fact that the exchange interaction is
dominant for λ � 1, and the arguments of Refs. [31,32] for
the asymptotic calculation of the energy can also be applied
in the present case. For larger λ, the energy decreases. The
results in Fig. 4 indicate that the energy attains a positive value
at λ = λNF = 0.5. For λ > λNF, the bimeron is not expected
to be stable, as explained earlier. A phase transition to a
nonflat spiral will occur at that point, and the energy would
drop discontinuously to negative values. A full mathematical
treatment of these issues would be needed to obtain precise
results for the phase transitions at λ → 0 and λ → λNF, but
this is beyond the scope of this paper.

The fact that the vortex and antivortex are centered on the
y axis for all bimerons presented here, such as in Fig. 2, is
dictated by the choice of the far field magnetization m = ê1,
that is, by the choice for the spontaneously broken symme-
try. If the bimeron configuration would be rotated in space,
keeping the far field fixed, this would necessarily have to be
accompanied by a change of the helicity of the vortex and
thus an increase of the DM energy. A related fact is that chiral
bimerons have been found here as static solutions within the
easy-plane magnet, in contrast to vortex-antivortex dipoles in
standard models (without the chiral interaction) where the pair
is necessarily nonstatic, i.e., rotating [33,34]. These striking
features of chiral bimerons originate in the invariance of the
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DM interaction under simultaneous rotations in real and mag-
netization space.

We have repeated the simulations including the magneto-
static field, and we have verified that the bimeron pair exists
in this case, too. Therefore, bimerons can be realistically ex-
pected to be observed experimentally in a magnetic material
with easy-plane anisotropy and chiral interaction.

All calculations in this paper have been performed for
the bulk type of DM interaction used in Eq. (1). Equivalent
bimeron solutions can be found for other types of DM inter-
actions. For example, for the interfacial type, one could rotate
the configuration of Fig. 2 in space by π/2. This will leave the
energy as well as the far field invariant.

IV. CHIRAL BIMERON PROFILE

For a quantitative study of the bimeron configuration, we
consider a Möbius transformation defined by

1

iw
= z − ia1

z − ia2
, (11)

where

w = u + iv

is the transformed variable in the complex plane. If this is
applied to the configuration given in Eq. (8), we obtain

�S = 1

iw
= 1

r
exp

[
−i

(
φ + π

2

)]
, (12)

where (r, φ) are the polar coordinates for w. The result man-
ifestly represents an axially symmetric antiskyrmion with a
unit radius. Specifically, the Möbius transformation described
by Eq. (11) shifts the antivortex center to the origin. An
inversion is applied to the vortex configuration which is also
reflected with respect to the real (horizontal) axis. This sets
the vortex center to the point at infinity, and it reverses the
sense of winding of the vortex configuration.

Chiral bimerons share with the configurations considered
in Ref. [2] the salient property of being composed of merons
with different radii (cf. Fig. 2), unlike the symmetric bimeron
configurations of Eq. (8). To quantify this, we apply the
Möbius transformation, i.e., Eq. (11), with a1, a2 chosen to
coincide with the locations where m3 = ±1, to our bimeron
solutions �(z) and obtain

�̃(w) = �(z). (13)

Figure 5 shows plots for �̃(w) corresponding to the transfor-
mation of the bimerons in Fig. 2. The resulting configurations
are identified as skyrmions. The Möbius transformation maps
the antivortex to the center of the skyrmion, whereas the
vortex occupies the rest of the plane extending to spatial
infinity. Approximately, the antivortex is mapped inside the
circle |w| = 1 and the vortex outside it.

In Fig. 5, we observe circular vortex contours in the far
field (corresponding to the vortex) and circular to elongated
contours in the skyrmion center (corresponding to the antivor-
tex). The dent in the shape of the contours below the skyrmion
center is attributed to the region where m3 > 0 below the an-
tivortex, as noted in connection with Fig. 2 in Sec. III. Finally,

FIG. 5. (a) Vector and contour plots for the Möbius-transformed
configuration given in Eq. (13) for the bimeron solutions of Fig. 2
for (a) λ = 0.4, and (b) λ = 0.32. The transformation has produced
a skyrmion. Blue and red indicate m3 > 0 and m3 < 0, respectively.
The antivortex has been mapped to the center of the skyrmion and
the vortex to its periphery. The contours in the red region and in the
central part of the blue region are approximately circles.

for smaller values of λ, the Möbius-transformed bimeron
solutions �̃(w) approach progressively an axially symmet-
ric profile as expected for the Belavin-Polyakov solution in
Eq. (12).

We expect the radii of the two merons to be different and,
in fact, the radius of the antivortex R2 to be smaller than the
radius R1 of the vortex. Following the discussion in Ref. [2],
we expect a Möbius-transformed configuration �̃ = γ2/(iw)
around the center of the skyrmion and �̃ = γ1/(iw) in the
outer region (for |w| � 1), with γ2 < γ1. This would imply
vortex and antivortex radii R1 = R/γ1 and R2 = γ2R, respec-
tively, with R defined in Eq. (9). To detect this behavior in
the chiral skyrmion configurations, we consider the relative
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FIG. 6. (a) The dotted line shows the path for v = 0 on the
z plane for λ = 0.40 (left) and λ = 0.32 (right). (b) The relative
scaling γ [see Eq. (14)] is calculated along the u axis (for v = 0) for
λ = 0.40 and 0.32. The value of γ obtained at u = 0 indicates the
antivortex radius R2 = γ R < R, and the value at |u| → ∞ indicates
the vortex radius R1 = R/γ < R. They are both found to be smaller
than the radius R given in Eq. (9) for the exchange model.

scaling:

γ := |w�̃|, (14)

which is expected to yield γ1, γ2 for the corresponding re-
gions.

Figure 6(b) shows the scaling parameter γ as obtained
along the horizontal u axis (i.e., the line v = 0) in Fig. 5
for the two values of λ. The saturation of the scaling pa-
rameter to γ1 > 1 for |u| � 1 indicates a vortex radius R1 <

R. Similarly, for the antivortex, we find γ2 < 1 for u � 1,
corresponding to R2 < R. For λ = 0.32, the values of γ1, γ2

are not very far from unity, showing that, in this case, the
bimeron is close to the Belavin-Polyakov solution in Eq. (8).
On the other hand, for λ = 0.40, the values of γ1, γ2 deviate
significantly from unity, indicating that the individual meron
sizes are shrinking compared with the total bimeron size, and
they are thus progressively detaching from each other.

The separation of merons is in direct correspondence to
the description in Ref. [2]. Related are also experimental re-
ports in an easy-plane biaxial magnet where bubble domains
are robustly observed [35]. Specifically, the so-termed cyan
bubble domain contains two separated vortices or merons, and

FIG. 7. Contour plots for the topological density q, defined in
Eq. (6), of the bimeron solutions shown in Fig. 2 for (a) λ = 0.4 and
(b) λ = 0.32. The same number of contours is plotted in both figures.

it can be considered the experimental realization of meron
detachment.

Let us now proceed to consider the topological density
distribution of the bimeron solutions. One should have in mind
that the topological density for the rational map of Eq. (8) is
axially symmetric (despite the asymmetry of the configura-
tion). Figure 7 shows the topological density for the bimeron
solutions of the two configurations in Fig. 2. For larger λ, the
topological density distribution has an elongated shape with
the two merons contributing in different parts of space. The
topological density maximum is shifted to the antivortex side
due to the sharper localization of the antivortex. As λ de-
creases, the topological density distribution approaches axial
symmetry, and its center is shifted closer to the center of the
bimeron (at the origin). These features further corroborate the
assumption that the chiral bimeron approaches the configura-
tion, see Eq. (12), for λ → 0, while for large λ, the two merons
detach from each other. A similar phenomenon was reported
within a nonchiral model for anisotropic ferromagnets with
competing interactions in Ref. [16].
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FIG. 8. A bimeron solution of the model given in Eq. (2) for
λ = 0.4, where the vortex points down and the antivortex points up.
Contour plots for m3 are colored, where red indicates m3 > 0 and
blue indicates m3 < 0. The center of the bimeron, defined to be at the
point where m1 = −1, has been placed at the origin. The skyrmion
number is Q = 1.

V. BIMERON PAIRS

Considering the same system as in the previous sec-
tions, that is, retaining the vacuum magnetization m = ê1, a
second bimeron configuration can be found with an opposite
skyrmion number. This has been noted in Refs. [7,11,36]. The
second bimeron may be achieved by applying a rotation in
space by π (x → −x, y → −y) and reversing the third mag-
netization component (m3 → −m3) of the initial solution, in
Fig. 2. The result, for λ = 0.4, is shown in Fig. 8. The vortex
now has negative polarity, and the antivortex has positive
polarity. This leads to a skyrmion number Q = −1, opposite
the skyrmion number of the previously presented bimerons in
Fig. 2. Thus, the easy-plane ferromagnet can support chiral
bimerons with opposite skyrmion numbers.

A mechanism for the generation of bimerons can be read-
ily suggested based on the existence of the two oppositely
charged bimerons. One may imagine the generation of a
vortex-antivortex pair where both vortices have the same
polarity, say, down, with the simultaneous generation of a
vortex-antivortex pair with polarity up [37]. Both pairs are
topologically trivial, with Q = 0, and they can thus be cre-
ated in a smooth way. An exchange of partners between
the two pairs would give recombination of the vortices and
antivortices such that two bimerons with opposite skyrmion
numbers would emerge. When these unbind, they give the two
bimerons in Figs. 2 and 8. A simulation demonstrating a pair
of vortices together with a pair of antivortices, which may be
interpreted as a pair of bimerons, was reported in Ref. [38].

We argue that the described mechanism may well be fa-
vored by the physics of the system because it has the following
advantages. A topologically trivial vortex-antivortex pair can
be created out of fluctuations of the polarized state. This pair is

a propagating structure though [37], and it would eventually
be annihilated via energy dissipation. On the other hand, a
bimeron, once formed, is a static structure, that is, it is an
energy minimum and thus a stable topological configuration
that is robust against damping and perturbations.

Simulations showing bimeron generation by spin torques
within an in-plane easy-axis model are reported in Ref. [36].
We give here a complementary proof-of-concept numerical
simulation for bimeron generation. We consider an initially
polarized state along the m = ê1 direction, but we add a
perturbation by setting m ≈ (0.98, 0.2, 0) in the region −2 �
x, y � 1. Spin-transfer torque of the Slonczewski type is then
applied with polarization along x. This polarization is chosen
because we aim for vortex-antivortex pairs where m ≈ −ê1

between the two vortices. The dynamics is described by

∂τ m = −m × heff + αm × ∂τ m − βm × (m × ê1). (15)

We set β = −8, and the polarized current is only applied in
a circular region of radius 2 around the origin. The negative
value of β corresponds to reversing the polarization to −ê1 or
to reversing the direction of the current. We use the parameter
value λ = 0.4 and damping α = 0.1. A vortex-antivortex pair
with negative polarity is created due to the dynamics, and it is
shown in Fig. 9(a) at time t = 20.0.

Immediately after t = 20.0, we reverse the spin-torque pa-
rameter to β = 8. We see that a second vortex-antivortex pair,
again with polarity down, is created, and soon after that, a
third vortex-antivortex pair with polarity up starts growing.
Figure 9(b) shows the configuration at t = 20.6. Then the
antivortex from the third pair is annihilated with the vortex
from the second pair, and the remaining vortex of the third pair
binds with the antivortex of the first pair, as shown in Fig. 9(c),
at time t = 22.0. The remaining vortex from the first pair and
antivortex from the second pair have the same polarity; they
approach each other, propagate away, and eventually annihi-
late smoothly. The picture in Fig. 9(d) shows the remaining
bimeron at time t = 28.0.

The mechanism for the generation of two bimerons can
be generalized to a process where a collection of bimerons
is generated while the total skyrmion number of the system
remains zero. If the temperature is considered, an easy-plane
chiral magnet could give a gas of bimerons, leading to the
question of a topological phase transition in the system. Given
that the bimerons are static states, these will not only be
sustained due to thermal fluctuations, but the system may be
trapped in a state of multiple bimerons that may be a local
energy minimum.

VI. CONCLUDING REMARKS

We have studied in detail chiral bimeron solutions in a
magnet with a DM interaction. We found that they bear es-
sential similarities to the bimerons originally discussed within
the O(3) nonlinear sigma model, and we have quantified the
similarity of the features employing a Möbius transformation
of the bimeron configuration. The chiral bimerons thus appear
to be a realization of the original bimeron configurations, pre-
senting, for example, the possibility to detach from each other.
This opens the possibility of the proliferation of merons under
temperature or due to an external probe. We have described a
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FIG. 9. Spin torque is applied on an almost polarized state. The following snapshots are shown. (a) A vortex-antivortex is generated, after
the application of spin torque with β = −8 in a circular region with radius 2 for 20 time units. Following this stage, the polarization is reversed
by setting β = 8, and we show snapshots at (b) t = 20.6, where a second vortex-antivortex pair with polarity down and a third one with polarity
up are created, (c) t = 22.0, where a bimeron has been formed, and (d) t = 28.0, where only a single bimeron has remained in the system.

method and have given a proof-of-concept simulation for the
generation of bimerons.

We have identified the range of parameters for the exis-
tence of bimerons and the configuration dependence on the
parameter values. We further identified a special feature in
the configuration, that is, the change of the sign of the out-
of-plane magnetization component m3 in the area beyond the
antivortex.

A remarkable property of chiral bimerons is that they are
static solutions of the model, unlike the situation in nonchi-
ral magnets where vortex pairs are necessarily dynamical

and they rotate around each other. The dynamics of chiral
bimerons thus emerges as an interesting topic to study.
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