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Simulating bistable current-induced switching of metallic atomic contacts
by electron-vibration scattering
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We present a microscopic model, describing current-driven switching in metallic atomic-size contacts. Ap-
plying a high current through an atomic-size contact creates a strong electronic nonequilibrium that excites
vibrational modes by virtue of the electron-vibration coupling. Using density-functional theory (DFT) in com-
bination with the Landauer-Büttiker theory for phase-coherent transport, expressed in terms of nonequilibrium
Green’s functions (NEGFs), we study the current-induced forces arising from this nonequilibrium and determine
those vibrational modes which couple most strongly to the electronic system. For single-atom lead (Pb) contacts
we show specific candidates for bistable switches, consisting of two similar atomic configurations with differing
electric conductance. We identify vibrational modes that induce a transition between these configurations. Our
results reveal a possible origin of bistable switching in atomic-size contacts through excitation of vibrations
by inelastic electron scattering and underline the power of the combined DFT-NEGF approach and statistical
mechanics analysis of a Langevin equation to overcome the timescale gap between atomic motion and rare
switching events, allowing for an efficient exploration of the contacts’ configurational phase space.
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I. INTRODUCTION

Bistable atomic-scale conductance switches are considered
as possible building blocks for nanoelectronic circuits [1]. In
a two-terminal configuration and activated by controlled elec-
tromigration they are ultimately miniaturized [2]. The term
electromigration denotes the rearrangement of atoms inside a
conductor in response to an applied bias voltage or flowing
charge current. Electromigration in macroscopic conductors
is reported to be a thermally driven process by the dissipated
Joule heat [3]. While atomic-size switches are straightforward
to realize experimentally, the microscopic theory is involved.
Electromigration requires the description of the coupled elec-
tronic and atomic motion, which is typically separated along
the lines of the Born-Oppenheimer approximation due to the
large mass difference between electrons and atoms. The treat-
ment of current-induced atomic rearrangements in a junction
hence requires in principle complex dynamics simulations,
bridging electronic and atomic timescales of several orders of
magnitude.

Metals can sustain high current densities, and electromi-
gration is a relevant mechanism for atomic rearrangements
[4]. Different models of electromigration on the atomic scale
have been suggested, including the excitation of local vibra-
tional modes due to inelastic scattering of electrons [5–8].
These inelastic-scattering events cause forces that act on
the atoms [9,10]. Although the microscopic processes are in
principle clear, their implementation in molecular-dynamics
approaches proves difficult, since forces are nonconservative
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[11]. Recent theoretical work addressed this problem with
ab initio molecular dynamics, including heating through non-
conservative forces and identifying hot spots and vibrational
modes especially excited by the electronic nonequilibrium
[10].

The study of switching is challenging because of the large
difference in timescales in the mechanics of interest. The
typical timescale for atomic thermalization is picoseconds,
while electronic relaxation happens much faster, within fem-
toseconds. Even on the picosecond timescale, however, major
atomic relocations, causing electrical switching events, are
rare. They typically happen in the microsecond range, as
determined by the measurement resolution of experimental
setups. This difference in timescales of some nine orders
of magnitude from femtosecond, necessary to resolve the
electronic subsystem, to microsecond, relevant for switching
events, is the central obstacle in simulating electromigration
of metallic atomic contacts.

In the present work we bridge the timescale gap by first
integrating the electronic dynamics into effective forces on
the atomic scale and then investigating the long-term limit of
atomic dynamics. Our current-induced-forces approach iden-
tifies those vibrational modes that couple strongest to the
electronic nonequilibrium. Utilizing these vibrations to evolve
the contact configuration can lead to different local minima in
the configurational phase space. For a contact with N flexible
atoms, this strategy reduces the dimensionality of the search
space of other stable configurations from 3N to O(1). Con-
sequently, possible stable contact geometries are found in a
computationally efficient way.

We use the established formalisms of density-functional
theory (DFT) and Landauer-Büttiker scattering theory to
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describe the phase-coherent electron transport, expressing
the transport in terms of nonequilibrium Green’s functions
(NEGFs). The inelastic scattering of electrons by vibrations
of the system is taken into account in a time-averaged fashion
through current-induced forces in a Langevin equation for
the atoms, with a nonconservative friction kernel taking
into account the nonequilibrium electron bath. The Langevin
equation for the displacements �x of all atoms from their equi-
librium positions has the form

m · �̈x + η(V ) · �̇x + D(V ) · �x = �f (V ), (1)

where m is the diagonal matrix of all atomic masses. The
dynamical matrix D(V ), the friction matrix η(V ), and the
random force �f (V ) are perturbed by the electronic nonequi-
librium, as represented by the indicated dependence on the
voltage V [5]. This perturbation adds antisymmetric contribu-
tions to the voltage-dependent matrices in Eq. (1), which lead
to nonconservative forces.

One important aspect for our work is that an analysis of
the Langevin equation (1) allows us to determine threshold
voltages when specific excited vibrations become effectively
undamped [5]. The collective motion of the atoms along these
modes is a potential mechanism for a switching process, since
the undamped vibrations can lead to a mechanical instability
of the contact configuration. In a previous work [12] we com-
puted threshold voltages for metallic atomic junctions of four
different elements and compared them in a statistical analy-
sis to experimentally extracted switching voltages. The good
agreement between both corroborates vibrational pumping as
possible switching mechanism. The present work is devoted to
identifying bistable, i.e., reversible bivalued, switching pro-
cesses as well as the underlying collective atomic motion
based on this mechanism of electronic-vibrational excitations.

II. COMPUTATIONAL PROCEDURES

The idea of this paper is to use the vibration modes cou-
pling the strongest to the electronic nonequilibrium to explore
the configuration phase space of simulated contacts. To do
so, contacts are simulated and current-induced modifications
to the Langevin equation are calculated. The Langevin equa-
tion is then used to identify the modes, and the phase space
is explored along these modes. For specific details of our
calculation, see the Supplemental Material [13].

To describe a bistable electrical switching process, it is nec-
essary to first identify the stable geometries of the switch and
then a mechanism to transition between them. The simplest
description of the switching is given by a reaction coordinate
connecting these two states over an energy barrier on a DFT
potential-energy surface. Here, the DFT energy surface is not
a true total energy, but it is used as an estimation for a potential
energy on top of which the current-induced dynamics take
place. Hence, these dynamics are not directly simulated, but
instead their most likely outcomes are investigated and used to
describe the motion on the DFT energy surface. Here we use
simulations to determine all of these aspects: We identify two
states, find a process to transition between them and determine
energy barriers. The simulation approach is summarized in
Fig. 1.

In this work, we study atomic-size metallic contacts of
Pb, because it was also used in experiment and because our
previous work comparing theoretical and experimental con-
ductance histograms of four different elements (Al, Au, Cu,
Pb) showed the best overlap of calculated threshold voltages
and measured switching voltages for Pb. We argue that the
electron-phonon coupling strength in combination with the
relative high atomic weight of Pb are favorable for the pro-
posed phonon-based switching mechanism to be dominant
and to justify the classical dynamics approach used here.

Extended central clusters [14], containing the central nar-
rowest constriction and part of the electrodes and consisting
of around 60 atoms out of which 20 can move freely between
two slabs of Pb atoms, are fixed in a crystalline structure at
a predefined distance, see Fig. 1(a). The distance d between
the first fixed electrode layers on both sides of the contact
is set to values between 15 and 20 Å in 15 steps of about
� = 0.3 Å, see Figs. 1(a) and 1(b). The movable atoms be-
tween the two fixed crystalline layers are then relaxed to
their energy minimum. We calculate electronic and vibrational
structures as well as the electron-vibration coupling with the
quantum chemistry software package TURBOMOLE [15–17]. In
the calculations presented here in the main text, we use the
def-SV(P) basis set [18,19]. Results for the def-TZVP basis
set [19,20] are discussed in the Supplemental Material [13].
The properties are then used in the NEGF framework to cal-
culate the energy-dependent electronic transmission function
τ (E ) and all the matrices needed in the Langevin equation (1)
[5]. Conductance values are determined in the phase-coherent
elastic approximation in the low-temperature limit as G =
G0τ (EF), with the conductance quantum G0 = 2e2/h and the
Fermi energy EF. In the charge transport calculations we
use 32 × 32 transverse k points. We have extended a code
to calculate inelastic electron tunneling spectra [17,21,22]
to include current-induced forces, following the approach of
Lü et al. [5]. We Fourier transformed Eq. (1) to compute
vibrational eigenvalues and eigenmodes for different voltages
at a specific d , see Fig. 1(c). Above a certain voltage, some
modes reveal a sign change of the damping from negative to
positive, see Fig. 1(d), indicating that they become undamped
and are enhanced in amplitude instead of decaying over
time. We term these vibrational modes “runaway modes” and
the respective voltages “threshold voltages.” We suggest that
these undamped vibrations trigger atomic rearrangements, see
Fig. 1(e).

To realize a bistable atomic switch, we are interested in
pairs of contact configurations, which give rise to different
electronic conductance for the same distance d between the
electrodes. To find such pairs of geometries, we mechani-
cally manipulate a contact by compressing or stretching, see
Fig. 1(a). The corresponding conductance-distance trace ex-
hibits features which are known from experiment, such as
conductance plateaus and abrupt jumps in between at atomic
rearrangements [2,12,23,24], see Fig. 1(b). At the distances at
which jumps in conductance occur, a hysteresis with respect
to reversing the direction of the distance change can be ex-
pected, and hence two different metastable configurations for
the same d . Since the conductance-distance trace in Fig. 1(b)
actually arises from a compression, we took the contact geom-
etry at a subsequent reduced distance step d − �, stretched it
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FIG. 1. Scheme of the simulation process for describing current-induced atomic rearrangements based on electron-vibration coupling.
(a) Contact geometries at various electrode separations d . Fixed and relaxed atoms are separated by dashed lines. (b) Conductance as a function
of the electrode separation d . The contact at d = 17.5 Å, which is studied further in panels (c)–(e), is marked in gray. (c) Vibrational frequencies
as a function of the applied bias voltage for the contact at d = 17.5 Å. (d) Damping of the vibrations as a function of the bias voltage V for the
contact at d = 17.5 Å. (e) Starting configuration 1 of the atomic contact (left, blue) at d = 17.5 Å; displacement of its atoms by the mode with
the lowest threshold voltage (middle), requiring V > 0.4 V to become undamped. Contact configuration 2 (right, red) after a corresponding
relaxation, i.e., energy optimization of atomic positions. The resulting junction configurations 1 and 2 exhibit different conductance of 2.5G0

and 3.2G0, as indicated in the figure. The motion of atoms in the central relaxed junction part for one period of the unstable vibration is shown
by snapshots in green and orange. The connection to the calculated bias-dependent damping in panel (d) is indicated by a green arrow. In the
middle panel, the energy barrier between the two configurations is shown as a function of the reaction coordinate r.

by � and optimized atomic positions again. Starting from the
initial blue points, shown in Figs. 1(b) and 2(a), this mechan-
ical cycle of ∓� generates the red points in Fig. 2(a). With
this mechanical manipulation approach, we identify pairs of
configurations, called configurations 1 and 2 [see Fig. 1(e)],
with different conductance for the same distance. Points of
bistability, marked in Fig. 2(a) by gray bars, identify can-
didates for bistable atomic switches, which may be either
operated mechanically by stretching and compressing or by
current-induced forces [2].

Let us now discuss, if the transition between the configura-
tions 1 and 2 at a certain d can be mediated by a runaway
mode and what the energy barrier for the transition is, see
Fig. 1(e). For candidate structures to act as reversible bivalued
switches, several additional conditions must be met. At first
the identified configurations 1 and 2 need to be separated by
an energy barrier. A barrier is necessary to prevent random
switching that would be observed in experiment either as
telegraph oscillations of the conductance or as a weighted
average conductance if the switching time is faster than the
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(a)

(b)
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FIG. 2. (a) Conductance, (b) DFT energy, and (c) threshold volt-
age as a function of electrode separation distance d . Blue points
visualize results obtained during an initial compression process. Red
points are obtained through a mechanical cycle by separating the
electrodes of the corresponding relaxed junction at the subsequent
distance step d − � by one distance step � = 0.3 Å to reach the
electrode separation d and relaxing the contact geometry again. The
three gray bars indicate points of bistability in the conductance, as
observed in panel (a).

experimental measurement resolution. We use a linear in-
terpolation of all atomic coordinates between the initial and
final configurations 1 and 2 as the reaction path. The reaction
coordinate r is thus defined by �xr = �x1 + r · (�x2 − �x1) with
r ∈ [0, 1], where �x1 and �x2 denote initial and final positions,
respectively. DFT calculations for different r then show the
presence or absence of a reaction barrier and quantify its size.
We note that the linear interpolation will yield an upper energy
barrier for the transition between initial to final states. Relax-

ation of these interpolated states in a reaction path analysis
yields lower energetic values on a DFT potential-energy sur-
face on top of which the current-induced dynamics are taking
place. The calculations allow us to decide if the structures are
sufficiently stable with regard to switching over a certain time
at a given temperature, see Fig. 1(e). Finally, concerning the
transition, we compute the runaway modes of configurations
1 and 2, see Figs. 1(c) and 1(d). At or above the threshold
voltage, atomic motion along these undamped modes requires
vanishing energy cost. Accordingly, we vary the contacts by
moving the atoms along these modes, assuming amplitudes of
±1, ±2, ±4, or ±8 times the normalized vibrational eigen-
vector. The contact geometries, obtained by this displacement
procedure from configuration 1, are relaxed again to find a
local energetic minimum. If this new configuration agrees
with configuration 2, we have identified a current-induced
mechanism for a vibrational transition between states 1 and
2, as illustrated in Fig. 1(e). We attempt the same for the tran-
sition from 2 to 1. If runaway modes are found that establish
transitions in both directions, a reversible bistable switch has
been detected.

III. RESULTS AND DISCUSSION

From the extended list of requirements, namely, to find
two contact geometries at a specific d with largely differ-
ent conductance, current-induced vibrational transitions and
a sufficiently high energy barrier between them, it becomes
clear that only a fraction of the simulations returns current-
driven bistable switches. In our present study we found three
candidates out of 30 contact structures, obtained by mechan-
ical manipulation at different d . In the following we describe
a mechanical compression curve that contains the three candi-
dates, out of which only one resulted in a vibrationally driven
switch.

Figure 2 shows the electrical conductances, energies and
threshold voltages of a compression process, which started
at the largest distance d = 20 Å (see the Supplemental Ma-
terial [13]). The conductance increases rather linearly with
decreasing distance from around 1.5G0 up to 3.5G0 over a
length of about 4 Å . These findings are consistent with earlier
calculations [25,26] and measurements [24,27] for atomic-
size Pb wires that exhibit sp-orbital conduction with three
main transmission eigenchannels at the Fermi energy in a
single-atom contact. The conductance curve exhibits three
discrete jumps, when considering the initial configurations 1,
indicating regions to search for bistable behavior. We generate
subsequently the configurations 2 for all electrode separations
by the mechanical manipulation cycle of ∓�, as explained
in Sec. II. Electrode separations, where we find bistable con-
ductance behavior, are marked by gray bars in Fig. 2. The
curve of the calculated DFT energies shows a local minimum
at around 17 Å and a rather linear slope for higher distance,
while the behavior is more complex for shorter distances
due to major atomic rearrangements. Threshold voltages
show a larger spread from 0 to some 1.4 V, with a trend
towards decreasing threshold voltages for larger electrode
separations.

Figure 3(a) compares configurations 1 and 2 at d=16 Å.
We have constructed a linear interpolation between those
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FIG. 3. (a) Contact configurations 1 (blue) and 2 (red) for the
electrode separation d = 16 Å. (b) DFT energy as a function of the
reaction coordinate r.

structures with 10 steps to analyze the transition. The DFT
energy of the intermediate geometries is shown in Fig. 3(b),
and features a difference in energy of initial and final struc-
tures of around 100 meV . Depending on a starting point
at configuration 1 or 2, the barrier between the structures
amounts to around 250–350 meV .

To change these two configurations into each other, it ap-
pears that a rotation of a large part of the atoms in the central
region is necessary. Unfortunately, we have found no pumped
vibrational mode that would enable such a switching. An
intuitive explanation for this negative result is that the required
rotation does not couple well to the electric current. The
charge carriers would need to be scattered nearly orthogonal
to their direction of motion, which is unlikely in a two-particle
process under momentum conservation.

The second switching candidate, shown in Fig. 4, is also
displayed in Figs. 1(c)–1(e). Configurations 1 and 2 are sep-
arated by an energy barrier of less than 160 meV. The blue
configuration 1 has a conductance of 2.5G0 and appears to
be somewhat more disordered than the red configuration 2,
exhibiting a conductance of 3.2G0. Configuration 1 exhibits a
higher energy than configuration 2 by some 50 meV. As shown
in Fig. 1(e), the threshold voltage for pumping vibrational
modes amounts to 0.4 V, and we can switch to configuration
2 by displacing atoms of configuration 1 along the runaway
mode with an amplitude of twice the eigenvector and then
relaxing the structure again. In contrast, the threshold voltage

Fixed FixedRelaxed

d
(a)

(b)

FIG. 4. Same as Fig. 3 but for d = 17.5 Å.

in configuration 2 is as high as 1.4 V, see also Fig. 2(c). This
indicates a significantly increased stability of that configura-
tion or a significantly reduced electron-vibrational coupling.
However, we did not find a runaway mode that transforms
configuration 2 into configuration 1, and hence this switch is
monodirectional.

Let us finally study the switching candidate at d = 20 Å.
The atomic configurations of the two states, shown in Fig. 5,
look very similar. The most pronounced relocations are found
for the two atoms in the center that form a dimer. The barrier
between the configurations has a height of around 40 meV,
when starting from configuration 1, and 20 meV, starting from
configuration 2. At sufficiently low temperatures, a crossing
of the barrier by thermal excitation alone would be strongly
suppressed, while nonconservative current-induced processes
should be able to surmount it [8,10]. For configurations 1
and 2 different runaway vibrational modes could be detected,
whose excitation enables the transition into the other config-
uration. As indicated in Fig. 5, the excitation of the mode
needs more than 0.8 V in configuration 1, while it needs
more than 0.4 V in configuration 2. Interestingly, the thresh-
old voltages, when transitioning from 1 to 2 instead of 2 to
1, differ by a factor of two, resembling the differences in
barrier heights of 40 meV and 20 meV, respectively. This
example of a successful identification of a bistable switch
shows the potential of the vibration-mediated switching
mechanism.

Theoretical methods to simulate the switching of atomic
contacts by current-induced forces are a timely research
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Relaxation

FIG. 5. (a) Contact configurations 1 (blue) and 2 (red) for d =
20 Å. (b) The configurations are separated by a reaction barrier of
20–40 meV, depending on the starting point. (c) The contact geome-
tries in panel (a) realize a bistable switch between configuration 1

theme. The direct molecular-dynamics approach offers several
challenges, most prevalent the problem of the huge separa-
tion in timescales between the current-induced atomic motion
and the rare switching events. The atomic system gains en-
ergy from the nonequilibrium electrons through changes in
all contributions of the Langevin equation: direct, friction,
and random forces. The approach presented here circum-
vents the problem of explicit time-integration and sampling
by selectively exploring the configurational phase space in
the direction of the modes with the highest current-induced
forces—hence, the modes most strongly interacting with the
electronic nonequilibrium. The computational costs of the
presented procedure are still significant. The accurate determi-
nation of vibrational modes and electron-vibration couplings
requires structural relaxations to a high level of convergence.
For the switching, many contact configurations are generated
and energetically optimized. The high computational demands
limit the number of atoms in the extended central cluster
of our junction models and of the candidate structures for
switches that we could study. For details on computational de-
mands, we refer to the Supplemental Material [13]. These high
costs of calculation for a single structure prohibit simulating
the full contact evolution under an applied current. They also
hinder other methods, based on sampling, to overcome the
timescale separation. Examples for such an approach include
metadynamics [28,29], which is used to shift the sampling in
a simulation procedure to make rare events more likely, or
machine-learning approaches using large or easily extendable
data sets [30,31]. Our approach can in this sense be seen as
a proof-of-concept to simulate switching in contacts beyond
model systems.

IV. CONCLUSIONS

In conclusion, we presented a microscopic approach to
simulate current-induced switching processes. We used the
developed computational method to identify bistable metallic
atomic switches, showing two stable atomic configurations
with different conductance. The switching is achieved by ex-
citation of a vibrational mode, which becomes amplified by
current-induced pumping. Displacing the atoms of the contact
along this so-called runaway mode and optimizing atomic
positions results in a transition from one contact configuration
to the other. Both geometric configurations must be stable
over sufficiently long times scales despite the excess energy
in the electronic and phononic systems due to the applied
bias voltage. This is possible if the switching process dissi-
pates the excess energy of the respective pumped vibrational
modes efficiently, i.e., if the excited mode is not a run-
away mode for the new configuration and is thus sufficiently
dampened.

We applied our scheme to study the current-induced
reversible switching of Pb nanowires with smallest cross
sections containing one or a few atoms only. Combined

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
with a conductance of 1.3G0 and configuration 2 with 1. G0. Dis-
placements along the pumped vibrational mode are shown in orange,
and, according to the stability analysis, require applied bias voltages
larger than 0.8 or 0.4 V, respectively.
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with our previous findings that computed threshold voltages
for a related theoretical approach are of the same size as
measured switching voltages [12], our results indicate that
the experimentally observed current-induced switching in Al
atomic-size contacts [2] might also be dominated by electron-
vibration scattering.

In the future, the presented approach could be used to
analyze bistable switching in different metals. Furthermore,
by repeatedly displacing atoms along runaway modes, it may
be possible to study the long-term evolution of contacts to-
wards a higher stability under applied bias. In this way,
the microscopic mechanism of electronic hardening may be
revealed.
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