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Subexponential critical slowing-down at a Floquet time-crystal phase transition
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Critical slowing-down (CSD) has been a trademark of critical dynamics for equilibrium phase transitions of
a many-body system, where the relaxation time for the system to reach thermal equilibrium or the quantum
ground state diverges with system size. The time-crystal phase transition has attracted much attention in recent
years for it provides a scenario of phase transition of quantum dynamics, unlike conventional equilibrium
phase transitions. Here, we study critical dynamics near the Floquet time-crystal phase transition. Its critical
behavior is described by introducing a temporal coarse-grained correlation function, whose relaxation time
diverges at the critical point revealing the CSD. This is demonstrated by investigating the Floquet dynamics
of a one-dimensional disordered spin chain. Through finite-size scaling analysis, we show that the relaxation
time has a universal subexponential scaling near the critical point, in sharp contrast to the standard power-law
behavior for CSD in equilibrium phase transitions. This prediction can be readily tested in present quantum
simulation experiments.
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I. INTRODUCTION

Critical slowing-down (CSD) is a ubiquitous phenomenon
near phase transitions reflecting a universal scaling relation
between space and time, which emerges in a broad range of
thermodynamic systems such as electronic materials [1–3],
atomic quantum many-body systems [4,5], and even social
science models [6,7]. It has been introduced in the Van Hove
theory [8–10], describing the existence of zero-relaxation-rate
modes at a second-order phase transition point. Its universal-
ity has been unveiled through a phenomenological approach
proposing a dynamic scaling hypothesis [11–13], as later jus-
tified by the renormalization group (RG) theory of critical
dynamics [14,15].

In recent years, the time crystal [16,17], a dynamical phase,
has been attracting tremendous research interest. It has been
established in theory that time crystals could be stabilized
by long-range interactions [18], disorder-induced localization
[19], or intricate nonlinear effects [20]. In experiments, time
crystals have been found in quantum many-body dynamics
of a variety of quantum systems such as trapped ions [21],
superfluid helium [22,23], and cold atoms [24]. Despite the
extensive studies on the time-crystal phases, the spontaneous
symmetry breaking of the quantum dynamics near the phase
transition remains less well understood. In particular, because
the time-crystal phase transition is intrinsically a transition
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of dynamics, characterizing the CSD mechanism in this dy-
namical phase transition is fundamentally different from its
equilibrium analog [25–27].

In this paper, we examine the spontaneous time-crystal
phase transition in the Floquet dynamics of a disordered spin
chain in one dimension (1D) [19,28]. The CSD is extended
from the equilibrium setting to the dynamical phase transition
by performing coarse graining in the time dimension. We
find that the coarse-grained dynamics exhibits a diverging
relaxation time near the dynamical phase transition. Based
on the strong-disorder RG theory [15,29–32], we propose
a finite-time–finite-size scaling form for the coarse-grained
correlation. A large-scale numerical simulation for a system
size up to 60 spins is carried out by mapping the spin chain
to Majorana fermions. The numerical results show a nice
data collapse on a universal curved surface. Our finite-size
scaling analysis implies a subexponential slowing-down for
the critical dynamics, unlike the standard CSD in equilibrium
phase transitions.

II. MODEL

A prominent scenario to support the time-crystal phase is
the spontaneous period doubling of Floquet quantum dynam-
ics of 1D disordered spin chains, where heating effects caused
by periodic driving are suppressed by many-body localiza-
tion [33–35]. The quantum dynamics is described by Floquet
operators [19,28,32,36,37],

ÛF = exp

⎡
⎣−it2

L−1∑
j=1

Jj σ̂
z
j σ̂

z
j+1

⎤
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We take t1 = t2 = 1/2 and choose a lognormal distribution for
the random Ising couplings (Jj). The couplings have a typical
strength Jtyp given by ln Jtyp = 1

L

∑
j ln Jj , and their loga-

rithms have a standard deviation σJ . This model exhibits spon-
taneous Ising symmetry breaking and discrete time translation
symmetry breaking in the parameter regime 1 − g < Jtyp/π <

g � 1 [19,28]. Throughout this paper, we take Jtyp = 0.1π

and σJ = 0.2π , for which the critical point separating the
symmetry-broken time-crystal phase and the symmetric phase
is located at gc = 0.9. Both of the phases are localized.

For each disorder configuration J ≡ (J1, J2, . . . , JL−1), we
perform coarse graining in the time direction by introducing

O(T, J) = 1

LLt

∣∣∣∣∣∣
∑

j

T +Lt∑
n=T +1

〈
σ̂ z

j (n, J)σ̂ z
j (0)

〉
(−1)n

∣∣∣∣∣∣, (2)

where σ̂ z
j (n, J) = (ÛF (J)†)nσ̂ z

j (ÛF (J))n and Lt is the averaged
number of Floquet periods. With the lattice sites and multiple
consecutive Floquet periods averaged over, the coarse-grained
quantity O(T, J) is introduced to diagnose the collective relax-
ation dynamics of the system that develops CSD at the phase
transition.

In our numerical simulations, we choose a Néel state
|↑↓↑↓ · · ·〉 polarized in the z direction as the initial state
of the Floquet evolution. Our main results, however, do not
depend on this particular initial state (see Appendix C). The
Floquet operator is mapped to dynamical evolution of non-
interacting fermions by Jordan-Wigner transformation, by
which the autocorrelation functions in Eq. (2) are constructed
from the Pfaffian of the fermion system (Appendix A). In the
symmetric paramagnetic phase, the spin polarization pattern
in the initial state would relax during the Floquet time evolu-
tion and eventually disappears at the long-time limit, which
corresponds to a vanishing autocorrelation, O(T, J) → 0
at large T . In the time-crystal phase, the initial spin po-
larization is retained in the quantum dynamics even at the
long-time limit. This is characterized by a finite autocorrela-
tion, O(T, J) �= 0. The relaxation dynamics of O(T, J) closely
resembles the order parameter of the Ising phase transition
of equilibrium systems with a pinning field added to the
boundary [38].

To extract the universal properties of the relaxation dynam-
ics, we need to average over disorder configurations (different
J’s). It has been established by RG analysis that different
ways of averaging disorder would produce different critical
scaling [29,30]. Here we perform disorder averaging in two
ways. One is arithmetic averaging and the other is geometric
averaging, by which we obtain the mean value and the typical
value

A
mea = 1

NJ

∑NJ
k=1 A(Jk ), (3)

A
typ = exp

[
1

NJ

∑NJ
k=1 ln A(Jk )

]
, (4)

respectively, where A(Jk ) = 〈Â〉 is the quantum state expecta-
tion of a physical observable Â, k is the disorder index, and NJ
is the number of disorder configurations.
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FIG. 1. The relaxation slowing-down at critical point gc = 0.9.
Dynamics of (a) mean and (b) typical correlation [Eq. (2)] with
L = 60. Here, we average over Lt = 10 Floquet periods and 3000
disorder configurations. (c) The relaxation time obtained by fitting
the relaxation dynamics to an exponential function. It systematically
increases as the tuning parameter g approaches the critical point. The
fitting fails in the shaded region, indicating nontrivial behavior of
the critical dynamics. This regime is not sharply defined, but rather
just marked there as a guide to the eye. (d) The sum of squares due
to error (SSE) of the exponential fitting. The dashed lines mark the
critical point.

III. RELAXATION ACROSS THE FLOQUET
TIME-CRYSTAL PHASE TRANSITION

Figure 1 shows the relaxation dynamics. Away from the
critical point, the system has a finite correlation length. It takes
a finite amount of time for the system to dynamically relax.
In the paramagnetic phase with g < gc, we find that O(T )

mea

and O(T )
typ

quickly decay to zero after brief oscillations.
The decay dynamics becomes relatively slower approaching
the critical point.

While in the time-crystal phase with g > gc, O(T )
mea

and
O(T )

typ
also undergo swift decay before reaching their static

value. At the critical point g = gc, the relaxation dynamics
develops an apparent long-tail behavior, which implies that
the relaxation slows down dramatically.

From the relaxation dynamics, we extract the relaxation
time τ by fitting the dynamics for different system sizes with
an exponential function O(T )fit = a1e−T/τ + a2. The dynam-
ics of O(T )

mea
fits well to the exponential function in the

regime not too close to the critical point. Figures 1(c) and 1(d)
show the extracted relaxation time and the fitting errors, re-
spectively. We observe that the relaxation time τ rises up near
the critical point on both sides of the phase transition. Deep
in the time-crystal or the paramagnetic phase, the relaxation
time is unaffected by the system size. In contrast, near the
critical point, we find significant system-size dependence for
the relaxation time. At the same time, the fitting error becomes
substantially larger. The results with geometric average are
qualitatively similar (see Appendix B). These observations
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FIG. 2. Mean and typical correlation functions of Floquet eigenstates. (a) Mean and (b) typical spin correlation functions with system size
L = 40 for the paramagnetic phase (g = 0.841), critical point (g = 0.9), and time-crystal phase (g = 0.915). Spin correlations are averaged
over 2500 disorder configurations. (c) and (d) show the mean and typical maximum eigenvalue α of the correlation function matrices,
respectively, which acts as an order parameter reflecting the spatial long-range order. Finite-size scaling analysis has been performed on α. The
correlation-length exponent ν, as defined by the correlation-length divergence at the critical point, ξ ∼ δ−ν , is 2.01 ± 0.02 for the mean case
[Eq. (3)] and 1.12 ± 0.03 for the typical case [Eq. (4)]. The other exponent obtained for mean α is a = −0.170 ± 0.002 whereas for typical
α, a = −0.512 ± 0.003.

indicate that our introduced relaxation dynamics is indeed
critical at the phase transition.

IV. FINITE-SIZE SCALING AND DYNAMICAL
CRITICALITY

In order to systematically study the CSD of the relaxation
near the phase transition, we analyze the Floquet dynamics
with finite-size scaling theory. We first extract the ν exponents
from the eigenstates of the effective Hamiltonian, which is
defined by

ÛF (J) = exp[−iĤeff (J)]. (5)

Figures 2(a) and 2(b) show the disorder-averaged correlation
functions, Cx

mea
and Cx

typ
, defined according to Eqs. (3) and

(4) with Ck
x = |〈φk|σ̂ z

j σ̂
z
j+x|φk〉|. Here, |φk〉 denotes a ran-

dom eigenstate in disorder configuration k, and we choose
j = 
(L − x)/2�, x = 1, 2, . . . , L − 1, to minimize boundary
effects. In the paramagnetic phase, the correlation function
decays exponentially down to zero with a finite correlation
length, whereas in the time-crystal phase, the correlation
function saturates to a finite value at large distance. Near
the critical point, the correlation length is comparable to the
system size. The diverging behavior of the correlation length
is reflected by the maximum eigenvalue (αk) of the correlation
matrix Ck with matrix elements Ck

i j = 〈φk|σ̂ z
i σ̂ z

j |φk〉 [39]. Its
disorder-averaged values, αmea and αtyp, are introduced corre-
spondingly. For systems with long-range order, limL→∞ α/L
is finite, while limL→∞ α/L → 0 for correlation functions that
vanish at long distance. At the critical point, the α value
exhibits nontrivial scaling with the system size, reflecting
the correlation-length criticality. With our numerical results,

we find a reasonable data collapse [Figs. 2(c) and 2(d)] by
taking a finite-size scaling ansatz [29–32],

α = L−a f (δL1/ν ), (6)

with δ = [ln(πg) − ln(π − Jtyp)]/σ 2
J . For the arithmetic

disorder average, we obtain a = −0.170 ± 0.002 and
ν = 2.01 ± 0.02. For the typical average, we obtain a =
−0.512 ± 0.003 and ν = 1.12 ± 0.03, having a sizable dif-
ference from the arithmetic average. These numerical results
are consistent with disorder RG analysis at the infinite-
randomness fixed point [30]. The typical correlation has a
less divergent correlation length, which deviates substantially
from the mean correlation because the latter receives a signif-
icant contribution from distant resonant pairs [29].

With the ν exponents obtained, we then perform the finite-
size scaling analysis for the relaxation dynamics near the
critical point. Although both the spatial correlation length ξ

and the relaxation time τ have divergent behavior at the crit-
ical point, the disordered system lacks space-time symmetry:
ξ and τ exhibit different scalings. Since the correlation length
diverges at the critical point, it takes a divergent amount of
time for the system to establish long-range spin correlations. It
has been argued based on disorder RG theory that disordered
systems obey an activated dynamic scaling ln τ ∼ ξ b over a
long time [40]. Since the dynamics of O(T ) is analogous to
the order parameter of an equilibrium system in the presence
of pinning fields, we propose a two-variable scaling function
[38,40]

O(T ) = L−β/νG(L/ξ, ln T̃ / ln τ̃ ). (7)

Here, we introduce the dimensionless time variables T̃ and
τ̃ defined as T/T0 and τ/T0, respectively, where T0 is some
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FIG. 3. The finite-size scaling results for the critical dynamics. (a) The finite-size scaling for the mean value of the correlation in Eq. (2).
The fitting yields the exponents b = 0.45 ± 0.05, β = 0.32 ± 0.18, gc = 0.90, and T0 = 2.03 ± 0.28. (b) The analysis for the typical value
of the correlation, where we find b = 0.54 ± 0.09, β = 0.37 ± 0.04, gc = 0.90, and T0 = 1.49 ± 0.08. The fitting error is obtained by
bootstrapping. We take the ν exponents from the results in Fig. 2, to reduce the number of fitting parameters here. (c) and (d) Choosing
the data for ln T̃ L−b ∈ [1, 1.02], cross sections of the collapsed surface are shown for the mean and typical values of the correlation. This
demonstrates the high quality of the data collapse in the finite-size scaling analysis.

nonuniversal microscopic timescale analogous to nonuniver-
sal microscopic length scales in equilibrium phase transitions
[15]. Taking the activated dynamic scaling into account, the
scaling function is rewritten as

O(T ) = L−β/νF (δL1/ν, ln T̃ /Lb). (8)

For the coarse graining, we average over multiple Floquet
periods and choose Lt = 10 in Eq. (2), to filter out the short-
time dynamics. To reduce the contribution of nonuniversal
dynamics from state initialization, it is required to examine the
long-time limit, with T � Lt . In our numerical simulations,
we choose T in the range between 108 and 806 for finite-size
scaling analysis. We sample 1500 disorder configurations, and
the results for the finite-size scaling with the two variables in
Eq. (8) are shown in Figs. 3(a) and 3(b) for mean and typical
values, respectively. For both arithmetic and geometric aver-
aging, the numerical data points from 11 system sizes ranging
between L = 20 and L = 40 collapse onto a single smooth
curved surface with the critical exponents b = 0.45 ± 0.05
and β = 0.32 ± 0.18 for the mean value and b = 0.54 ± 0.09
and β = 0.37 ± 0.04 for the typical value. The errors are
obtained from bootstrapping [41]. The value of the exponent
b which defines the property of dynamic scaling shows the
subexponential nature of critical relaxation. More concretely,
for either way of disorder averaging, the CSD in this dynami-
cal phase transition takes an approximate form of

τ ∝ exp[
√

δ−ν]. (9)

In the fitting we take the value of ν exponent determined
through Eq. (6) to reduce the number of fitting variables
here. The nonuniversal time scales are obtained to be T0 =
2.0 ± 0.3 for the mean value and T0 = 1.49 ± 0.08 for the
typical value. Considering the evolution time we consider, this
microscopic time scale is relatively small.

We further illustrate the quality of two-dimensional data
collapse by cutting out a slice of data points, which are
shown by line plots in Figs. 3(c) and 3(d). Here, we pick
data points in a thin slice with ln T̃ L−b ∈ [1.00, 1.02] for both
mean and typical correlations and plot Lβ/νŌ as a function
of δL1/ν . As shown in Figs. 3(c) and 3(d), the data points

obtained from various system sizes consistently fall on a
smooth curve taking the determined exponents, which yields
a nice one-dimensional data collapse as widely used in ana-
lyzing equilibrium phase transitions [42]. This confirms the
high quality of the two-dimensional data collapse and further
justifies the scaling form assumed in Eq. (7). The analysis
also verifies the critical exponents we determine to describe
the CSD, and the resultant subexponential relation of the
relaxation time with system size.

Although we do not have a rigorous proof for our results
to apply to interacting systems (in the fermion language), it is
reasonable to expect that our finding of subexponential critical
slowing-down should apply beyond integrable models. The
scaling function in Eq. (7) has been motivated by an infinite-
randomness fixed point for general interacting disorder spin
chains. This scaling function is confirmed in this paper by
an integrable model, by which we are able to simulate large
systems. It has been shown that weak interactions that respect
the Z2 symmetry are irrelevant [32]. Whether the critical ex-
ponents may change when interactions are strong or break Z2

symmetry remains an outstanding open question. We would
like to leave out this subtle issue for future studies because the
numerical simulations for interacting systems are restricted to
very small systems.

V. CONCLUSION

We find that the phenomenon of critical slowing-down,
widely studied in equilibrium phase transitions, also carries
over to the dynamical Floquet time-crystal phase transition.
This is demonstrated by large-scale simulation of a disordered
quantum spin chain. The critical slowing-down is described
by introducing a temporal coarse-grained spin correlation,
which can be measured directly in quantum simulation ex-
periments. Through finite-size scaling analysis, we show that
the relaxation time of the coarse-grained spin correlation
has a universal divergence near the critical point. With both
arithmetic and geometric averages, the relaxation time has
an approximate subexponential form, which implies a drastic
critical slowing-down of the time-crystal phase transition.
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APPENDIX A: FREE-FERMION METHOD

We consider a Floquet time-crystal model in a random
spin chain in Eq. (1). In order to simulate larger systems,
we map this model to a system of noninteracting fermions
using Jordan-Wigner transformation. We break down the nu-
merical procedure into four parts. For dynamics simulation,
we compute the evolution for fermionic operators and map
the initial state to its fermionic counterpart. The dynamics of
the coarse-grained correlation O(T ) can then be computed in
the form of fermionic Pfaffians [43,44]. In terms of resolv-
ing eigenstates of the Floquet operator, we define a mapping
between quadratic Hamiltonians and coefficient matrices that
helps us compute the effective Hamiltonian defined in Eq. (5).
By standard diagonalization of the effective Hamiltonian, we
get the eigenstates of the Floquet operator. In the following,
we discuss these step by step.

1. Floquet evolution in the fermionic basis

The Jordan-Wigner transformation reads

σ̂ x
j = 2ĉ†

j ĉ j − 1, (A1)

σ̂
y
j =

j−1∏
k=1

(1 − 2ĉ†
k ĉk )ĉ†

j +
j−1∏
k=1

(1 − 2ĉ†
k ĉk )ĉ j, (A2)

σ̂ z
j = −i

j−1∏
k=1

(1 − 2ĉ†
k ĉk )ĉ†

j + i
j−1∏
k=1

(1 − 2ĉ†
k ĉk )ĉ j, (A3)

where σ̂ α
j (α = x, y, z) are spin-1/2 Pauli operators and ĉ j (ĉ†

j )
represents the fermionic annihilation (creation) operator. Its
inverse transformation is

ĉ j = 1

2

j−1∏
k=1

( − σ̂ x
k

)(
σ̂

y
j − iσ̂ z

j

) =
j−1∏
k=1

( − σ̂ x
k

)
σ̂−

j , (A4)

ĉ†
j = 1

2

j−1∏
k=1

( − σ̂ x
k

)(
σ̂

y
j + iσ̂ z

j

) =
j−1∏
k=1

( − σ̂ x
k

)
σ̂+

j . (A5)

With these transformations, the evolved annihilation oper-
ator ĉm (1 < m < L) after one Floquet period is

Û †
F ĉmÛF = Û †

F

m−1∏
k=1

( − σ̂ x
k

)
σ̂−

m ÛF = 1

2

m−1∏
k=1

( − σ̂ x
k

)
σ̂ y

m

[
cos(Jm)e−iπgσ̂ x

m − i sin(Jm)σ̂ z
mσ̂ z

m+1e−iπgσ̂ x
m+1

]

− i

2

m−1∏
k=1

( − σ̂ x
k

)
σ̂ z

m

[
cos(Jm−1)e−iπgσ̂ x

m − i sin(Jm−1)σ̂ z
m−1σ̂

z
me−iπgσ̂ x

m−1
]

= i

2
sin(Jm)eiπgĉ†

m+1 − i

2
sin(Jm)e−iπgĉm+1

+ 1

2
[cos(Jm) − cos(Jm−1)]eiπgĉ†

m + 1

2
[cos(Jm−1) + cos(Jm)]e−iπgĉm

− i

2
sin(Jm−1)eiπgĉ†

m−1 − i

2
sin(Jm−1)e−iπgĉm−1, (A6)

where the Floquet operator ÛF is defined in Eq. (1). For
convenience we further introduce Majorana fermions through
basis transformation

γ̂2 j−1 = −i(ĉ j − ĉ†
j ) and γ̂2 j = ĉ j + ĉ†

j . (A7)

This transformation can be described by a transformation
matrix UC

(γ̂1γ̂2 · · · γ̂2L−1γ̂2L )T = UC (ĉ1ĉ2 · · · ĉLĉ†
1 · · · ĉ†

L )T . (A8)

In the Majorana basis, Eq. (A6) is rewritten as

Û †
F γ̂2mÛF = cos(Jm) sin(πg)γ̂2m−1

+ cos(Jm) cos(πg)γ̂2m

+ sin(Jm) cos(πg)γ̂2m+1

− sin(Jm) sin(πg)γ̂2m+2, (A9)

Û †
F γ̂2m+1ÛF = − sin(Jm) sin(πg)γ̂2m−1

− sin(Jm) cos(πg)γ̂2m

+ cos(Jm) cos(πg)γ̂2m+1

− cos(Jm) sin(πg)γ̂2m+2, (A10)

where 1 � m � L − 1. For the boundaries (m = 0 and L), we
have

γ̂1 = −σ̂ z
1 , γ̂2L = −i

L∏
k=1

( − σ̂ x
k

)
σ̂ z

L. (A11)
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The evolution of operators γ̂1 and γ̂2L can be computed with
the form equations (A11)

Û †
F γ̂1ÛF = cos(πg)γ̂1 − sin(πg)γ̂2,

Û †
F γ̂2LÛF = cos(πg)γ̂2L + sin(πg)γ̂2L−1. (A12)

In sum, after n Floquet periods of evolution, the evolved
Majorana fermion γ̂m(n) (1 � m � 2L) can be expressed as

γ̂m(n) = (Û †
F )nγ̂m(0)(ÛF )n = [(VF )n�(0)]m, (A13)

where the matrix elements of VF are given in Eqs. (A9), (A10),
and (A12). The vector � is defined as

� = (γ̂1, γ̂2, . . . , γ̂2L )T . (A14)

From now on, the Floquet dynamics of the model will be
described through VF , as shown in Appendix A 3.

2. Mapping the initial Néel state to the respective fermionic state

To map the Néel state to the corresponding fermionic state,
we choose a Hamiltonian Ĥs whose ground state is the Néel
state

Ĥs =
L−1∑
j=1

Jj σ̂
z
j σ̂

z
j+1. (A15)

We would transform Ĥs into the fermionic basis Ĥf and map
the fermionic ground state of Ĥf with the Néel state. Since
Hamiltonian Ĥs has two degenerate ground states

|+〉 = 1√
2
(|↑↓↑↓ · · ·〉 + |↓↑↓↑ · · ·〉),

|−〉 = 1√
2
(|↑↓↑↓ · · ·〉 − |↓↑↓↑ · · ·〉)

and the Néel state is the superposition of these two Ising
symmetric ground states

|↑↓↑↓ · · ·〉 = 1√
2

(|+〉 + |−〉),

we need to map both |+〉 and |−〉 to fermionic states before
properly mapping the Néel state. First we transform Ĥs into
its fermionic counterpart using Eqs. (A1)–(A3)

Ĥf =
∑

j

J j (−ĉ†
j ĉ

†
j+1 + ĉ†

j ĉ j+1 − ĉ j ĉ
†
j+1 + ĉ j ĉ j+1). (A16)

We further diagonalize Ĥf through Bogoliubov transforma-
tion with the transformation matrix UB

(η̂0η̂1 · · · η̂L1 η̂
†
0 · · · η̂†

L−1)T = UB(ĉ1ĉ2 · · · ĉ†
1 · · · ĉ†

L )T . (A17)

This gives the diagonalized Hamiltonian Ĥf d = ∑
k εk η̂

†
k η̂k ,

where a constant has been neglected. The degenerate ground
states in Ĥs [Eq. (A15)] guarantee the existence of a zero mode
with ε0 = 0 in Ĥf d . The vacuum state |0〉 is a ground state and
together with |1〉 = η̂

†
0|0〉 can be matched with the degenerate

ground states |+〉 and |−〉 of the spin model

|+〉 = α+|0〉 + β+|1〉, |−〉 = α−|0〉 + β−|1〉. (A18)

The objective of mapping the Néel state |↑↓↑ · · · ↑↓〉 to a
fermionic state can thus be achieved by determining the coef-
ficients in Eq. (A18). Here, |0〉 is chosen to be a parity-even
vacuum. The spin and fermionic representations of the parity

operator are shown below. Judging by the fermionic represen-
tation, we can always redefine η̂0 to satisfy the requirement
of even parity. Besides the parity operator, a boundary spin
operator is also considered in order to give coefficients α+,
β+, α−, and β−. The first operator we choose is the parity
operator. We define it in the spin basis and transform it into its
fermionic counterpart using Eqs. (A1)–(A3)

P̂x ≡ σ̂ x
1 σ̂ x

2 · · · σ̂ x
L = (−i)Lγ̂1γ̂2 · · · γ̂2L. (A19)

The spin states {|+〉, |−〉} constitute a two-dimensional
Hilbert subspace. We construct the representation matrix by
computing all its elements 〈±|P̂x|±〉. Thus the representation
matrix is

P(S)
x =

(
1 0
0 −1

)

in the spin basis (|+〉, |−〉)T . Now we elaborate on the
fermionic representation. We always invoke Wick’s theorem
in computing the expectation value of a string of noninter-
acting fermionic operators in the vacuum state |0〉. As an
example, the expectation value of the parity operator can be
written in the form of a Pfaffian

〈0|P̂x|0〉 = (−i)L〈0|γ̂1γ̂2 · · · γ̂2L|0〉 = Pf(G), (A20)

where Pf(G) denotes the Pfaffian of a 2L × 2L antisymmetric
matrix G. The elements of matrix G are defined as

Gi j ≡
{−i〈0|γ̂iγ̂ j |0〉, i �= j

0, i = j.
(A21)

The expectation value of a quadratic Majorana fermionic
operator can be computed through operator transformation.
Combining Eqs. (A8) and (A17), we have the transformation
UG between the Majorana fermionic basis and the quasiparti-
cle basis

(γ̂1γ̂2 · · · γ̂2L )T = UCU †
B (η̂0η̂1 · · · η̂L−1η̂

†
0η̂

†
1 · · · η̂†

L−1)T

≡ UG(η̂0η̂1 · · · η̂L−1η̂
†
0η̂

†
1 · · · η̂†

L−1)T .

For i �= j,

〈0|γ̂iγ̂ j |0〉 =
L∑

l,k=1

(UG)il〈0|η̂l−1η̂
†
k−1|0〉(U †

G)k j

≡ (UGPU †
G)i j,

where the 2L × 2L diagonal matrix P = ( IL 0L

0L 0L
), with IL de-

noting an identity matrix. Note that the odd number of fermion
operators gives a vanishing expectation value under the vac-
uum state. This means 〈1|P̂x|0〉 = 〈0|P̂x|1〉 = 0. Finally, for
|1〉 = η

†
0|0〉, ground state |1〉 always has different parity from

|0〉.
By now, we have arrived at the representation matrix of the

parity operator

P(F )
x =

(
Pf(G) 0

0 −Pf(G)

)

in the fermionic basis (|0〉, |1〉)T . Having chosen the parity-
even vacuum as |0〉, the representation matrices have
P(F )

x = P(S)
x with Pf(G) = 1. The relation of Eq. (A18) can

be simplified to α+ = 1, α− = β+ = 0, |β−| = 1.
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We next turn to operator σ̂ z
1 to determine β−. We denote

this operator Êz and then map it to Majorana fermions

Êz ≡ σ̂ z
1 = −γ̂1. (A22)

The representation of Êz is always easy to compute in the spin
basis (|+〉, |−〉)T

E (S)
z =

(
0 1
1 0

)
. (A23)

The elements of the representation matrix of the Êz in the
fermionic basis (|0〉, |1〉)T are

〈0| − γ̂1|0〉 = 〈1| − γ̂1|1〉 = 0,

〈1| − γ̂1|0〉 = −〈0|η̂0γ̂1|0〉 = −C∗
1 ,

〈0| − γ̂1|1〉 = −〈0|γ̂1η̂
†
0|0〉 = −C1,

(A24)

where C1 is the first element of vector C defined as

Cj ≡ 〈0|γ̂ j η̂
†
0|0〉. (A25)

The computation of C is similar to the matrix G, where we
invoke the transformation of Majorana fermions

Cj = 〈0|γ̂ j η̂
†
0|0〉 =

L∑
k=1

(UG) jk〈0|η̂k−1η̂
†
0|0〉 = (UG) j1.

Thus C is the first column of the matrix UG. Now that
Eq. (A24) gives the representation of the edge operator

E (F )
z =

(
0 −C1

−C∗
1 0

)
, (A26)

we can use the transformation between the two bases
[Eq. (A18)] to resolve the undetermined coefficient. The two
representation equations (A23) and (A26) have the relation

A†E (S)
z A = E (F )

z ,

with the unitary A = (1 0
0 β−), which gives

β− = −1/C1. (A27)

In sum, we can now map the Néel state to a fermionic state

|↑↓↑↓ · · ·〉 = 1√
2

(|+〉 + |−〉) = 1√
2

(
|0〉 − 1

C1
|1〉

)
.

(A28)
In principle, once we map a spin state |+〉 to a fermionic state
|0〉, for any designated state indexed by k, we can find an
operator Ôk

Ôk
s

∣∣+〉 ⇐⇒ Ôk
f

∣∣0〉,
where the spin operator Ôk

s is related to the fermionic operator
Ô f by Jordan-Wigner transformation [Eqs. (A1)–(A3)].

3. Dynamics computation of a local spin operator

In the main text, we choose the Néel state |ψ〉 =
|↑↓↑↓ · · ·〉 as the initial state. This product state on the z
axis simplifies the computation of the autocorrelation operator
σ̂ z

j (n)σ̂ z
j (0) into computing the expectation value of operator

σ̂ z
j , which composes the coarse-grained order parameter in

Eq. (2)

〈ψ |σ̂ z
j (n)|ψ〉 = −Re

(〈0|σ̂ z
j (n)|1〉/C1

)
.

Here, we have used the result of Eq. (A28). For 1 � j � L,
we map

〈0|σ̂ z
j (n)|1〉 = −(i) j−1〈0|γ̂1(n)γ̂2(n) · · · γ̂2 j−1(n)η̂†

0(0)|0〉
= (i) j+1Pf (M j (n)),

where we similarly construct a 2 j × 2 j antisymmetric matrix
M j (n) [43]

M j (n) =
(

iG j (n) C j (n)
−C j (n)T 0

)
. (A29)

Here, the vector C j (n) and matrix Gj (n) are sections of the
larger time-dependent C(n) and G(n) whose initial values
are defined as Eqs. (A25) and (A21), respectively. Using the
evolution of the Majorana fermions in Eq. (A13), the vector
element C(n) j is

C(n) j = 〈0|γ̂ j (n)η̂†
0(0)|0〉 =

2L∑
k=1

[(VF )n] jk〈0|γ̂k (0)η̂†
0(0)|0〉

=
2L∑

k=1

[(VF )n] jkCk (0). (A30)

Thus the effect of evolution of vector C is C(n) = (VF )nC(0).
In a similar way it can be shown that the time-dependent ma-
trix G(n) = (VF )nG(0)(V †

F )n. Computing the first 2 j − 1 ele-
ments of C(n) gives C j (n), while computing the first 2 j − 1
rows and first 2 j − 1 columns of G(n) gives Gj (n).

4. Effective Hamiltonian of the Floquet operator

The eigenstates of the Floquet unitary ÛF can be achieved
by first computing its effective Hamiltonian. Defined by
exp(−iĤeff ) ≡ ÛF [Eq. (5)], it is easier to cope with the ef-
fective Hamiltonian in the Majorana fermionic basis. From
Eqs. (A1)–(A3) and (A7), we transform the binary Hamilto-
nian into

Ĥ (t ) =
{

Ĥ1 ≡ −iπg
∑

j γ2 j−1γ2 j, 0 � t < t1
Ĥ2 ≡ i

∑
j J jγ2 jγ2 j+1, t1 � t < t1 + t2.

(A31)

For an operator B̂ that is quadratic in {γ̂ j}, we define matrix B̃
by

B̂ = 1

4

∑
i j

(B̃)i j γ̂iγ̂ j .

The mapping from the matrix B̃ to the operator B̂ is denoted
as T

T (B̃) = B̂.

The mapping has the property [45]

[T (H̃1), T (H̃2)] = T ([H̃1, H̃2]).
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FIG. 4. Extracting relaxation time τ from the dynamics of the typical order parameter shown in Fig. 1(b). (a) System size has a negligible
impact on τ away from the critical point. The relaxation time increases close to the critical point gc = 0.9. The shaded region denotes the
area where exponential fitting is deemed not appropriate. (b) The sum of squares due to error (SSE) of the exponential fitting shows a drastic
increase near the critical point. The dashed lines mark the critical point.

This property gives us the matrix representation of the effec-
tive Hamiltonian [45]

exp(−it2Ĥ2) exp(−it1Ĥ1) = exp[−i(t1 + t2)Ĥeff ]

⇒ exp(−it2H̃2) exp(−it1H̃1) = exp[−i(t1 + t2)H̃eff ].

The effective Hamiltonian is thus Ĥeff = 1
4�†H̃eff�, with �

defined in Eq. (A14). The eigenstates of the effective Hamil-
tonian, computed by standard diagonalization, are also the
eigenstates of the Floquet operator.

APPENDIX B: RELAXATION TIME FOR TYPICAL
CORRELATIONS

The relaxation time τ for O(T )
mea

is shown in the main
text. We use the dynamics O(T )

mea
with T ∈ [0, Tend], where

Tend = 790, to perform the fitting. Here we show τ for the
typical dynamics O(T )

typ
[Fig. 1(b)] adopting the fitting func-

tion O(T )fit = a1 exp(−T/τ ) + a2. The results are shown in

Fig. 4(a). Similar to the mean case, the relaxation time τ

increases from both sides of the critical point and is insen-
sitive to the system size away from the transition point. The
fitting is deemed inappropriate in the shaded region near
the critical point. Corresponding fitting errors are shown in
Fig. 4(b).

APPENDIX C: CRITICAL SLOWING-DOWN
FOR RANDOM INITIAL STATES

We choose a Néel state as the initial state in the main text
so that scaling-up the system size of the initial state comes
naturally. The properties of critical dynamics, however, are
generic and should not depend on the specific initial state. In
Fig. 5, under a random product state in the z direction we show
the mean and typical dynamics of coarse-grained correlations
with L = 60. Averaged over 2000 disorder configurations, we
find that a random state gives a smaller steady amplitude
than the Néel state in the time-crystal phase [Figs. 1(a) and

0 20 40 60 80 100

T

0

0.2

0.4

0.6

0.8

(a)

g = 0.8 g = 0.86 g = 0.9 g = 0.915 g = 0.93
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FIG. 5. The phenomenon of CSD is generic to a random initial state for (a) mean and (b) typical correlations. The random product state
|ψ〉 = |s1s2 · · · s60〉, where si ∈ {↑,↓}. The insets show the long-time dynamics.
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FIG. 6. The finite-time–finite-size scaling of critical dynamics under random initial states. The scaling function equation (8) is used.
(a) The collapsed surface for mean coarse-grained correlations. The fitting yields β = 0.37 ± 0.14, b = 0.43 ± 0.29, and T0 = 2.09 ± 0.38.
(b) The collapsed surface for typical correlations with β = 0.49 ± 0.04, b = 0.579 ± 0.006, and T0 = 1.45 ± 0.06. The values of ν exponents
are taken from Fig. 2. We choose Lt = 10 for coarse-grained correlations. (c) and (d) We choose ln T̃ L−b ∈ [0.932, 0.938] (c) and ln T̃ L−b ∈
[0.590, 0.602] (d) for mean and typical dynamics, respectively, to show the cross sections of the collapsed surfaces. The collapsed curves
confirm the quality of the fitting.

1(b)]. The dynamics for the paramagnetic phase have a sim-
ilar behavior to that shown in Figs. 1(a) and 1(b) where the
correlation undergoes swift oscillations and decays to zero.
Comparing the critical dynamics (g = 0.9) with g = 0.8 or
g = 0.93, CSD can still be observed in both mean and typical
coarse-grained correlations.

Furthermore, we verify the scaling function equation (8)
for random initial states. We simulate five system sizes
ranging from L = 20 to L = 60. For each disorder config-
uration, we choose a random product state as the initial

state and perform disorder averaging for the dynamics. As
shown in Figs. 6(a) and 6(b), for both mean and typical
dynamics, the numerical data collapse onto a single curved
surface, which is verified by the cross sections shown in
Figs. 6(c) and 6(d). The critical exponents derived from this
fitting are consistent with the results in the main text. Espe-
cially, critical exponent b = 0.43 ± 0.29 for the mean value,
and b = 0.579 ± 0.006 for the typical value. Thus subex-
ponential critical slowing-down holds for a random initial
state.
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