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Linear and nonlinear edge and corner states in graphenelike moiré lattices
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Graphene structures play a fundamental role in the exploration of edge states, topological insulators, and
electronic transport applications. In this paper, we propose a graphenelike moiré photonic lattice formed by
superimposing two identical triangle sublattices with an antiphase and a specific twist angle and study the edge
and corner states of such a lattice in linear and nonlinear regimes. The graphenelike moiré lattice is truncated
into three types of edges in analogy with those of graphene. Through band-structure calculations, we find that
only the zigzag edge supports edge states, while the other two edges do not exhibit such states. A truncated
graphenelike moiré photonic lattice with zigzag edges is constructed by utilizing the laser-writing technique.
We observe the complex edge states and corner states in the linear regime at the zigzag edge. Furthermore, by
introducing nonlinearity, the optical localization occurs at the edges and corners. Our research provides a route
for exploring topological edge states and nonlinear edge solitons in coherent moiré photonic lattices and brings
possibilities for subsequent technological development in electronic or optoelectronic devices.

DOI: 10.1103/PhysRevB.108.014310

I. INTRODUCTION

Photonic lattices are waveguide arrays that are realized
through artificially designed refractive index modulation. Ow-
ing to the mathematical similarity between the paraxial wave
equation of photonic lattices and the Schrödinger equation for
the evolution of the wave function in the quantum systems,
the spatial evolution of light in photonic lattices is analo-
gous to the temporal evolution of wave function in quantum
systems [1,2]. Photonic lattices can be utilized to explore
physical phenomena that are difficult to achieve or directly
observe in condensed physics and quantum systems [3–5].
Among the various physical phenomena, optical localization
is a significant research topic that holds great potential for
optical manipulation and transmission in photonic integrated
devices. In the past few decades, several techniques have been
employed to achieve optical localization in photonic lattices.
For example, introducing disorder into coupling or potentials
to mitigate dispersion can lead to Anderson localization [6,7];
Bloch oscillations can be observed by applying gradient trans-
verse or longitudinal potentials [8,9]. By carefully designing
the lattice structure to induce flat bands, optical localizations
can be achieved with specific excitations [10–12]. Under
nonlinear conditions, the potential energy distribution of the
photonic lattice will change, which will further affect the evo-
lution of probe light and produce many physical phenomena
[13–15]. Nonlinear effects can also be utilized to balance
discrete diffraction and realize nonlinear localization of light
beams, facilitating the formation of discrete solitons [16,17].
The aforementioned localization techniques confine energy
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within the bulk of photonic lattices. There is another widely
concerned optical localization that localizes the light at the
edges. In addition, photonic lattice systems have been widely
studied in rapidly developed topological photonics [18–20],
non-Hermitic optics [21,22], and synthetic dimensions [23].

Edge states play a crucial role in the design of future
electronic and optoelectronic devices by effectively control-
ling light propagation [24–26]. Edge states were predicted
to exist at the zigzag edges of graphene lattice, where
a topological phase transition with gap opening induces
topological edge states by breaking time-reversal symmetry
[27–30]. The advantages of edge states have spurred investi-
gations in topological photonic lattices, including topological
photonics, edge solitons, optical isolation, and bistability
[31,32]. In recent years, topological edge states and topo-
logical corner states have become fascinating frontiers of
research due to their robustness against disorder and their
ability to manipulate light propagation [33–35]. The intro-
duction of nonlinearity into topological edge states leads to
the formation of topological edge solitons, which can travel
along the edges while maintaining localized shapes without
broadening [36,37].

Moiré lattices, formed by the coherent superposition
of two or more mutually twisted periodic structures, have
emerged as a thriving research area in physics. Initially, moiré
lattices exhibited profound physical effects in condensed
matter physics, particularly in twisted graphene bilayers
[38–42]. They have been associated with the discovery of
unconventional superconductivity and ferroelectricity [43,44],
the quantum Hall effect [45], and edge transport phenomena
[46,47]. Moreover, moiré lattices have found applications
in manipulating ultracold atoms [48,49], creating gauge
potentials [50], and theoretical investigations of Bose-Einstein
condensates [51]. In the photonic lattice area, the counterpart
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of moiré lattices can be constructed by coherently superim-
posing periodic square or hexagonal lattices in photorefractive
materials based on weak light nonlinear effects. These moiré
lattices enable the transition between localization and
delocalization of bulk excitations by solely changing the twist
angle between the sublattices [52]. When Kerr nonlinearity
is taken into account, solitons have also been observed in
such moiré lattices [53]. The localization properties of moiré
lattices have an impact on the excitation of two-dimensional
quadratic multifrequency solitons [54]. Current research
focuses on the existence of linear and nonlinear light
localization at the edges and corners of truncated square
moiré lattices [55]. The significant role of graphene in the
edge localization and specific advantage of moiré photonic
lattices in optical localization indicate the importance of
studying edge states in hexagonal moiré structures.

In this paper, we propose a graphenelike moiré lattice
designed by superimposing two periodically rotated triangle
sublattices with out of phases. By using the tight-binding
approximation, we calculate the band structures of the moiré
lattice with zigzag, bearded, and armchair edges. The calcula-
tions reveal that only the zigzag edge supports an edge mode.
Further, the edge state and corner state in the triangle-shaped
graphenelike moiré lattice with zigzag edges are studied both
theoretically and experimentally. By utilizing the continuous
wave (CW) laser-writing technique, we observe distinctive
edge states and corner states under different excitations in
both the linear and nonlinear photonic moiré lattices. In the
linear regime, the edge and corner excitations are coupled into
the nearest waveguides that are encompassed by edge modes,
while the light energy is well localized in the excited waveg-
uides for the nonlinear regime. These findings contribute to
the understanding of topological edge states and nonlinear
edge solitons in coherent moiré photonic lattices.

II. MODEL AND PRINCIPLES

The coupled moiré lattices are composite structures com-
posed of two identical periodic sublattices interfering in the
x-y plane. The general expression for the coupled moiré lat-
tices can be written as

LM =
N−1∑
j,=0

Aei(k j ·r+θ+ϕ j ) +
N ,−1∑
j,=0

Aei(k j′ ·r−θ+ϕ j′ ), (1)

where A is the amplitude of light beam, ϕ j and ϕ j′ represent
the initial phase of two sublattices, N and N , are the number
of interference beams in the sublattice light field, and θ is
twisted angle. The wave vectors of two lattices are k j =
k0[cos( 2 jπ

N ), sin( 2 jπ
N )] and k j′ = k0[cos( j′2π

N ′ ), sin( j,2π

N ′ )], re-
spectively, where k0 = 2π/λ is the wave vector. The moiré
lattice in this paper is constructed by antiphase superposition
of two identical triangle sublattices with a twisted angle 2θ ;
the corresponding expression is

LM =
2∑

j=0

Aeik0[cos( 2 jπ
3 +θ )x+sin( 2 jπ

3 +θ )y]

+
2∑

j′=0

Aeiπ eik0[cos( 2 j′π
3 −θ )x+sin( 2 j′π

3 −θ )y], (2)

FIG. 1. Graphenelike moiré lattice structure and band structure.
(a) Schematic of periodic graphenelike moiré lattice superimposed
by two sublattices with the antiphase and a twist angle θ =
arctan

√
3/5. The structure in the red regular hexagon represents a

unit cell. The coupling coefficients between the intracell and intercell
waveguides are c1 and c2, respectively. (b) Band structure of the
infinite graphenelike moiré lattice, the black circles signify the Dirac
points. (c) Schematic image of a graphenelike moiré lattice with
zigzag edge truncated on two terminations of x direction. (d) Zigzag
edge band structure of graphenelike moiré lattice, red lines and black
lines indicate edge states and bulk states, respectively.

where N = N ′ = 3 and the initial phase of two sublattices
are ϕ j = 0 and ϕ j′ = π . Each triangle sublattice is formed
by the interference of three plane waves. The two triangular
sublattices coherently superimposed with the antiphase are
rotated in opposite directions, and the twist angle between
them is θ = arctan

√
3/5. The obtained photonic lattice field

is nondiffractive, and the periodicity remains as the twisted
angle satisfies θ = arctan

√
3

3 (1 − 2
C ), C is a integer within a

range of [2, +∞) [56]. Figure 1(a) depicts this moiré lattice
produced by two superimposed triangle sublattices. We can
see that this moiré lattice has a complex hexagonal struc-
ture which is similar to the graphene photonic lattice when
the three nearest components (marked by yellow circles) are
considered as a whole. Therefore, we name the lattice the
graphenelike moiré lattice. Each unit cell of the graphenelike
moiré photonic lattice consists of six lattice sites (A–F), as
marked in the red regular hexagon.

In the paraxial approximation, the propagation of the light
beam in the photonic lattice is described by the Schrödinger-
like equation

i
∂ψ (x, y, z)

∂z
= − 1

2k0
∇2ψ (x, y, z) − k0�n(x, y)

n0
ψ (x, y, z),

(3)

where ψ (x, y, z) is the electric field envelope of the probe
beam, z is the longitudinal propagation distance that plays
the role of time in the quantum mechanics Schrödinger equa-
tion, ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian in the transverse
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plane, k0 = 2n0π/λ0 is the wave number within the medium,
and n0 is the background refractive index of the medium. �n
is the linear refractive index change in a nonlinear photore-
fractive crystal, the photorefractive strontium barium niobite
(SBN) crystal is used in our experiment. When the nonlinear-
ity is considered, a nonlinear potential is added in Eq. (3) [15],
there is

i
∂ψ

∂z
=

[
− 1

2k0
∇2 − k0�nL(x, y)

n0
− k0�nNL(|ψ |2)

n0

]
ψ

= (K + VL + VNL)ψ, (4)

where K is kinetic energy term, VL is a linear potential energy
term related to �nL(x, y), and VNL is a nonlinear potential
energy term related to �nNL(|ψ |2). The refractive index vari-
ation can be written as �n(x, y) = �nL(x, y) + �nNL(|ψ |2).
Correspondingly, in the SBN crystal, the refractive index
change is written as �n(x, y) = − 1

2 n3
0γ33E0

1
1+IL+IP

[15]. The
parameters corresponding to the experiment are λ0=532 nm,
n0=2.35, γ33 is the electro-optic coefficient (γ33=280 pm/V),
and E0 is the bias field (E0=1.4 kv/cm) determining the
linear refractive index change �n, IL(x, y) represents the in-
tensity of the graphenelike moiré lattice. Ip is proportional
to |ψ (x, y, z)|2 determining the nonlinearity of system. We
let IP = γ |ψ (x, y, z)|2; γ = 0 indicates the lattice system is
linear while γ �= 0 indicates the lattice system is nonlinear.

The moiré photonic lattice is a two-dimensional discrete
waveguide array with waveguide spacing around 30 microns
and the wavelength of the probe beam is 532 nm. Each waveg-
uide in the lattice supports a single bound mode, energy is
tightly confined to the waveguides, so the tight-binding ap-
proximation is employed, in which only the coupling between
the nearest-neighboring waveguides is considered. Hence, the
diffraction of light in this discrete model obeys the discrete
Schrödinger equation

i∂zψn(z) =
∑

j

cn jψ j (z) =
∑

j

Hn jψ j (z), (5)

where ψn is the amplitude of the nth waveguide mode, cn j

is the coupling coefficient between the nth and jth waveg-
uide, and H is the tight-binding Hamiltonian. When the light
propagates along the z direction of the photonic lattice, the
propagating modes ψn as a function of z can be written as
ψn = ψ (x, y)eiβz. Therefore, there is βψn = ∑

j
cn jψ j , where

the eigenvalue β plays the role of energy in the analogous
Schrödinger equation Hψn = βψn. The expression of the cou-
pling mode between the six lattice modes of the graphenelike
moiré lattice is

i
∂ψ1(z)

∂z
= c2[ψ2(z) + ψ3(z)] + c1[ψ4(z) + ψ6(z)]

i
∂ψ2(z)

∂z
= c2[ψ1(z) + ψ3(z)] + c1[ψ4(z) + ψ5(z)]

i
∂ψ3(z)

∂z
= c2[ψ1(z) + ψ2(z)] + c1[ψ5(z) + ψ6(z)]

i
∂ψ4(z)

∂z
= c1[ψ1(z) + ψ2(z)] + c2[ψ5(z) + ψ6(z)]

i
∂ψ5(z)

∂z
= c1[ψ2(z) + ψ3(z)] + c2[ψ4(z) + ψ6(z)]

i
∂ψ6(z)

∂z
= c1[ψ1(z) + ψ3(z)] + c2[ψ4(z) + ψ5(z)], (6)

where c1 and c2 are the coupling coefficients of intracell
waveguides and intercell waveguides, respectively, as shown
in Fig. 1(a). Under the tight-binding approximation, the cor-
responding Hamiltonian ink space can be written as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 h12 h13 c1 0 c1

h∗
12 0 h23 c1 c1 0

h∗
13 h∗

23 0 0 c1 c1

c1 c1 0 0 h45 h46

0 c1 c1 h∗
45 0 h56

c1 0 c1 h∗
46 h∗

56 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where the variables are h12 = c2ei(−
√

3
2 kx− 1

2 ky ), h13 = c2ei(−ky ),
h23 = c2ei(

√
3

2 kx− 1
2 ky ), h45 = c2ei(−ky ), h46 = c2ei(

√
3

2 kx− 1
2 ky ),

h56 = c2ei(
√

3
2 kx+ 1

2 ky ); h∗
n j denotes the complex conjugate of

hn j .
The eigenvalue of the Schrödinger-like equation is called

the propagation constant β in paraxial light propagation, and
in quantum mechanics is called energy. We calculated the
band structure of the infinite graphenelike moiré photonic
lattice by solving the eigenvalue β of the Hamiltonian as
a function of the Bloch wave vector (kx, ky). Figure 1(b)
presents the band structure of the graphenelike moiré lattice
in the tight-binding approximation model. We find that for the
bands, there are 12 Dirac cones between band β1 and band
β2, as well as between band β4 and band β5, which is similar
to the Dirac cones in the graphene lattice. Corresponding
to the three types of edges in graphene lattice, we truncate
the graphenelike moiré lattice to form three edges, namely,
the zigzag edge, beard edge, and armchair edge, respectively.
The zigzag-edge-type graphenelike moiré lattice is shown in
Fig. 1(c), where the zigzag edge is truncated in the x direction
but periodic in the y direction. The band structure versus ky

for the moiré lattice with the zigzag edge is calculated and
displayed in Fig. 1(d). The black curves in the band structure
represent the bulk states, whereas the red curve in the band
gap is the edge state. The zigzag edge contains three edge
states for a specific incident angle, indicating the edge state is
composite. For the other two edges, the band structures show
that no edge state is supported, as discussed in Appendix A.

III. LINEAR EIGENMODES

To further study the characteristics of the zigzag-edge type,
we truncate the graphenelike moiré photonic lattice into a
triangle with 108 lattice sites whose three edges are all the
zigzag-edge type, as depicted in Fig. 2(a). In the experi-
ment, the CW-laser writing technique is employed to establish
the finite-sized photonic lattice by light induction of writing
waveguides site by site in a 10-mm-long nonlinear photore-
fractive crystal (SBN), and the results are shown in Fig. 2(b).
Here, d1 and d2 mark two different lattice spacings between
nearest-neighbor lattice sites with values of 35 um and 32
um, respectively, which determine the corresponding coupling
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FIG. 2. Truncated graphenelike moiré lattice with the zigzag
edge, band structure, mode profiles of the edge states and corner
states. (a) Numerically generated discrete models of the triangular
graphenelike moiré lattice with the zigzag edge, shown here as a
two-dimensional array of waveguides. (b) Experimentally fabricated
counterpart of the CW-laser-writing technique. (c), Numerically cal-
culated eigenvalues of the lattice by the tight-binding model. (d)–(g)
Mode profiles of four eigenstates localized at the corner [(d), (f)] and
edges [(e), (g)] of the lattice, which correspond to states 18 (red dot),
19 (green dot), 69 (blue dot), and 70 (yellow dot) in (c), respectively,
The color bar in (d) indicates the normalized intensity of (d)–(g).

coefficients intracell coupling c1 and intercell coupling c2

(c1 < c2), respectively. The experimental setup (the details are
in Appendix B) employ a CW plane wave to illuminate spatial
light modulator (SLM), then a quasinondiffracting writing
beam with variable input position is generated. The photonic
lattice remains intact during writing and probing processes
due to noninstantaneous photorefractive memory effects. To
study the corner states and edge states of the triangular
graphenelike moiré photonic lattice, we calculated the energy
spectrum. Figure 2(c) shows the ensemble of propagation
constants β, which represent the tight-binding eigenvalues of
the triangular lattice comprising 108 sites. The colored circles
represent two corner states and two edge states. The mode in-
tensity distribution patterns of the four eigenvalues are shown
in Figs. 2(d)–2(g). Among them, there exist two types of cor-
ner states as illustrated in Figs. 2(e) and 2(g): one of the corner
states occupy three corner sites and two nearest-neighbor sites
[Fig. 2(e)], one of the other corner states occupy three corner
sites [Fig. 2(g)]. Two types of edge states are illustrated in
Figs. 2(d) and 2(f), one of the edge states occupy three edges
lattice sites and nearest-neighbor sites [Fig. 2(d)] except the
sites of corner states as shown in Fig. 2(e), one of the other
edge states occupy three edges lattice sites [Fig. 2(f)] except
the sites of corner states as shown in Fig. 2(g). Note that when
intracell coupling c1 is greater than intercell coupling c2, the
mode fields of corner and edge states are almost identical,
which are displayed in Appendix C.

IV. LINEAR EDGE STATES AND CORNER STATES

To validate the corner and edge states, different probe
beams are injected into the lattice. The probe beams diffract
discretely due to the coupling between the nearest neigh-
bors and the lattice satisfies the tight-binding approximation
model. In the first experiment, the bias electric direct current

FIG. 3. Experimental demonstration and numerical simulation of
linear corner and edge states of the truncated graphenelike moiré
lattice. (a1)–(c1) Three excitation patterns of probe beams launched
in the lattice: Corner excitations (a1), (b1) and edge excitation (c1).
(a2)–(c2) Experimental results for a linear output corresponding to
the three initial excitations in (a1)–(c1) after propagation of 10 mm
in the lattice. (a3)–(c3) Numerical simulation results corresponding
to the same conditions of (a2)–(c2). (a4)–(c4) 3D-view of (a3)–(c3).

field added along the crystalline c axis of the nonlinear SBN
crystal is turned off in the process of probe beam excitation
to guarantee the linear property of the moiré lattice. Accord-
ing to the mode distributions of edge states as illustrated in
Figs. 2(d)–2(g), we implement three types of excitations as the
probe beams that are launched in the lattice: corner excitation
[Figs. 3(a1) and 3(b1)] and edge excitation [Fig. 3(c1)]. All
the probe beam on excitation sites of the lattice are constituted
by Gaussian beams and transverse positions are controlled by
the SLM. The distributions of probe beams are represented by
the brighter points in Figs. 3(a1)–3(c1). In the first excitation
pattern, we excite the three corner sites of the lattice with
three single Gaussian probe beams as shown in Fig. 3(a1).
After 10-mm propagation in the lattice, the three-vertices
single-site excitation leads to discrete diffraction and coupling
into the corresponding two nearest waveguides [Fig. 3(a2)].
This experimental result is consistent with edge-state mode
profiles of the edge states depicted in Fig. 2(e). For compar-
ison, in a second excitation, the input beams excite on three
lattice points at each corner of the lattice [Fig. 3(b1)]. The
probe beam remains localized in the excited waveguides after
10-mm propagation; its overall intensity pattern is well main-
tained [Fig. 3(b2)]. In a third excitation pattern, the input beam
excites 12 lattice sites on one side of the lattice. At the end of
the SBN crystal, the probe beams are coupled into the nearest
lattice sites and no energy is transferred into other waveguides.
The experimental results match exactly with the stated lattice
sites of the zigzag edge [Fig. 1(c)] and are consistent with
edge-state mode profiles depicted in Figs. 2(d) and 2(e). Cor-
respondingly, the numerical simulations on the evolution of a
light beam in the linear photonic lattice are performed based
on Eq. (4) by the beam propagation method. Numerical simu-
lation results are displayed in Figs. 3(a3)–3(c3) and 3D-view
results are in Figs. 3(a4)–3(c4), corresponding to experimental
results in Figs. 3(a2)–3(c2), where the simulation propagation
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FIG. 4. (a) Form factor of eigenmode of the lattice versus the
nonlinearity coefficient γ . (b) The probe beam for excitation of the
edge state under nonlinear conditions. (c)–(e), Numerical simulation
results at the output plane after 10-mm propagation with γ = 0.1,
0.3, and 0.5, respectively.

distance is 10 mm, corresponding to the length of the SBN
crystal used in the experiments. These simulation results agree
well with the corresponding experimental results.

V. NONLINEAR EDGE STATES
AND CORNER STATES

Kerr nonlinearity is a widely concerned effect in the
photonic lattice, which enables one to balance the diffrac-
tion to form spatial solitons. To illustrate the impact of
the nonlinear coefficient on the light localization at the
edges and corners, we use the integral form factor χ =
(
∫∫ |ψ |4dxdy)1/2/U to characterize the localization strength,

where U = ∫∫ |ψ |2dxdy is the energy flow [52]. The depen-
dence of the form factor of the localized mode on nonlinear
coefficient γ is shown in Fig. 4(a). With the increase of
γ , the value of χ is increased, indicating the edge modes
become localized gradually. The value of form factor χ

reaches the maximum when γ reaches 0.6. Similarly, a nu-
merical simulation of the propagation in the nonlinear lattice
is launched, and the results are presented in Figs. 4(c)–4(d)
for different nonlinearity coefficients γ . Localization grad-
ually increases with the value of γ increasing; the obvious
decrease in discrete diffraction marks the onset of nonlinearity
effect. When the nonlinearity coefficient reaches γ=0.5, as
shown in Fig. 4(e), the probe beam is completely confined
to the initially excited waveguides, manifesting a localized
edge state.

Lastly, we discuss the numerical and experimental results
of edge states and corner states under nonlinear conditions. In
the experiment, once the triangular graphenelike moiré lattice
is established, the probe beam excitation in the SBN lattice
experiences nonlinear propagation when the bias voltage field
is turned on. Three excitation patterns as the input beam are
also performed under nonlinear condition. In the first exci-
tation pattern, three corner sites are excited [Fig. 5(a1)], the
output intensity profile is shown in Fig. 5(a2). The probe beam

FIG. 5. Experimental demonstration and numerical simulation
of nonlinear corner and edge states of the truncated graphenelike
moiré lattice. (a1)–(c1) Three excitation patterns of input probe beam
launched in lattice under the nonlinear condition. (a2)–(c2) Experi-
mental results for the nonlinear outputs corresponding to different
initial excitations sites in (a1)–(c1); after propagating 10 mm in
the lattice, the probe beam remains localized in the initially excited
lattice sites. (a3)–(c3), Simulation results of transverse intensity pat-
tern of output beam and (a4)–(c4), 3D-view numerical simulation
corresponding to the experiments in (a2)–(c2).

is localized in the three corners, and no energy is coupled
to other waveguides in comparison with the same excitation
pattern for the linear conditions. The result indicates the non-
linearity restricts the light diffraction between waveguides,
forming corner localization. In the second and third excitation
patterns, the probe beam excites edge states of one edge and
three edges, respectively [Figs. 5(b1) and 5(c1)]. These edge
states remain intact after 10-mm propagation in the lattice, the
output pattern localized, and energy without coupling to other
nearest sites [see Figs. 5(b2) and 5(c2)]. We attribute this re-
sult to the dynamical balance between diffraction in the lattice
and nonlinear self-action, which provide the proper condition
for the formation of nonlinear edge states and edge solitons.
According to Eq. (4), we perform numerical simulations to
examine the nonlinear beam dynamics for the nonlinear exci-
tations. Numerical simulation results [Figs. 5(a3)–5(c3)] and
3D-view numerical simulation [Figs. 5(a4)–5(c4)] output of
the probe beam after 10-mm propagation, corresponding to
Figs. 5(a2)–5(c2), the probe beam at the output is localized at
the excitation sites.

VI. CONCLUSION

We constructed a graphenelike moiré lattice by super-
imposing two identical triangular lattices by antiphase and
twisting a specific angle. Through calculating the energy
bands, they show that the edge state exists only at the zigzag
edge. Along with the zigzag edge, the moiré lattice is trun-
cated into a triangular waveguide array with 108 sites. The
linear eigenmodes show both the corner and edge states can be
supported in such a lattice. Besides, the corner and edge states
can also exist when the coupling coefficients between intracell
and intercell waveguides are changed, whereafter the high
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coincidence of numerical and experimental results verifies
the existence of corner and edge states. Further, the optical
localization at the edge and corner of the lattice is achieved
when nonlinearity is involved. Our research results may bring
opportunities to explore intriguing fundamental phenomena
such as topology and nonlinear topological solitons in moiré
lattices.
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APPENDIX A: BAND STRUCTURES OF GRAPHENELIKE
MOIRÉ LATTICE WITH ARMCHAIR EDGE

AND BEARDED EDGE

In this Appendix, the armchair-edge-type moiré lattice
structure is periodic in the x direction and exhibits an armchair
edge in the y direction, as illustrated in Fig. 6(a). The band
structure is computed for this moiré lattice with armchair
edges and presented in Fig. 6(b) as a function of kx. For the
bearded edge case, the edge is truncated in the x direction and
the lattice is featured as periodic in the y direction, as shown
in Fig. 6(c). The band structure is calculated and displayed
in Fig. 6(d). The results manifest that the bands of the moiré
lattice with the two edges exhibit different behaviors of over-
lapping and degeneracy. However, no edge state is supported
by the two edges.

FIG. 6. (a), (b) Schematic image band structure of a graphenelike
moiré lattice with an armchair edge. (c), (d) Schematic image band
structure of a graphenelike moiré lattice with a bearded edge.

FIG. 7. Experimental setup for site-to-site writing the photonic
lattices by a CW laser in a nonlinear photorefractive crystal. SBN:
Strontium barium niobate crystal. SLM: Spatial light modulator. BS:
Beam splitter. FM: Fourier mask. λ/2: Half-wave plate. L: Optical
lens.

APPENDIX B: EXPERIMENTAL SETUP
AND DESCRIPTION

In the experiment, the CW laser-writing technique is em-
ployed to write the waveguides site to site by a Gaussian
beam as lattice light, enabling the construction of the pro-
posed graphenelike moiré lattice structure. The schematic of
experimental setup is shown in Fig. 7. To achieve precise
phase modulation of the writing beam, a broad plane beam,
generated by a 532 nm laser passing through an objective
and focal lens, are used to illuminate a SLM. The designed
phase template of a Gaussian beam is uploaded to the SLM,
facilitating accurate phase control of the waveguide position.
The writing beam, after passing through a half-wave plate,
is transformed into ordinary light (o light) via a 4 f system.
By adjusting the longitudinal position in the z direction of
the SBN crystal and aligning the crystal center with the waist
position of the Gaussian beam, the quasinondiffracting beam
can completely pass through the crystal. When a DC bias
electric field is applied along the crystalline c axis of the SBN
crystal, the Gaussian beams induce waveguides site to site,
leveraging the memory effect of the photorefractive crystal.
To simplify the experiment, the probe beam is corouted with
the writing beam, reducing the complexity of the setup. In
addition, SBN crystals respond differently to changes in the
refractive index for ordinary light (o light) and extraordinary
light (e light). The probe beam is modulated using a half-wave
plate to account for this characteristic. The position of each
lattice point can be controlled precisely using a SLM which
satisfies for constructing the moiré lattice in this paper.

APPENDIX C: THE MODES OF THE MOIRÉ LATTICE
WITH THE ZIGZAG EDGE (c1 > c2 AND c1 = c2)

In the main text, we discussed the triangular lattice with
intracell coupling c1 being less than intercell coupling c2

(c1 < c2). The effect of the ratio of intracell and intercell
coupling coefficients on the edge states and corner states is
investigated. Here, for comparison, let’s consider the energy
spectrum of the triangular lattice with zigzag edges when the
intracell coupling c1 is greater than the intercell coupling c2

(c1 > c2) [Fig. 8(a)] and when c1 is equal to c2 (c1 = c2)
[Fig. 9(a)]. The mode fields of corner and edge states
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FIG. 8. Triangular graphenelike moiré lattices with zigzag edge,
band structure, mode profiles of the edge states and corner states
(c1 > c2). (a) Numerically calculated eigenvalues of the lattice by
the tight-binding model, (b)–(e) Mode profiles of four eigenstates
localized at the corner and edges of the lattice (states 18, 21, 68, and
70, red, green, blue, and yellow dots, respectively).

corresponding to the numbered locations in the band structure
are shown in Figs. 8(b)–8(e) and 9(b)–9(e). There are two
types of corner states, as illustrated in Figs. 8(b)–8(e) and
9(b)–9(e), as well as two types of edge states, as depicted

FIG. 9. Triangular graphenelike moiré lattices with zigzag edge,
band structure, mode profiles of the edge states and corner states
(c1 = c2). (a) Numerically calculated eigenvalues of the lattice by
the tight-binding model, (b)–(e) Mode profiles of four eigenstates
localized at the corner and edges of the lattice (states 18, 21, 67 and
70, red, green, blue and yellow dots, respectively).

in Figs. 8(c), 8(e), and 9(b)–9(e). The mode fields of corner
and edge states when c1 > c2 and c1 = c2 are similar to the
condition where c1 < c2, except for the state numbers being
different.
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