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Recently, systems with strong coupling between electronic and vibrational degrees of freedom have attracted
a great deal of attention. In this work, we consider the transient dynamics of the system consisting of strongly
coupled vibrons and excitons driven by an external monochromatic field. We show that, under coherent pumping,
polarization of excitons exhibits complex quantum dynamics which can be divided into three stages. In the first
stage, exciton oscillations at its eigenfrequency relax due to the transition of excitation to a set of shifted Fock
states of vibrons. We demonstrate that these shifted Fock states play the role of an effective reservoir for the
excited exciton state. The time of relaxation to this reservoir depends on exciton-vibron coupling. In the second
stage, excitation transits from the reservoir of the vibronic shifted states to electronic degrees of freedom. As a
result, revival of oscillations at exciton eigenfrequency appears. Thus, the dynamics of molecular polarization
exhibit collapses and revivals. At the final stage, these collapses and revivals dissipate and polarization exhibits
the Rayleigh response at the frequency of the external field. Discovered collapses and revivals manifest in the
radiation spectrum as a multiple splitting of the spectral line near the exciton transition frequency.
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I. INTRODUCTION

The interaction between electronic and nuclear vibrational
degrees of freedom has been investigated for almost a hun-
dred years since the discovery of inelastic Raman scattering
in molecules [1] and Brillouin scattering in solids [2]. This
interaction is at the origin of many phenomena discovered
from that time, including coherent Raman scattering [3–6],
Raman and Brillouin lasers [7–9], optomechanics [10–12],
polariton chemistry [13,14], and room-temperature vibron-
mediated Bose-Einstein condensation [15,16].

The first description of phenomena associated with this
interaction was based on the formalism of absorption and
emission of quanta of nuclear vibrations, e.g., acoustical or
optical phonons. These absorption and emission processes
take place during interaction of the incident field with the
electronic degrees of freedom [3,17], which parametrically
interact with nuclear vibrational degrees of freedom. De-
velopments of theory of open quantum system [18–21] and
solid-state theory [22–24] enabled us to gain a more deep
understanding of these phenomena. Namely, in the case when
the external field interacts with electronic degrees of freedom
only (which takes place for Raman-active molecules), the
energy of the dipole moment excited by the coherent field
results in a shift of nuclei from their equilibrium positions and
their subsequent oscillations [25]. Such interaction between
electronic and nuclear degrees of freedom can be described by
the Fröhlich [22–24] or Holstein-Tavis [13,14,26,27] Hamil-
tonian. The latter describes the effective shift of the transition
frequency of the electronic degree of freedom proportional
to the amplitude (generally, depending on time) of nuclear

vibrations [25]. This interaction Hamiltonian allowed us to
describe spontaneous Raman scattering [25], Raman lasers
[28], surface-enhanced Raman scattering (SERS) [29] and
formation of third-order nonlinear susceptibility produced by
nuclear vibrations [28].

Recently, the systems with strong coupling between elec-
tronic degrees of freedom, e.g., exciton, and nuclei vibration
degrees of freedom, e.g., optical phonons or vibrons, have
been actively investigated [30–32]. The interaction between
excitons and vibrons can be described by the Fröhlich con-
stant g of interaction [25,28,33] or, alternatively, Huang-Rhys
factor α = g/ωv [13,14,26,27]. The large value of the Huang-
Rhys factor, α � 10, is achieved in organic materials for
high-frequency vibrational modes [30–32].

To take into account dissipation processes which inevitably
are present in any real molecules, modern theories describe
the dynamics of coupled electronic and nuclear degrees of
freedom excited by external field in terms of master equa-
tion for the density matrix [34]. When reservoir degrees of
freedom are eliminated in the Born-Markov approximation,
such a master equation has the Lindblad form [35,36]. Be-
sides Hermitian interactions, it takes into account dissipation
processes. Generally, to correctly describes the dynamics
of open quantum system with the strong coupling between
subsystems, it is necessary to find eigenstates of the interact-
ing subsystems [37,38] and then consider relaxation-induced
transition between these eigenstates. This approach is called
global approach to the master equation for the density matrix
[37,38]. It is applied when the distances between eigenstates
are larger than the dissipation rates [39] which is fulfilled at
least in the case of strong interaction between subsystems of
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an open quantum system [37]. In the opposite case one can
use the local approach which treats relaxation of interacting
subsystems independently [40].

Recently, the dynamics of excitons strongly interacting
with vibrons have been investigated in the context of phonon
lasers [33,41–43], although in the local approach for the Lind-
blad master equation for the density matrix, or, with applying
mean-field theory [28]. In such problems, the attention has
been paid to the stationary state of the system. The interest is
also of transient dynamics of strongly coupled exciton-vibron
systems. Nontrivial temporal dynamics manifest in a wide
variety of systems with strong coupling between electronic
and vibrational degrees of freedom, e.g., in a lattice with
strong coupling between Bloch electrons and vibrational de-
grees of freedom [44], in the problem of Floquet engineering
of molecules strongly coupled with phonons [45], and in the
case when small lattice polarons are driven by a strong ex-
ternal electric field [46]. Transient oscillations arising from
the Jaynes-Cummings interaction can be manifested when
the molecule or quantum dot with strong coupling between
electronic and nuclei vibration degrees of freedom is placed
in a resonator [47].

Here, we consider the transient dynamics of a molecule
with strongly coupled vibron and exciton driven by a weak
monochromatic wave, without the resonator and additional
modulation of a driving signal. We demonstrate that strong
exciton-vibron coupling, by itself, can result in nontrivial
transient dynamics. We solve the Lindblad master equations in
the global approach using eigenstates of the Hamiltonian of
strongly coupled excitons and vibrons. We show that the tran-
sient dynamics of the system can be divided into three stages.
In the first stage, oscillations of the polarization at the exciton
eigenfrequency collapse due to the transition to the set of
shifted Fock states of vibrons. In the second stage, revivals of
these oscillations appear. At the final stage, collapses and re-
vivals dissipates. We give theoretical estimates for the collapse
and revival times and find the dependence of this time on the
interaction constant between the vibron and exciton and the
frequency of the vibron. We demonstrate that these collapses
and revivals lead to the radiation spectrum exhibits a series
of peaks near the exciton transition frequency with a distance
equal to vibron frequency.

II. THE MODEL

For simplicity, we assume that the exciton corresponding to
the excitation of an electron-hole pair interacts with one eigen-
mode of oscillations of the nuclei, hereinafter, vibron. Such
a situation is realized, e.g., in semiconductor quantum dots
[48–52] and organic molecules [53–55]. Among the electronic
states, we consider one state in the valence band |g〉, which we
will call the ground state, and one state in the conduction band
|e〉, which we will call the excited state. We denote the exci-
ton eigenfrequency as ωσ . Such a two-level approximation is
valid, in particular, when the excited state presents a group of
closely lying levels and relaxation between the excited levels
is high [56]. This is the case for some organic materials, e.g.,
MeLPPP [15,16]. If we suppose that the energy of the ground
state is zero, then the exciton Hamiltonian takes the form
h̄ωσ |e〉〈e|. Furthermore, we introduce operators of transitions

from the excited state |e〉 to the ground state |g〉, σ̂ = |g〉〈e|
and operator of inverse transition, σ̂ † = |e〉〈g|. In such an
approximation, the exciton Hamiltonian can be written as
h̄ωσ σ̂ †σ̂ . The operators σ̂ and σ̂ † satisfy the commutation
relation [σ̂ †, σ̂ ] = σ̂z, where the operator σ̂z is the operator
of the difference between the populations of the excited and
ground states. Note that the mean value of the operator σ̂

multiplied by the matrix element of the dipole moment deg and
molecular concentration gives molecular polarization. Thus,
the expected value of the operator σ̂ can be called dimension-
less polarization.

We also consider one vibrational mode of nuclei in the
harmonic approximation. In this case, the Hamiltonian can be
represented as h̄ωvb̂†b̂, where ωv is the eigenfrequency of the
vibron, and b̂† and b̂ are the creation and annihilation opera-
tors of vibrons satisfying the commutation relation [b̂, b̂†] =
1̂. The interaction between the electronic and vibrational
subsystems of molecules, i.e., the exciton and the vibron,
can be represented in the form of the Fröhlich Hamiltonian
σ †σ (b̂† + b̂) [14,26,34], where g is the interaction constant.
The operator b̂† + b̂ is the nuclear displacement amplitude
operator, and the operator σ̂ †σ̂ is the population operator of
the excited state of the exciton.

The Hamiltonian of the system has the form

Ĥmol = h̄ωσ σ̂ †σ̂ + h̄ωvb̂†b̂ + h̄gσ̂ †σ̂ (b̂† + b̂). (1)

We consider coherent pumping of exciton by a monochro-
matic electromagnetic (EM) wave. The EM wave is described
in the classical approximation. In the dipole and rotating-wave
approximations, the interaction Hamiltonian has the form

Ĥmol−field = h̄�

2
(σ̂eiωt + σ̂ †e−iωt ), (2)

where ω is the EM field frequency, and � is the Rabi interac-
tion constant with the exciton dipole moment:

� = −degE(r)

h̄
. (3)

Here deg is the transition matrix element between states |e〉 and
|g〉, E(r) is the electric-field amplitude at the exciton location
(we suppose that the length of exciton localization is much
smaller than the EM wavelength). The total Hamiltonian of
the system reads

Ĥ = h̄ωσ σ̂ †σ̂ + h̄ωvb̂†b̂ + h̄gσ̂ †σ̂ (b̂† + b̂)

+ h̄�

2
(σ̂eiωt + σ̂ †e−iωt ). (4)

To find an eigenstate, we note that the molecular Hamilto-
nian can be rewritten in the form

Ĥmol = h̄ωσ (1 − α2)σ̂ †σ̂ + h̄ωv
ˆ̃b† ˆ̃b, (5)

where

ˆ̃b = b̂ + ασ̂ †σ̂ , α = g

ωv
(6)

is the shifted annihilation operator of vibrons. The eigenstates
of the Hamiltonian (5) have the form

|g, n〉, ωgn = ωv(n + 1/2), n = 0, 1, . . . , (7)

|e, ñα〉, ωeñ = ωσ (1−α2) + ωv(ñ + 1/2), ñ = 0, 1, . . . ,

(8)
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where we introduce the shifted Fock state [34,57] via the
displacement operator D̂(α) = exp(αb̂† − α∗b̂):

|ñα〉 = D̂(α)|n〉. (9)
The matrix elements of expansion of the shifted Fock states
over the Fock state are well known [57,58]:

〈n0|ñα〉 = (−α∗)ñα−n0

√
n0!

ñα!
L(ñα−n0 )

n0
(|α|2)e−|α|2/2,

when ñα � n0,

〈n0|ñα〉 = (α∗)n0−ñα

√
ñα!

n0!
L(n0−ñα )

ñα
(| − α|2)e−|−α|2/2,

when ñα < n0, (10)
and are related to the Frank-Condon factors [34]. Here Ln

m are
associated Laguerre polynomials.

To describe relaxation processes, we use the Lindblad
equation for the density matrix [20,59,60] in the global ap-
proach [38,40]. It can be derived from the von Neumann
equation for the density matrix of the system and environment
by eliminating environmental variables in the Born-Markov
approximation [20,59,60]. The Lindblad equation has the
form

˙̂ρ = − i

h̄
[Ĥ , ρ̂] + Ldiss[ρ̂] + Lpump[ρ̂] + Ldeph[ρ̂] + Lv[ρ̂].

(11)
The first term on the right side of Eq. (11) describes the Her-
mitian dynamics of the system. The rest of the terms describe
the relaxation processes that occur when the system interacts
with the environment (external reservoirs).

For further consideration, it is convenient to expand the
density matrix over the eigenstates (7), (8):

ρ̂ = ρ̂gg + ρ̂eg + ρ̂ge + ρ̂ee, (12)
where

ρ̂gg =
∑
n1,n2

ρg,n1,g,n2 |g, n1〉〈g, n2|,

ρ̂eg =
∑

ñ1α,n2

ρe,ñ1α,g,n2 |e, ñ1α〉〈g, n2|,

ρ̂ge =
∑

n1,ñ2α

ρg,n1,e,ñ2α
|g, n1〉〈e, ñ2α|,

ρ̂ee =
∑

ñ1α,ñ2α

ρe,ñ1α,e,ñ2α
|e, ñ1α〉〈e, ñ2α|, (13)

where n is the number of vibrons in the ground state, and ñ is
the number of “shifted vibrons” in the excited state.

The Lindblad superoperators describing the relaxation of
vibrons have the form

Lv[ρ̂] = Lv[ρ̂gg] + Lv[ρ̂ee],

Lv[ρ̂gg] = γv(1 + nv)

2
(2b̂ρ̂ggb̂† − b̂†b̂ρ̂gg − ρ̂ggb̂†b̂)

+ γvnv

2
(2b̂†ρ̂ggb̂ − b̂b̂†ρ̂gg − ρ̂ggb̂b̂†,

Lv[ρ̂ee] = γv(1 + nv)

2
(2 ˆ̃bρ̂ee

ˆ̃b† − ˆ̃b† ˆ̃bρ̂ee − ρ̂ee
ˆ̃b† ˆ̃b)

+ γvnv

2
(2 ˆ̃b†ρ̂ee

ˆ̃b − ˆ̃b ˆ̃b†ρ̂ee − ρ̂ee
ˆ̃b ˆ̃b†). (14)

The term Lv[ρgg] describes the transitions between the levels
|e, ñ〉 with different ñ. The term Lv[ρee] describes the tran-
sitions between the levels |g, n〉. Here nv = [exp(h̄ωv/kT ) −
1]−1 is the mean number of quanta in the reservoir taken
at the phonon frequency. The ratio of transition rates with
energy increasing to energy lowering is γvnv/γv(1 + nv) =
exp(−h̄ωv/kT ), i.e., satisfies the Kubo-Martin-Schwinger
condition [20].

The Lindblad superoperator describing phase destruction
(dephasing) of excitons is

Ldeph[ρ̂] = γdeph

4
(σ̂zρ̂σ̂z − ρ̂ ). (15)

The Lindblad superoperator, which describes the relaxation of
the exciton energy, takes the form

Ldiss[ρ̂] = γσz

2

∑
�ω

(2 ˆ̃σ�ωρ̂ ˆ̃σ †
�ω − ˆ̃σ †

�ω
ˆ̃σ�ωρ̂ − ρ̂ ˆ̃σ †

�ω
ˆ̃σ ), (16)

where �ω = ωeñ − ωgn and ˆ̃σ�ω = 〈g, n|σ̂ |e, ñ〉|g, n〉〈e, ñ|.
The Lindblad superoperator describing incoherent exciton
pumping is

Lpump[ρ̂] = γp

2

∑
�ω

(2 ˆ̃σ †
�ωρ̂ ˆ̃σ�ω − ˆ̃σ�ω

ˆ̃σ †
�ωρ̂ − ρ̂ ˆ̃σ�ω

ˆ̃σ †).

(17)
In Appendix A we present the explicit form of equations for
the density-matrix elements.

Furthermore, we investigate the dynamics and the spec-
trum of the expected value of polarization operator σ (t ) =
Tr(ρ̂(t )σ̂ ), i.e., the coherent part of the polarization. In
Appendix B we show that, in the case when a large number
N of molecules occupy subwavelength volume, the radiation
spectrum is proportional to the Fourier spectrum of the co-
herent part of the polarization σ (t ) multiplied by N2: S �
N2| ∫ t

0 dτ 〈σ̂ (τ )〉 exp(−iωτ )|2.

III. THE DYNAMICS OF MOLECULAR POLARIZATION

A. Continuous-wave pumping

First, we consider the case when only a coherent ex-
ternal field excites the system, and there is no incoherent
pumping, i.e., γp = 0. We find the dynamics of the system
by numerical simulations of the master equation (11). We
use the parameters typical for organic MeLPPP molecules
[15,16], namely, ωσ = 2.4 eV, ωv = 0.2 eV, γdeph = 5 ×
10−2 eV, γσz = 10−6 eV. We investigate the changing of
the system dynamics with the increase of the Fröhlich
interaction constant g by passing the value typical for
MeLPPP, g � 0.5ωv. As an initial condition, we consider
the ground state of electronic subsystems and the ther-
mal state of the vibron subsystem, ρ̂(0) = |g〉〈g| ⊗ (1 −
e−h̄ωv/kT )

∑
n e−h̄ωv/kT |n〉〈n|. In addition, we consider the case

of large detuning, γdeph, γσz ,� � |ω − ωσ | � ωσ , ω, which
is typical for the nonresonant Raman scattering. In the case
when there is no interaction between vibrons and excitons
(g = 0), Eq. (11) describes the dynamics of excitons driven
by monochromatic field. In such a case, the dynamics of
molecular polarization, σ (t ) = Tr(ρ̂(t )σ̂ ), can be divided [59]
into damped Rabi oscillations at the exciton eigenfrequency
and persistent driven oscillations at the frequency of the
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FIG. 1. (a) The temporal dependence of |σ (t )| = |Tr(ρ̂(t )σ̂ )|,
γσz = 1 × 10−3 eV, γdeph = 5 × 10−2 eV, γv = 2 × 10−4 eV, � =
10−3 eV, ωfield = 3.5 eV, ωσ = 2.4 eV, ωv = 0.2 eV, g = 0 eV,
ñ = 10−3. (b) Spectrum of oscillations of σ (t ).

external field (Rayleigh response). These dynamics are pre-
sented in Fig. 1(a). The spectrum of the oscillations is the
sum of Lorentzian line at the exciton eigenfrequency with the
width equal to exciton transverse relaxation rates, and the δ

function corresponding to Rayleigh response, see Fig. 1(b).
The number of phonons remains unchanged, and there is no
displacement of nuclei (b = 0). Note that the mean value of
operator σ̂ is proportional to the irradiated field [60], thus, the
spectrum of oscillations 〈σ̂ 〉 is proportional to the spectrum of
irradiated field.

With the increase of g, dipole moment also exhibits Rabi
oscillations but with beating at vibron frequency, see Fig. 2(a).
The reason of this beating is that the electric field by itself
results in oscillations between electronic ground and excited
states. Because direct product of Fock vibron state and ex-
cited electronic state is not the molecular eigenstate, the
system begins to oscillate at the eigenfrequencies described
by Eq. (8). The difference between these eigenfrequencies is
vibron eigenfrequency ωv. The amplitude of vibrons oscillates
at vibron eigenfrequency ωv. In the spectrum, the multiple
peaks near the exciton transition frequency ωσ appear, see
Fig. 2(b) (in this and subsequent figures, we do not show the
δ function of Rayleigh response).

Further increasing of the coupling constant between
phonons and the dipole moment g results in intensifying of
beating of the dipole moment.

When the coupling constant between exciton and vibron
g becomes larger than the vibron eigenfrequency ωv, beating
of exciton dipole moment transforms to repeating collapses
and revivals, see Fig. 3(a). The spectrum of the system is the
sum of the Rayleigh δ peak and multiple peaks at the exciton
transition frequency, see Fig. 3(b).

FIG. 2. (a) The temporal dependence of |σ (t )| = |Tr(ρ̂(t )σ̂ )|,
γσz = 1 × 10−3 eV, γdeph = 5 × 10−2 eV, γv = 2 × 10−4 eV, � =
10−3 eV, ωfield = 3.5 eV, ωσ = 2.4 eV, ωv = 0.2 eV, g = 0.1 eV,
ñ = 10−3. (b) Spectrum of oscillations of σ (t ).

FIG. 3. (a) The temporal dependence of |σ (t )| =
|Tr(ρ̂(t )σ̂ )|, γσz = 1 × 10−3 eV, γdeph = 5 × 10−2 eV,
γv = 2 × 10−4 eV, � = 10−3 eV, ωfield = 3.5 eV, ωσ = 2.4 eV,
ωv = 0.2 eV, g = 0.2 eV, ñ = 10−3. (b) Spectrum of oscillations of
σ (t ).

In all of these cases, beating of oscillations and collapses
and revivals dissipate with the exciton dephasing rate. We
verify this by changing dephasing rate and observing that
beating and collapses and revivals relax with this rate.

We verify that, for the parameters which we use, |ωσ −
ω| � �, the polarization σ (t ) linearly depends on the am-
plitude of the external field. Thus, the appearance of the
collapses and revivals is the consequence of the strong
exciton-vibron coupling.

In the Appendix C we show that, without the rotating-wave
approximation, the system dynamics and spectrum do not
change qualitatively.

B. Pulse pumping

Let us now consider the case when in addition to the coher-
ent pump there is short pump pulse. We suppose that the rate
of incoherent pumping is

γp = γ 0
p , 0 � t � t0, γp = 0, t � t0. (18)

The dynamics of the molecule polarization and its spec-
trum are shown in Figs. 4(a) and 4(b). During the pump pulse,
the population of the excited state increases which results in
saturation of excited-state population, see Fig. 4(c). After the
pump pulse is turned off, population inversion gets smaller

FIG. 4. (a) Temporal dynamics of |σ (t )|, γσz = 10−3 eV, γdeph =
5 × 10−2 eV, γv = 2 × 10−4 eV, � = 10−3 eV, ωfield = 3.5 eV,
ωσ = 2.4 eV, ωv = 0.2 eV, g = 0.1 eV, t0 = 2/γD, ñ = 10−3

(b) Spectrum of oscillation of σ (t ). (c) Temporal dynamics of
σz(t ) = Tr(ρ̂(t )σ̂z ).
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FIG. 5. Temporal dynamics of |σ (t )|, � = 10−3 eV, ωfield =
3.5 eV, ωσ = 2.4 eV, ωv = 0.2 eV, g = 0.2 eV.

and the polarization starts to grow. During these processes, the
polarization dynamics exhibit collapses and revivals similar to
the case without of pulse pump. The only difference is during
saturation the polarization amplitude decreases and amplitude
of oscillations decreases too.

IV. ESTIMATION OF THE COLLAPSE
AND REVIVALS TIMES

To estimate collapse and revival times, we first demonstrate
that it is Hermitian part of the system dynamics which is
responsible for the collapses and revivals. To do that, we write
the Schrödinger equation for the wave function of excitons
and vibrons, which has the form:

ih̄
∂

∂t
|ψ〉 = ˆ̃H |ψ〉, (19)

where we expand the wave function over the eigenstates of
Ĥmol:

|ψ〉 =
∑

n

Cg,n(t )|g, n〉 +
∑

ñα

Ce,ñα
(t )|e, ñα〉. (20)

The system Hamiltonian is determined by Eq. (4).
The dynamics of mean value of σ̂ obtained from numerical

simulations of Eqs. (19)–(20) are shown in Fig. 5. It is seen
that Hermitian dynamics quantitatively reproduce the dynam-
ics obtained from the Lindblad equation (11) at times smaller
than inverse dephasing rate γσ . Namely, there is the collapses
in the dynamics of molecule polarization and the revivals
that occur at the same times as they occur when modeling
the Lindblad equation (11). Thus, we can conclude that it
is the Hermitian part of the dynamics that is responsible for
formation of collapses and revivals and neglect dissipation
processes to estimate collapse and revival times.

To estimate the collapse time, we use the following reason-
ing: The eigenstates of the system are described by Eqs. (7)
and (8). Consider the case when the system is initially in
the state |g, 0〉. The electric field results in transitions to the
state |e, 0〉. This state is not an eigenstate of the system. As
a result, the projection of the system state to the eigenstate,
say, |e, ñα〉, will oscillate with the frequency of this eigen-
state and will have the amplitude 〈ñα|0〉. In Fig. 6, we show
the dependence of this matrix element in two cases: weak
g/ωv � 1 and strong g/ωv � 1 exciton-vibron coupling. We
see that the higher the value g/ωv, the smoother the function
〈ñα|0〉. Thus, in the case of strong exciton-vibron coupling,

FIG. 6. Dependence of the matrix element 〈ñ|n〉 on ñ for n = 0.

after the transition to the state |e, 0〉, one has simultaneous ex-
citations of many system eigenstates |e, ñα〉. The projections
of the system state to these eigenstates will oscillate with close
eigenfrequencies ωσ (1 − α2) + ωv(ñα + 1/2). The difference
between these eigenfrequencies, ωv, is much less than the
eigenfrequencies themselves.

Thus, we can consider the shifted Fock states as an ef-
fective reservoir for the state |e, 0〉 which the external field
excites. Indeed, an analogous situation takes place if we con-
sider one initially excited harmonic oscillator interacting with
an interaction constant g with a set of a large number of
harmonic oscillators with difference �ω between their eigen-
frequencies. The last will play the role of effective reservoir
and will result in exponential relaxation of the oscillator en-
ergy with the rate πg2/�ω [61].

As a result, we can estimate the collapse time as an inverse
rate of relaxation of oscillations to the reservoir of system
eigenstates:

tc � ωv

πg2|M(α)|2 ∼ (gα|M(α)|2)−1, (21)

where M(α) = max〈0|ñα〉 is the characteristic value of matrix
elements of the transition described by Eq. (10).

To estimate the revival time, we should take into account
that the effective reservoir of shifted vibron states has a dis-
crete spectrum. It is known that, in such a case, the excitation,
initially stored in the system and subsequently transferred into
the reservoir, will return to the system after time 2π/�ω [62].
Thus, in the case considered, the revival time can be estimated
as 2π/ωv.

FIG. 7. The theoretical dependence of the collapse time on the
Fröhlich constant g in a logarithmic scale, � = 10−3 eV, ωfield =
3.5 eV, ωσ = 2.4 eV, ωv = 0.2 eV.
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Figure 7 shows the dependence of the time of the first
collapse as a function of the Fröhlich constant of interaction
obtained from a numerical simulation and from analytical
estimates. It is seen good agreement between them.

V. CONCLUSION

In this work, we consider the temporal dynamics of the
molecule which electronic degrees of freedom strongly cou-
pled with degrees of freedom of nuclei vibrations. We show
that when the coupling constant is larger than the vibron fre-
quency, transient oscillations of polarization exhibit collapses.
The reason for the collapses is connected with structure of the
eigenstates of the system. The eigenstates of the system can
be divided into two subsets. The first one is the direct product
of the ground electronic state and Fock states of nuclei vibra-
tions. The second subset is the direct product of the excited
electronic state and shifted Fock states of nuclei vibrations.
The action of external monochromatic field on the molecular
dipole moment by itself results in Rabi cycle between ground
and excited electronic states during which the system changes
the electronic state but does not change the vibrational state
because we consider Raman-active molecules. As a result,
after half of a Rabi cycle, starting from, e.g., the ground elec-
tronic state and the Fock vibrational state, the system occurs at

an excited electronic state and still the Fock vibrational state.
This state is not an eigenstate and the system begins to transit
to the eigenstates of the second subset, e.g., to an excited
electronic state and a shifted vibrational state. If the time of
this transition is smaller than both inverse dephasing rate and
inverse vibrational frequency, the collapse of the transition
oscillations appear. Due to the frequency difference between
the Fock vibrational states and shifted Fock vibrational states
are equal to each other, the revival of transient oscillations
appears. These collapses and revivals proceed until transient
oscillations dissipate due to dephasing. They manifest in the
spectrum of polarization oscillations as splitting of the spec-
tral line in the vicinity of electronic transition frequency.
Namely, the spectral line splits into multiple lines with width
equal to the inverse collapse time and distance between them
equals the vibron frequency. The obtained results provides an
additional tool for measurement of the vibron frequency and
constant of interaction between electronic and nuclei vibra-
tional degrees of freedom.
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APPENDIX A: EQUATIONS FOR THE DENSITY MATRIX ELEMENTS

Using Eq. (11), we can write the equations for each matrix element (12) of the density matrix ρ̂. They have the form

ρ̇e,ñ1α,e,ñ2α
= iωv(ñ1α − ñ2α )ρe,ñ1α,e,ñ2α

− i
�

2
e−iωt

∑
n1

〈ñ1α|n1〉ρg,n1,e,ñ2α
+ i

�

2
eiωt

∑
n2

〈n2|ñ2α〉ρe,ñ1α,g,n2 (A1)

− γσzρe,ñ1α,e,ñ2α
+ γp

∑
n1,n2

〈n1|ñ1α〉〈n2|ñ2α〉ρg,n1,g,n2 (A2)

+ γv(ñ0 + 1)

2
(2

√
(ñ1α + 1)(ñ2α + 1)ρe,ñ1α+1,e,ñ2α+1 − (ñ1α + ñ2α )ρe,ñ1α,e,ñ2α

) (A3)

+ γvñ0

2
(2

√
ñ1α ñα2ρe,ñ1α−1,e,ñ2α−1 − (ñ1α + ñ2α + 2)ρe,ñ1α,e,ñ2α

), (A4)

ρ̇g,n,e,ñα
= iωσρg,n,e,ñα

+ iωv(ñα − n)ρg,n,e,ñα
− i

�

2
eiωt

∑
ñ1α

〈n|ñ1α〉ρe,ñ1α,e,ñα
+ i

�

2
eiωt

∑
n2α

〈n2|ñα〉ρg,n,g,n2

− γp + γσz + γdeph

2
ρg,n,e,ñα

, (A5)

ρ̇e,ñα,g,n = −iωσρe,ñα,g,n + iωv(n − ñα )ρe,ñα,g,n − i
�

2
e−iωt

∑
n1

〈ñα|n1〉ρg,n1,g,n + i
�

2
e−iωt

∑
ñ2α

〈ñ2α|n〉ρe,ñα,e,ñ2α

− γp + γσz + γdeph

2
ρe,ñα,g,n, (A6)

ρ̇g,n1,g,n2 = iωv(n1 − n2)ρg,n1,g,n2 − i
�

2
eiωt

∑
ñ1α

〈n1|ñ1α〉ρe,ñ1α,g,n2 + i
�

2
e−iωt

∑
ñ2α

〈ñ2α|n2〉ρg,n1,e,ñ2α

− γpρg,n1,g,n2 + γσz

∑
ñ1α,ñ2α

〈n1|ñ1α〉〈n2|ñ2α〉ρe,ñ1α,e,ñ2α
+ γv(ñ0 + 1)

2
(2

√
(n1 + 1)(n2 + 1)ρg,n1+1,g,n2+1

− (n1 + n2)ρg,n1,g,n2 ) + γvñ0

2
(2

√
n1n2ρg,n1−1,g,n2−1 − (n1 + n2 + 2)ρg,n1,g,n2 ). (A7)
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APPENDIX B: THE RADIATION SPECTRUM

In this Appendix, we derive the general expression for the radiation spectrum.
The radiation spectrum can be calculated (see Ref. [63]) as the number of radiated photons, 〈n(ω,μ)〉 for each free-space

mode with wave vector k and polarization μ and multiply them by h̄ωk. To calculate the number of irradiated photons, we
consider an ensemble of noninteracting molecules, each of which interacts with the external monochromatic wave and, in
addition, with the free-space modes. The Hamiltonian of such system has the form

Ĥ =
∑
k,μ

h̄ωk,μâ†
k,μâk,μ +

∑
k,μ, j

�k,μ, j (â
†
k,μσ̂ j + âk,μσ̂ j ) +

∑
j

Ĥmol, j +
∑

j

Ĥmol-field, j, (B1)

where �k,μ, j = −degEk,μ(r j )/h̄ is the Rabi interaction constant between the molecular dipole moment and the electric field of
the free-pace mode with wave vector k and polarization μ, Ek,μ(r j ) = √

2π h̄ωk/V exp(ikr j )ek,μ (V is the quantization volume,
ek,μ is the polarization vector). The Hamiltonians Ĥmol, j and Ĥmol-field, j for each jth molecule are given by Eqs. (1) and (2).

We can solve this problem into two steps that are used for calculating the spectrum (see, e.g., Ref. [64]). In the first step,
we exclude free-space mode variables using the Born-Markov approximation. At this step, for each jth molecule we obtain the
Lindblad master equation (11).

In the second step, supposing that the dynamics of each molecule is determined by the Lindblad superoperator, we find the
number of irradiated photons using Heisenberg equation of motion. The Heisenberg equation for the operators âk,μ has the form

dâk,μ

dt
= i

h̄
[Ĥ, âk,μ] = −iωk,μâk,μ − i

∑
j

�k,μ, j σ̂ j (t ). (B2)

Supposing that the dynamics of the operator σ̂ j (t ) is known from Eq. (11), we can formally integrate Eq. (B2) and obtain

âk,μ(t ) = âk,μ(0) exp[−iωk,μt] − i
∑

j

�k,μ, j

∫ t

0
dτ σ̂ j (τ ) exp[−iωk,μ(t − τ )]. (B3)

The first term is the initial value of the operator â†
k,μ which determines the initial number of photons. The second term is

responsible for the irradiated photons which we are interested in. Using the second part of the last equation, we can write the
following equation for the number of irradiated photons:

nk,μ(t ) =
∑
j1, j2

�∗
k,μ, j2�k,μ, j1

∫ t

0
dτ2

∫ t

0
dτ1〈σ̂ †

j2
(τ2)σ̂ j1 (τ1) exp[−iω̂k,μ(τ2 − τ1)]〉. (B4)

This equation can be rewritten if we divide the total response of molecule polarization σ̂ into two parts. The first one is
the coherent response on the external field, 〈σ̂ 〉. The second part describes quantum fluctuations, �σ̂ = σ̂ − 〈σ̂ 〉, 〈�σ̂ 〉 = 0.
Substituting σ̂ = 〈σ̂ 〉 + �σ̂ into the Eq. (B4), we obtain

nk,μ(t ) =
∑
j1, j2

�∗
k,μ, j2�k,μ, j1

∫ t

0
dτ2

∫ t

0
dτ1

〈
σ̂

†
j2

(τ2)
〉〈
σ̂ j1 (τ1)

〉
exp[−iω̂k,μ(τ2 − τ1)] (B5)

+
∑
j1, j2

�∗
k,μ, j2�k,μ, j1

∫ t

0
dτ2

∫ t

0
dτ1

〈
�σ̂

†
j2

(τ2)�σ̂ j1 (τ1)
〉
exp[−iω̂k,μ(τ2 − τ1)]

=
∣∣∣∣∣∣
∑

j

�k,μ, j

∫ t

0
dτ 〈σ̂ j (τ )〉 exp(−iω̂k,μτ )

∣∣∣∣∣∣
2

+
∑

j

|�k,μ, j |2
∫ t

0
dτ2

∫ t

0
dτ1

〈
�σ̂

†
j (τ2)�σ̂ j (τ1)

〉
exp[−iω̂k,μ(τ2 − τ1)]. (B6)

At the last step we use that, for noninteracting and initially non-correlated atoms, 〈�σ̂ j1�σ̂ j2〉 = 〈�σ̂ j1〉〈�σ̂ j2〉 = 0, j1 �= j2. As
a result, we have

S(ω) = Scoh(ω) + Sfluct (ω), (B7)

where the coherent part is

Scoh(ω) =
∣∣∣∣∣∣
∑

j

�k,μ, j

∫ t

0
dτ 〈σ̂ j (τ )〉 exp(−iω̂k,μτ )

∣∣∣∣∣∣
2

, (B8)
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FIG. 8. (a) The temporal dependence of |σ (t )| = |Tr(ρ̂(t )σ̂ )| calculated without the rotating-wave approximation, γσz = 1 × 10−3 eV,
γdeph = 5 × 10−2 eV, γv = 2 × 10−4 eV, � = 10−3 eV, ωfield = 3.5 eV, ωσ = 2.4 eV, ωv = 0.2 eV, g = 0.1 eV, ñ = 10−3. (b) Spectrum of
oscillations of σ (t ).

and the fluctuation part is

Sfluct (ω) = h̄ω
∑

j

|�k,μ, j |2
∫ t

0
dτ2

∫ t

0
dτ1〈�σ̂

†
j (τ2)�σ̂ j (τ1)〉 exp[−iω̂k,μ(τ2 − τ1)]. (B9)

Suppose that the sample of the molecules are in subwavelength volume such that �k,μ, j = exp(ikr j )�0 � �0. The first term is
proportional to the square of number of molecules, N2, while the second one is proportional to the number of molecules, N . In
the case of large number of molecules, the coherent part of the spectrum is much larger than the fluctuation part, Scoh � Sfluct.

Thus, in the case of noninteracting molecules in subwavelength volume, the radiation spectrum can be calculated using the
response of one molecule as follows:

S(ω) � N2|�0|2
∣∣∣∣
∫ t

0
dτ 〈σ̂ (τ )〉 exp(−iωk,μτ )

∣∣∣∣
2

. (B10)

APPENDIX C: THE INFLUENCE OF THE ROTATING-WAVE APPROXIMATION ON THE RADIATION SPECTRUM

In this Appendix, we calculate the system dynamics by taking into account non-RWA terms that have been neglected in the
main text. Namely, we assume that the Hamiltonian Ĥmol-field of molecule-field interaction has the form

Ĥmol-field = �̂(σ̂ + σ̂ †)[exp (−iωt ) + exp (iωt )]. (C1)

Figures 8(a) and 8(b) show the dynamics of σ (t ) and the spectrum. It is seen that, in the dynamics, high-frequency oscillations
appear. However, the spectrum in the frequency range corresponding to collapses and revivals does not change significantly
[cf. Figs. 8(b) and 2(b)]. This is because the terms that oscillate at the frequencies ωσ + ω do not influence on the frequency
range near ωσ where collapses and revivals manifest. Thus, the predicted phenomenon is present without the rotating-wave
approximation.
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