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Sum rule bounds beyond Rozanov criterion in linear and time-invariant thin absorbers
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The Dallenbach layer is composed of an absorbing magnetic-dielectric layer attached to a perfect electric
conductor (PEC) sheet. Under linearity and time invariance (LTI) assumptions, Rozanov has established analyt-
ically a sum-rule tradeoff between the absorption efficacy over a predefined bandwidth and the thickness of the
layer, which is the so called Rozanov bound. In recent years, several proposals have been introduced to bypass
this bound by using non-LTI absorbers. However, in practice, their implementation may be challenging. Here,
we expose additional hidden assumptions in Rozanov’s derivation, and thus we introduce several sum rules for
LTI layer absorbers that are not covered by the original Rozanov criterion, and they give rise to more relaxed
constraints on the absorption limit. We demonstrate practical LTI designs of absorbing thin layers that provide
absorption beyond Rozanov’s bound. These designs are based on the replacement of the original PEC boundary
by various types of penetrable impedance sheets.
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I. INTRODUCTION

Wave absorbers play a key role in a variety of electromag-
netic [1–4], acoustic [4–9], and optical [10–12] wave systems
throughout the entire frequency spectrum. A canonical type
of wave absorber is the Dallenbach layer, which is composed
of a slab of a magnetodielectric lossy substance backed by
a perfect electric conductor (PEC) [1,13–20]. Usually the
absorbing bulk is composed of linear and time-invariant (LTI)
materials, which may be composed of a continuous matter,
laminate composite, or a periodic lattice of conductive, di-
electric, or magnetic elements at scales that are substantially
smaller than the operating wavelength, i.e., metamaterials. For
Dallenbach absorbers, Rozanov has established an analytic
bound that relates its absorption efficiency over a predefined
bandwidth and the thickness of the layer [20]. A similar rela-
tion was later introduced also for the acoustic wave regime in
Ref. [17].

In recent years, wave engineering using time-varying me-
dia has been utilized as an alternative approach to bypass
LTI bounds. Time-varying wave devices allow an additional
degree of freedom in comparison to traditional, time-invariant
wave devices. Therefore, they can potentially overcome
some fundamental limitations enforced by the LTI require-
ments [21–26]. This approach has been used to design
broadband causal reflectionless absorbers [27], to improve
reflection bandwidth for quasimonochromatic signals [28],
and in [29] to bypass the Rozanov absorption bound by

*firestie@post.bgu.ac.il
†amirshli@bgu.ac.il
‡hadady@eng.tau.ac.il

allowing the characteristics of the layer (permittivity, perme-
ability, and electric conductivity) to abruptly or gradually vary
with time. However, the realization of such a time-varying
absorber raises several practical challenges, specifically re-
garding the ways in which the modulation network operates,
its complexity, its interference with the wave system, and
issues of detection of the impinging wave that should be
absorbed.

The key question that immediately rises is as follows:
Would it be possible to go beyond a Rozanov absorption
bound using a passive LTI absorber? This research ques-
tion gains a heightened sense of intrigue when viewed
in the context of the well known concepts of a perfectly
matched layer (PML) that is often used as a means to
close the finite computation domain in numerical simula-
tions and absorb any reflections from the boundaries. The
first implementation of PML, as suggested by Berenger [30],
is based on the use of a hypothetical magnetic conductor
that is suitably balanced with the electric conductivity. In
this way, Berenger demonstrates that perfect absorption can
be achieved with no bandwidth limitations using a passive
LTI absorber. What is then the fundamental gap between
the system considered by Rozanov, which is bounded, and
the hypothetical PML layer when backed by a PEC sheet? In
the following, we strive to bridge this gap, and by doing so we
expose the fundamental requirement of any absorber in order
to go beyond the Rozanov bound. We emphasize that while
the PML layer is hypothetical, the conclusions that we derive
in this paper yield practical realistic designs of passive LTI ab-
sorbers that perform beyond the Rozanov bound, as discussed
in Secs. IV and V. Specifically, in these sections we show
that by replacing the PEC backing by a properly designed,
partially transparent impedance sheet, the net absorption can
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FIG. 1. Rozanov’s system layout. A normal incidence plane
wave impinges a Dallenbach layer that is terminated by a PEC
boundary.

be significantly increased compared to what is dictated by
Rozanov’s bound.

II. REVISITING ROZANOV’S BOUND

For the sake of self-consistency, in this section we briefly
describe the system considered by Rozanov and its bound
[20]. Consider a thin conductive dielectric layer with static
(long-wavelength) electric parameters ε, μ, σ . The layer
thickness is d and it is backed by a perfect electric conductor
(PEC). See Fig. 1 for an illustration.

A plane wave that is propagating in vacuum (ε0, μ0) im-
pinges the layer normally. For this scenario, Rozanov [20]
established a tradeoff between the power absorption efficiency
Ã(λ) = 1 − |ρ(λ)|2 given in terms of the reflection coefficient
ρ(λ), and the bandwidth

1

2

∣∣∣∣
∫ ∞

0
ln[1 − Ã(λ)] dλ

∣∣∣∣ =
∣∣∣∣
∫ ∞

0
ln |ρ(λ)|dλ

∣∣∣∣ � 2π2μrd.

(1)

Equation (1) implies that the tradeoff between the absorption
efficiency and the bandwidth depends only on the static (long-
wavelength) relative permeability μr = μ/μ0 and the layer
thickness d . This result originates from the long-wavelength
behavior of the reflection coefficient in this case,

ρ(λ) ∼ −1 + j
4πμrd

λ
as λ → ∞. (2)

For a detailed derivation of this sum rule and additional sum
rules, please refer to Appendixes A and B.

III. WHAT CAN WE LEARN FROM THE PML CONCEPT
IN ORDER TO GO BEYOND ROZANOV’S BOUND?

In this section, we repeat the derivation of Rozanov’s
bound for a system that includes an additional hypothetical
static magnetic conductance (σm), as assumed by Berenger
[30]. By doing so, we introduce an additional degree of
freedom to the setup. We show that the resulting reflection
coefficient approximation in the long-wavelength range is

substantially different from the one shown in Eq. (2). Con-
sequently, Rozanov’s bound, Eq. (1), is invalid. Moreover, it
is impossible to derive a direct bound on ln |ρ(λ)|. Instead,
absorption beyond Rozanov’s bound is achievable, and even
ideal absorption for any bandwidth. Thus we conclude that
controlling the large wavelength behavior of the reflection
coefficient is the key to going beyond Rozanov’s bound. A
detailed derivation is given below.

The reflection coefficient at the interface between the vac-
uum and the absorbing medium reads

ρ(λ) = Zin(λ) − η0

Zin(λ) + η0
, (3)

where Zin(λ) = Z0(λ) tanh (γ (λ)d ) is the input impedance
at the interface between the Dallenbach layer and the sur-
roundings, Z0(λ) is the characteristic impedance, γ (λ) is
the complex propagation term (see Appendix A), and η0

is the free-space wave impedance. Interestingly, for long
wavelength (|λ| → ∞), the reflection coefficient behaves
asymptotically as

ρ(λ) ∼ −1 + A + j2πB/λ, (4a)

where

A = 2κ

1 + κ
with κ = 1

η0

√
σm

σ
tanh(

√
σσmd ) (4b)

and

B = c0

d
(

μ

σm
+ ε

σ

)(
σm
η0

− η0σκ2
) + (

μ

σm
− ε

σ

)
κ

(1 + κ )2
, (4c)

where ε = ε0εr (εr is the static relative permittivity). Simi-
larly, σ and σm are the static electric and magnetic conductiv-
ities, respectively, and c0 = 1/

√
ε0μ0 is the free-space wave

speed. The constant A is recognized as the transmission coef-
ficient (T ) into the absorbing layer (which serves as a load)
at long wavelength, i.e., A = T (|λ| → ∞). It can be observed
(see Appendix A) that by setting the magnetic conductivity
σm to zero, Eq. (4a) reduces to Rozanov’s long-wavelength
approximation for the reflection coefficient [20] that is in
Eq. (2).

While at first glance the approximations in Eqs. (2) and
(4a) seem similar, the presence of the extra term A in Eq. (4a)
implies that | ∫ ∞

0 ln |ρ(λ)| dλ| by itself cannot be bounded
from above, and therefore the maximal absorption is not lim-
ited. Instead, we may readily derive a bound on a modified
expression (see Appendix B), giving∫ ∞

0
ln |ρ(λ) − A| dλ � −π2B. (5)

This bound implies that the maximal absorption is intimately
connected with the coefficient A. Obviously, it can be ob-
served in Eq. (5) that the static parameters themselves set the
bound over the entire real wavelength axis without any ad-
ditional frequency-dependent contributions. Also, by setting
σm → 0 in Eq. (5), Rozanov’s bound is recovered.

The presence of static magnetic conductance, σm, provides
an additional degree of freedom that enables going beyond
the limitation suggested by Rozanov regarding the maximal
absorption efficacy (that can be viewed as a tradeoff between
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absorption and the signal’s bandwidth). Specifically, the inclu-
sion of σm implies a change of the long-wavelength reflection
coefficient as assumed in Eq. (4a): first, in the zero-order term
when A �= 0, and second, in the first-order term as shown by
comparing Eq. (4) and Eq. (2).

Ideally, infinite magnetic conductance, i.e., the so called
artificial magnetic conductor (AMC), can be synthesized in
a narrow frequency band as a high impedance surface. This
in fact was one of the first practical applications of meta-
materials [31–37]. However, their physical structure causes
them to exhibit long-wavelength characteristics as of a PEC
backed structure, and therefore they comply with Rozanov’s
bound. As opposed to that, unfortunately, the use of static
finite magnetic conductance is generally impossible for air-
borne waves using natural materials or metamaterials (for
guided waves it can be synthesized, e.g., a transmission line
with lossy conductors can be treated as effectively having
magnetic conductance. See the discussion in the supplemental
material [38] and in Appendix C). Nevertheless, although
static finite magnetic conductance is hypothetical, the results
in this section have practical significance since they shed light
on what should be done in order to go beyond Rozanov’s
bound with a passive LTI system. Specifically, we note that
in order to breach the bound, we need to find ways to alter
the asymptotic, long-wavelength behavior of the reflection
coefficient ρ(λ) compare to Eq. (4a). As we show below,
this can actually be done by replacing the PEC boundary
with a penetrable impedance sheet. Careful designs may allow
a substantial improvement of the absorption efficiency and
bandwidth.

IV. GENERALIZATION OF ROZANOV’S BOUND—THE
IMPEDANCE BOUNDARY CONDITION

Here we describe an alternative approach to bypass
Rozanov’s bound by replacing the absorber’s terminating
sheet by a nonopaque impedance sheet with no magnetic con-
ductivity (see Fig. 2). The sheet’s impedance has the following
generalized form with the long-wavelength approximation:

Zs(λ) =
∞∑

n=k

An(2 jπc0/λ)n λ→∞−−−→ Ak (2 jπc0/λ)k, (6)

where the Ak’s are real positive constants. Note that k = 0
indicates a resistive loading, while k ≷ 0 indicates a reac-
tive loading. The corresponding load impedance, ZL, at large
wavelength as seen when looking into the interface where the
impedance sheet is located [see Fig. 2(b)] reads

ZL(λ) = Zs ‖ η0 ∼
(

1

Ak (2 jπc0/λ)k
+ 1

η0

)−1

, (7)

whereas the input impedance as observed at the interface
between the absorbing material and its surroundings reads

Zin(λ) = Z0(λ)
ZL(λ) + Z0(λ) tanh(γ d )

Z0(λ) + ZL(λ) tanh(γ d )
. (8)

The long-wavelength behavior of Zin depends on the
asymptotic long-wavelength behavior of ZL in Eq. (6), which

FIG. 2. Description of the problem. (a) An incident wave prop-
agates (left to right) in a semi-infinite medium towards a lossy
Dallenbach layer with thickness d that is loaded by a nonopaque
impedance sheet followed by another semi-infinite medium. (b) TL
model of the problem.

is discussed in the following for the two cases k � 1 and
k � 0.

(i) Positive reactance. This case implies k � 1, thus ZL ∼
Ak (2 jπc0/λ)k and consequently, following Eq. (8),

Zin(λ) ∼ Ak (2 jπc0/λ)k + 2 jπc0μd/λ. (9)

It can further be observed that for k > 1, the first-order ap-
proximation of the input impedance is Zin ∼ 2 jπc0μd/λ.
Using Eq. (3) (see also Appendixes A and B), the reflec-
tion and transmission coefficients revert back to the form
that was used by Rozanov, i.e., ρ ∼ −1 + 4π jμrd/λ and
T ∼ O(1/λ2). The physical implication of this result is that
for k > 1 it is impossible to design a Dallenbach absorber
that improves the absorption performances with respect to
Rozanov’s bound.

For the case of k = 1, the surface impedance Zs is that of a
pure inductor, therefore setting A1 = L (H) in Eq. (7). Repeat-
ing the derivation in Appendix A but for this case, it follows
that the long-wavelength approximations of the reflection and
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transmission coefficients are given by

ρ(λ) ∼ −1 + 4 jπμr

[
d + L

(μ0μr )

]
λ−1,

T (λ) ∼ 4 jπL

μ0λ
. (10)

The modified expression of the reflection coefficient in
Eq. (10) differs by a single linear term in L/(μ0μr ) from that
of Rozanov’s PEC-terminated Dallenbach absorber, which by
comparison to Eq. (2) further leads to a modified Rozanov-
type bound, as we show next. Conservation of power in this
passive LTI absorbing system dictates that

|ρ(λ)|2 + |T (λ)|2 + Ã(λ) = 1, (11)

where Ã(λ) is the absorption efficacy. Based on Eq. (11), a
generalized absorption bound is derived by

1

2

∣∣∣∣
∫ ∞

0
ln[1 − Ã(λ)] dλ

∣∣∣∣
= 1

2

∣∣∣∣
∫ ∞

0
ln[|ρ(λ)|2 + |T (λ)|2] dλ

∣∣∣∣
�

∣∣∣∣
∫ ∞

0
ln |ρ(λ)| dλ

∣∣∣∣ � 2π2μr

[
d + L

μ0μr

]
, (12)

where the first equality in Eq. (12) follows from Eq. (11),
the next inequality follows from the fact that 0 �
|ρ(λ)|, |T (λ)| < 1 with [|ρ(λ)|2 + |T (λ)|2] < 1, and the last
inequality is derived similarly to Eq. (1) (see Appendix B).
Note that the corresponding Rozanov-type bound for a PEC-
terminated absorber (L = 0) reads 1

2 | ∫ ∞
0 ln[1 − Ã(λ)] dλ| �

2π2μrd [see Eq. (1)].
The discussion so far demonstrated the counterintuitive

result that the use of a Dallenbach absorber with penetrable
termination (instead of Rozanov’s PEC bound) may provide a
venue for obtaining an absorber with improved absorption but
with a transmission beyond the absorber. This result will be
explored and demonstrated in Sec. V with specific numerical
details.

(ii) Nonpositive reactance case. In this case, k � 0, which
implies the following for a resistive/capacitive impedance
sheet with the long-wavelength approximation of the load
impedance:

ZL(λ) ∼

⎧⎪⎨
⎪⎩

(
1

A0
+ 1

η0

)−1
, k = 0,

η0 − j2πc0η
2
0/(A−1λ), k = −1,

η0, k < −1.

(13)

At large wavelengths, the transmitted wave beyond the
absorber is no longer negligible, i.e., |ρ| �� |T |. Therefore, the
large wavelength absorption is affected by both the reflection
and transmission coefficients, which make it impossible to
bound the absorption as in Eqs. (1) and (12). However, as we
prove next, the absorption at extremely large wavelengths is
limited.

For the capacitive-type impedance sheet, at extremely large
wavelengths the impedance of the loading is substantially
larger in comparison to the impedance of the free space,
therefore ZL = η0 [see Eq. (7)]. Here, we use a zeroth-order

approximation of ρ(λ), T (λ) to bound from above the absorp-
tion coefficient (Ã) under this limit. Using Eq. (8), the input
impedance as observed at the input of the absorber is given by
Zin ∼ η0/(1 + η0σd ), and the reflection (ρ) and transmission
(T ) coefficients read

ρ ∼ −η0σd

2 + η0σd
, T ∼ 2

2 + η0σd
. (14)

Applying ρ and T with Eq. (11) gives

1 − Ã = |ρ|2 + |T |2 = (η0σd )2 + 4

(η0σd + 2)2
, (15)

which has a global minimum at σopt = 2/(η0d ) with a maxi-
mal large wavelength absorption of Ã(λ → ∞) = 0.5.

In Sec. V B we demonstrate numerically that this ap-
proach makes it possible to go beyond Rozanov’s absorption
performances.

V. THE TIGHTNESS OF THE BOUND: INDUCTIVE CASE

The bound in Eq. (12) is general for any passive LTI in-
ductively loaded penetrable Dallenbach-type absorber. This
bound reflects the somewhat counterintuitive fact that the
net absorption may be increased, compared with Rozanov’s
setup that is backed by PEC, by using a partially transparent
layer that enables transmission through it. Furthermore, from
the expression in Eq. (12) it should also be noted, as for
Rozanov’s bound [20] and other sum rules [39–42], that only
the static behavior of the impedance sheet determines the
overall absorption bound. Because Eq. (12) suggests that the
bound we found for the total absorption in the presence of
an inductive impedance sheet is larger (less stringent) than
Rozanov’s bound, the immediate question is as follows: Is
it possible to find practical designs that are tight to the new
bound? Below, we provide an affirmative answer to this ques-
tion and demonstrate that indeed the new bound is tight.

To address this question, we define the tightness of the
bound using the following optimization problem:

τ (L) � max
ε,σ

1
2

∣∣∫ ∞
0 ln[1 − Ã(λ)] dλ

∣∣
2π2μr[d + L/(μ0μr )]

subject to: Kramers-Kronig, (16)

where τ (L) ∈ [0, 1] for L � 0. In the denominator, we uti-
lize the expression for the bound taken from Eq. (12). On
the other hand, in the numerator we present the achieved
absorption for a design that has undergone optimization. The
optimization process involves varying the values of permit-
tivity and conductivity (ε, σ ) while keeping the inductance L
fixed at predetermined values. Note that the infinite integral
in Eq. (16) cannot be performed numerically. Instead, in any
numerical calculation we resort to integration over a finite
wavelength range [λ1, λ2]. Therefore, we define below an
auxiliary tightness parameter

τ[λ1,λ2](L) � max
ε,σ

1
2

∣∣∣∫ λ2

λ1
ln[1 − Ã(λ)] dλ

∣∣∣
2π2μr[d + L/(μ0μr )]

subject to: Kramers-Kronig. (17)
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FIG. 3. The ratio of the integration result of the optimal design
and the inductive bound, τ , of Eq. (16) shown as a blue line and the
corresponding value with Rozanov’s bound ν of Eq. (19) shown as a
red line.

Note that the integrands in Eqs. (16) and (17) are positive for
any value of λ and for any physical choice of layer parame-
ters, satisfying Kramers-Kronig relations, i.e., a layer that is
passive, causal, and linearly time-invariant. As a result,

τ[λ1,λ2] � τ � 1. (18)

The second inequality originates from Eq. (12). Consequently,
although in principle in order to demonstrate the tightness
of the bound, we need to solve the optimization problem in
Eq. (16) and show that τ approaches 1 from below, in light
of Eq. (18) the bound tightness demonstration relaxes. It is
in fact enough to solve the optimization problem in Eq. (17)
and show that τ[λ1,λ2] approaches 1 from below. Note that
the second optimization problem is the only one that can be
performed computationally. In this calculation, we assume
that the layer is nonmagnetic, i.e., with μr set to 1, and
with thickness d = 0.4 (m). In addition, we assume that the
parameters ε and σ are practically constant in the waveband
[λ1, λ2] = [0.01, 3 × 107], which is a reasonable assumption
for most dielectric materials because it implies that the ma-
terial resonance should occur above, say, 300 (GHz), which
is about 10 times higher than the highest frequency in the
integration interval, namely f = 3 × 108 (m/s)/0.01 (m) =
30 GHz. Taking into account the above considerations, we
assure the reader that our calculation approach is subject to
Kramers-Kronig relations (see [43] and additional discussion
in Appendix D).

The optimization results are shown by the blue line in
Fig. 3, which depicts τ[λ1,λ2] as a function of the inductance
L. It can readily be observed that the bound in Eq. (12)
is tight, with 0.99 < τ[λ1,λ2] � τ � 1, for reasonable values
of inductance [L � 10 (μH)]. Furthermore, to highlight the
comparative advantage in relation to the maximum achievable
performance according to Rozanov’s bound, we present a
comparison between the new bound and Rozanov’s bound.
This is given by the expression below,

ν =
1
2

∣∣∫ ∞
0 ln[1 − Ã(λ)] dλ

∣∣
2π2μrd

, (19)

and the corresponding results are shown by the red line in
Fig. 3.

FIG. 4. A contour plot (“isolines”) of ν, the ratio of the ab-
sorption integration of the inductive impedance boundary and the
Rozanov bound.

From the figure, we observe that for moderate inductance
values, L > 0.1 (μH), the new absorption bound becomes sig-
nificantly better than Rozanov’s bound. As opposed to that, for
smaller inductance values, L < 0.1 (μH), where the inductive
sheet becomes effectively a short circuit, i.e., a PEC boundary,
the new absorption bound reduces to Rozanov’s bound. Note
that the total scattered field is composed of solely the reflected
field, and the transmitted field is negligible in this case. Thus,
quite surprisingly, with a proper design, we show that by
allowing transmittance through the absorbing layer, the net
absorbance can be largely increased.

Next, the interplay between L and σ is explored for a given
εr and μr . Figure 4 depicts a contour plot (“isolines”) of ν as a
function of the sheet inductance, L, and σ for μr=1, εr=1.5.

It can be observed in Fig. 4 that there is a wide range of
parameters that indeed give improvement (ν > 1). This can
be explained by noting that at long wavelength a thin ab-
sorbing layer provides additional series inductance of μ0μrd .
Therefore, by introducing an additional inductive surface
impedance, the effective layer inductance increases and there-
fore the bound relaxes, as seen in Eq. (12) compared to
Eq. (1). However, despite being intuitive, this explanation is
not complete since an inductive boundary does not necessary
guarantee practical enhancement in the absorption, as can be
viewed by the domains where ν < 1, therefore it performs
poorly in comparison to an optimal Rozanov absorber. The
reason for such cases should be directly associated with the
fact that the surface is partially transparent. This observation
makes our result even less intuitive since it hints at a gentle
balance between the absorption and transmittance processes
that is dictated by the additional degree of freedom, in the
form of the included inductive impedance surface.

A. Practical design—Inductive boundary

A practical design of an ultra-wide-band wave
absorber with inductive boundary condition is pre-
sented (k = 1). The surroundings are assumed with
ε0 = 8.85 × 10−12 (F/m), μ0 = 1.2566 × 10−6 (H/m). The
absorber thickness is d = 0.4 (m) with parameters εr = 1.5,

μr = 1, σ = 0.05 (S/m) and terminated by a nonopaque
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FIG. 5. Design of wave absorber with an inductive impedance
boundary. (a) The boundary is implemented with inductors (blue)
that occupy the entire unit-cell cross section (theoretical impedance
sheet). (b) HFSS simulation setup. The periodic structure is excited
by a Floquet port where only the fundamental mode is propagating
and being reflected, transmitted, or absorbed. (c) Square grid of ILWs
serves as an inductive impedance sheet that is capable of operating
under both polarizations (due to the existence of horizontal and verti-
cal loaded wires). (d) Reflection (analytical, blue circles; simulated,
purple circles) and transmission (analytical, red circles; simulated,
green circles) coefficients as a function of the operating frequency. In
addition, optimal results (Rozanov bound) of a PEC backed absorber
are presented by a dashed black line. (e) Absorption coefficient as a
function of frequency (blue) compared to an optimal design of a PEC
backed absorber (red dashed line).

inductive impedance sheet with inductance of L = 10 (μH).
The inductive impedance has been realized in two different
periodic ways [unit-cell dimension is taken as b = 20 (mm)].
The first in Fig. 5(a) depicts an ideal impedance sheet,
where the inductor occupies the entire cross section of the
unit cell. Figure 5(b) illustrates the simulation layout that

was implemented in HFSS [44]. The second realization in
Fig. 5(c) depicts a practical implementation of the impedance
sheet by PEC inductively loaded wires (ILWs). The length of
each wire is 2lw = 10 (mm) distributed equally between two
arms with a thickness of 2aw = 2 (mm), which leads to a tiny
parasitic inductance that is negligible in comparison with the
loading inductor [45]. The design includes both vertical and
horizontal ILWs, which enable the absorber to operate at both
polarizations of the incident wave. The wires are separated
by a distance of df = 4 (mm) surrounded by a standard foam
material [46]. The figure captures both top and side views.
Figure 5(d) depicts the analytically calculated reflection
(blue) and transmission (red) as a function of the operating
frequency, while the corresponding simulated HFSS results
are presented by purple and green circles, respectively, with
an excellent agreement (the simulations were performed for
both the theoretical impedance and the wired sheet, yielding
similar results with a tiny relative error, less than 2% on
average, between the two polarizations). In addition, the
optimal Rozanov’s behavior of the reflection coefficient, i.e.,
| ∫ ∞

0 ln |ρ(λ)| dλ| � 2π2μrd , with uniform reflection in the
frequency band f ∈ {4, 1600} (MHz), is depicted by a dashed
black line. Figure 5(e) described the absorption coefficient
as a function of frequency, where it can be observed that
the performances of the impedance inductive sheet absorber
are enhanced in comparison to the optimal PEC case, i.e.,
Rozanov’s bound. The improvement can be seen at any
frequency of operation, i.e., from extreme low frequencies
up to higher frequencies. We stress that by increasing the
minimal frequency (reducing the maximal wavelength) of
operation in Rozanov’s bound, the absorption performances
may be improved at higher frequencies.

B. Other types of impedance sheets

Here, we consider the case of a Dallenbach absorber ter-
minated at one end by a nonopaque resistive (capacitive)
impedance sheet (k � 0). As previously discussed, such an
absorber allows the existence of both reflected and trans-
mitted waves. In fact, the resistive (capacitive) case has a
unique feature in comparison to the previous cases. When
considering an extremely large wavelength, the transmission
coefficient is no longer negligible (|ρ| �� |T |), thus it cannot
be neglected when deriving an absorption sum rule as per-
formed in Eq. (12). Therefore, no analytic relation, similar
to Eq. (12) of the inductive case, can be found. However,
the absorption performance can be analytically explored and
numerically verified by electromagnetic simulations (HFSS).
Figure 6(a) depicts the reflection and transmission coefficients
as a function of the operating frequency (analytical and HFSS
simulation results) for the resistive case (ZL = η0), where
Fig. 6(b) depicts the absorption coefficient (Ã) in comparison
with those of the optimal Rozanov bound with uniform reflec-
tion in the frequency band f ∈ {4, 1600} (MHz). Figures 6(c)
and 6(d) describe the corresponding results for the capacitive
case with C = 50 (pF), Zs = 1/( j2π f C).

Following the analytic derivation in Sec. IV and the nu-
merical results in Fig. 6, it can be noted that 1

2 | ∫ ∞
0 ln[1 −

Ã(λ)] dλ| �< ∞. This nontrivial result can be understood by
observing a discrete transmission-line model [that is com-
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FIG. 6. Reflection, transmission, and absorption results of a
resistive boundary, ZL = η0 (an open absorber), are presented in
(a),(b) and described for a capacitive boundary with C = 50(pF)
in (c),(d). (a),(c) Reflection (analytical, blue circles; HFSS simula-
tion, purple circles) and transmission (analytical, red circles; HFSS
simulation, green circles) coefficients as a function of the operating
frequency. Optimal results according to Rozanov’s bound are pre-
sented as a dashed black line. (b),(d) Absorption coefficient as a
function of frequency for the resistive, capacitive impedances (blue),
respectively. An optimal design of a PEC backed absorber is pre-
sented as a red dashed line.

posed of a periodic arrangement of unit cells containing series
inductive-type impedances and shunt capacitive-type admit-
tance; see Ref. [38], Fig. S1(b)]. At the low-frequency limit,
the shunt admittance (which is analogous to electric conduc-
tivity) is the dominant component within each unit cell, since
the inductors’ impedance vanishes while the impedance of the
shunt capacitors is extremely large. Therefore, the lossy TL
physically behaves as a lumped resistor that is connected in
parallel to a load impedance representing the free space (η0)
implying nonzero scattering (reflection, transmission) and ab-
sorption. It can be observed in Fig. 6 that at low frequencies,
the capacitive loading impedance behaves similarly to the
resistive loading, since the impedance of the capacitor is dom-
inant with respect to the free-space impedance, |Zs| � η0. On
the other hand, at large frequencies the opposite relation holds
(|Zs| 
 η0), thus the boundary behaves similarly to PEC. It
can be observed in Figs. 5 and 6 that at large frequencies
(small wavelengths), the absorption is negligibly affected by
the loading impedance, since the thickness of the Dallen-
bach layer is substantially larger with respect to the operating
wavelength. At the extreme case of f → ∞, i.e., d/λ →
∞, the absorbing layer is infinitely long, thus rendering the
bounding sheet redundant. This physical observation further
underlines the discussion above that improved low-frequency
absorption is possible by altering the boundary condition
(similar observations were made in [9] for an acoustical
realization).

FIG. 7. Resonator design. (a) Reflection (blue dots, analytical;
black dots, simulated) and transmission (red dots, analytical; pur-
ple dots, simulated) coefficients of a resonant impedance sheet
(capacitive-inductive sheet) in free space without the absorbing sub-
stance. The layout of the impedance sheet is identical to the one
described in Sec. V A where the inductive loading has been re-
placed by a series connection of a capacitor C = 10−9(F ) and an
inductor L = 10−6(H ). (b) Loading impedance ZL (complex value).
(c) Reflection and transmission coefficients of the absorbing structure
terminated by the capacitive-inductive impedance sheet. (d) Absorp-
tion coefficient of a Dallenbach absorber terminated by the resonant
sheet (blue dots, analytical; black dots, simulated) and by a PEC
backed sheet (dashed red line).

The numerical examples presented above (and also in
Sec. V A) state that using an inductive, capacitive, or resistive
termination instead of a standard, typical, PEC sheet results in
an improved absorption performance due to reduction of the
total scattering at low frequencies (large wavelengths). How-
ever, there is also a transmitted field beyond the absorbing
layer that is mandatorily blocked for any Dallenbach absorber
which obeys the Rozanov bound. This blocking, which occurs
across the entire frequency range, due to the PEC, may be
too restrictive for some applications, such as, for example,
if blocking is needed only in a defined frequency range. In
such cases, one can use an impedance loading that exhibits
short circuit behavior only in this frequency. To that end, a
series type resonant impedance loading that is tuned to that
frequency range can be used. This is demonstrated in Fig. 7.
Here, the wires are loaded by a capacitor [C = 1 (nF)] and
an inductor [L = 1 (μH)] connected in series, turned to res-
onate at fres ∼ 5.03 (MHz). As an initial step, we present in
Figs. 7(a) and 7(b) the behavior of the resonant sheet itself,
i.e., in a free space without the absorbing Dallenbach layer.
Figure 7(a) depicts the reflection (blue dots, analytical; black
dots, simulated) and transmission (red dots, analytical; purple
dots, simulated) coefficients as a function of the operating
frequency, while Fig. 7(b) depicts the corresponding loading
impedance, ZL. Figures 7(c) and 7(d) describe the reflec-
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tion, transmission, and absorption coefficients of a Dallenbach
layer terminated by the resonant impedance sheet as a function
of the frequency (analytical and simulated).

The absorbing substance is composed of εr = 1.5, μr =
1, σ = 0.05 (S/m) with d = 0.4 (m). In addition, the absorp-
tion coefficient of the same absorber (identical electromag-
netic parameters and thickness) backed by PEC is presented
by a dashed red line. It can be observed that although the
impedance sheet operates as a PEC at fres, its large wavelength
(small frequencies) capacitive behavior allows the structure to
absorb more efficiently than what is dictated by Rozanov’s
bound. At the resonance frequency, the absorption coefficient
of the resonant structure is identical to the PEC backed ab-
sorber, resulting in an intersection point between the blue line
and the red-dashed line in Fig. 7(d). The minimal absorption
point, i.e., Ã ∼ 0, is located nearby, but not exactly at the
resonance frequency, due to the contribution of the lossy layer.
An overlap between these two points occurs when the reso-
nance frequencies of the sheet and the structure (Dallenbach
layer terminated by the sheet) are identical, i.e., the resonance
frequency is sufficiently small such that the lossy TL can be
described effectively as a shunt admittance.

VI. SUMMARY AND CONCLUSION

In this manuscript, we augmented Rozanov’s bound for
Dallenbach layers that are backed by partially transparent
impedance sheets. We demonstrated analytically and by sim-
ulations potential realistic designs of absorbing layers that can
absorb beyond what is expected by Rozanov’s bound from a
layer with the same thickness. The key point of our approach
was obtained by observation of the mathematics of Berenger’s
PML layers. There, as discussed in Sec. III, an additional
degree of freedom in the form of magnetic conductivity is
used in order to manipulate the long-wavelength behavior of
the reflection coefficient, which in turn enables us to achieve
ultrabroadband absorption. Taking this observation into real-
istic designs, we show in Secs. IV and V that the introduction
of impedance sheets, either inductive, capacitive, or resonant,
may yield similar control of the long-wavelength behavior of
the reflection coefficient, and consequently the net absorption.
These designs, as shown in the manuscript, provide the possi-
bility for net absorption that is not constrained by Rozanov’s
bound, albeit in a passive, LTI absorbing layer. Our findings
may be useful in practical designs of absorbers in a wide range
of frequencies and physical realms.
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APPENDIX A: DERIVATION OF EQS. (4a)–(4c)

The input impedance as seen at the surface of
the lossy medium towards the absorbing layer is
given by Zin(λ) = Z0(λ) tanh (γ (λ)d ), with γ (λ) =

( j/λ)
√

(2πc0μ̂ − jλσ̂m)(2πc0ε̂ − jλσ̂ ) as the complex
propagation term, where {ε̂, μ̂, σ̂ , σ̂m} are frequency-
dependent permittivity, permeability, electric conductivity,
and magnetic conductivity, respectively. Z0(λ) is the
characteristic impedance of a lossy TL which is given
by [47,48] with its low-frequency approximation ( f → 0),

Z0(λ) =
√

2πc0μ̂ − jλσ̂m

2πc0ε̂ − jλσ̂

∼
√

σm

σ

[
1 + jπc0

(
μ

σm
− ε

σ

)
λ−1

− 1

2
π2c2

0

(
3

ε2

σ 2
− 2

ε

σ

μ

σm
− μ2

σ 2
m

)
λ−2

]
. (A1)

Similarly, approximating tanh (γ (λ)d ) by

tanh (γ (λ)d )∼ tanh(
√

σmσd )

+ jπc0
√

σmσd

(
μ

σm
+ ε

σ

)
sech2(

√
σmσd )λ−1

+ π2c2
0d

√
σσmsech2(

√
σσmd )

[
1

2

(
μ

σm
− ε

σ

)2

+ d
√

σσm

(
μ

σm
+ ε

σ

)2

tanh(
√

σσmd )

]
λ−2,

(A2)

where ε, μ, σ , and σm are the static values of the parameters.
Using Eqs. (A1) and (A2) gives the long-wavelength (low-
frequency) approximation of the input impedance,

Zin(λ) ∼
√

σm

σ
tanh(

√
σmσd ) + jπc0

√
σm

σ

×
[

d
√

σσm

(
μ

σm
+ ε

σ

)
sech2(

√
σσmd )

+
(

μ

σm
− ε

σ

)
tanh(

√
σσmd )

]
λ−1 + O(λ−2).

(A3)

The reflection coefficient at the interface between the ab-
sorbing layer and the surroundings (the semi-infinite TL) is
defined in Eq. (3). Substituting Eq. (A3) into Eq. (3) yields
the long-wavelength approximation of the reflection coeffi-
cient in Eq. (4a). Note that by applying the small argument
approximation d 
 δ, with δ = 1/

√
σmσ in Eqs. (4a)–(4c)

(where δ may be identified as a “static penetration depth”),
tanh(

√
σmσd ) ∼ √

σmσd − (σmσ )3/2d3/3, which, with κ ∼
σmd/η0 and further setting σm → 0, identifies with the
Rozanov approximation [20] ρ(λ) ∼ −1 + 4π jμrd/λ.

APPENDIX B: REFLECTION COEFFICIENT SUM RULES

Here, we assume a time dependence of e j2π f t , with f
the frequency and λ = c0/ f the wavelength, thus the reflec-
tion coefficient ρ is an analytic function in the lower half
of the complex f -plane or equivalently in the upper half of
the complex λ-plane. In view of the long-wavelength ap-
proximation, ρ(λ) ∼ −1 + A + j2πB/λ in Eq. (4a), define
ρa(λ) = ρ(λ) − A. ρa(λ) is also an analytic function in the
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upper half complex λ plane with the long-wavelength approx-
imation ρa(λ) ∼ −1 + j2πB/λ. Recalling Rozanov’s bound
derivation in [20] for analytic functions in the upper half of
the λ-plane with the asymptotic behavior in Eq. (2), it follows
that this same derivation can be used for ρa, resulting in
Eq. (5). Here, the result of the integration may be positive,
therefore the inequality sign cannot be reversed in contrast
with Rozanov’s case.

APPENDIX C: MONTE CARLO SIMULATIONS

The bound described in Eq. (5) can be simplified for Dal-
lenbach layers with no static electric conductivity using Taylor
series and in the limit σ → 0 (see Appendix B),∫ ∞

0
ln |ρ(λ) − Â| dλ � −2π2μrd(

1 + σmd
η0

)2 , Â =
2σmd
η0

1 + σmd
η0

. (C1)

Here, we perform numerical simulations to verify the bound in
Eq. (C1), with the absorbing layer having unit relative perme-
ability, μr = 1. It can be observed that the right-hand side in
Eq. (C1) is independent of ε and thus only dependent on σm.
We considered several scenarios; in the first, the parameters
(ε, σm) were taken as constant over the entire wavelength
spectrum and thus equal to the static parameters. For each
selection of magnetic conductivity, we generated random
positive relative permittivity, ε ∼ U (0, 500) × ε0 [U (x1, x2)
denotes uniform distribution between in the range (x1, x2)],
and we evaluated both sides of Eq. (C1). Next, we consid-
ered a more realistic case in which the permittivity has some
frequency dependence (ε̂). We used the following Lorentzian
model [49]:

ε̂r (λ) = ε∞ + A

1 + j λrel
λ

− (
λres
λ

)2 , (C2)

where ε∞ = 1 is the relative permittivity at extremely large
frequency, and λres and λrel are the resonance wavelength
and damping coefficient, respectively. The positive values of
{A, λres, λrel} ∼ U (0.1, 100) were randomly selected. Let us
denote the LHS of Eq. (C1) which was calculated numerically
for each set of random parameters {A, λres, λrel} with I , and
the RHS will be termed “Bound.” Figure 8 depicts by a black
line the bound, and the blue dots denote I (for each set of the
parameters). Figure 8(a) depicts the constant frequency varia-
tion parameters, while Fig. 8(b) depicts the Lorentzian model.
It can be observed that the value of the numerical integration,
I , on the LHS of Eq. (C1) is always above the corresponding
calculated lower bound, thus indicating that indeed ε does not
affect the bound. To enrich the discussion, we considered a
wavelength-dependent magnetic conductivity in accordance
with the Drude model for ordinary electric conductors [43],

σ̂m(λ) = σm

1 + j λd
λ

, (C3)

where λd ∼ U (0.1, 100) is the magnetic conductivity damp-
ing coefficient. Figure 8(c) depicts the simulation results for
a constant frequency dependence of the permittivity (with
εr = 1.5), and Fig. 8(d) presents the results for a Lorentzian
dependence as appears in Eq. (C2). It can be observed that the
RHS of Eq. (C1) bounds from below the LHS.

FIG. 8. Monte Carlo simulations of Eq. (C1) where μr = 1. The
lower bound, i.e., the RHS of the equation, is shown in black,
while the integration on the LHS is shown by blue dots for random
sets of parameters. (a) The parameters {ε, μ, σm} were considered
as constant over the entire frequency spectrum and equal to the
static parameters. For each σm, multiple positive values of ε were
randomly generated. (b) For the dispersive dielectric constant, we
consider a Lorentzian form of the permittivity, ε(λ), where its pa-
rameters, {A, λrel, λres}, were randomly selected with positive values.
(c),(d) Similar results to those in (a),(b) for wavelength-dependent
magnetic conductivity. (c) εr = 1.5 (arbitrarily selected). (d) εr (λ)
has a Lorentzian form given in Eq. (C2).

APPENDIX D: KRAMERS-KRONIG RELATIONS AND
WIDE-BAND CONSTANT PARAMETERS WITHIN

A FINITE FREQUENCY BAND

Kramers-Kronig relations are mathematical expressions
that link the real and imaginary parts of a causal func-
tion, which is analytically defined in half of the complex
plane. These relations state that in order to evaluate the

FIG. 9. The complex effective permittivity of a lossy substance,
taking into account both polarization and conduction loss mecha-
nisms. The blue line represents a causal substance, while the dashed
red line depicts a constant model. The parameters in the causal model
were carefully chosen to achieve a high level of agreement within the
frequency range of f ∈ (0, 2) (GHz). The real part of the permittivity
is shown in (a), while the imaginary part is displayed in (b).
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real (imaginary) part of a complex function at a specific
frequency, one must sum over the entire frequency band
of the imaginary (real) part [43]. In Sec. V, we focus on
modeling realizable systems with practically constant effec-
tive parameters within a finite frequency band, such as f ∈
(0, 2) (GHz). It is important to note that assuming practically
constant permittivity or conductivity in this frequency band
does not contradict the Kramers-Kronig relations. This is be-
cause the resonances of the material occur at much higher
frequencies.

To visually demonstrate this argument, we provide de-
tails of a Lorentzian model for the complex permittivity,
assuming a time dependence of e j2π f t . The equation for
the complex relative effective permittivity, εeff ( f ), is given
by [43]

εeff ( f ) = εr ( f ) + σ ( f )

j2π f ε0

= 1 + A

1 + j f
frel

− ( f / fres)2
+ σ

j2π f ε0(1 + j2π f τσ )
,

(D1)

where εeff ( f ) is the complex relative effective permittivity,
A is the dielectric strength response, frel = c0/λrel is the re-
laxation frequency, fres = c0/λres is the resonant frequency,
and τσ is the time constant of the conductor. The first and
second terms on the right-hand side of Eq. (D1) represent
the polarization response of the material, while the third
term describes the conduction mechanism (Drude model).
In our paper, as depicted in Figs. 3–7, we aim to main-
tain a constant permittivity and electric conductivity within
a finite frequency range. To achieve this, specifically for
f ∈ (0, 2) (GHz), we set the free parameters of the model
as follows: A = 0.5, frel = 5 × 1011 (Hz), fres = 1010 (Hz),
τσ = 10−12 (s), and σ = 0.05 (S/m). We then compare the
complex effective relative permittivity, εeff ( f ), of the causal
model to the desired “constant” model with εr = 1.5 and
σ = 0.05 (S/m). The results are presented in Fig. 9, where
the blue line represents the causal model and the red dashed
line corresponds to the desired “constant” model. A very good
agreement is observed within the desired frequency range.
However, it is worth noting that further improvement in agree-
ment can be achieved by positioning the resonance at an even
higher-frequency band.
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