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First-principles prediction of phase transition of YCo5 from self-consistent phonon calculations
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A recent theoretical study has shown that hexagonal YCo5 is dynamically unstable and distorts into a
stable orthorhombic structure. In this paper, we show theoretically that the orthorhombic phase is energetically
more stable than the hexagonal phase in the low-temperature region, while the phonon entropy stabilizes the
hexagonal phase thermodynamically in the high-temperature region. The orthorhombic-to-hexagonal phase
transition temperature is ∼165 K, which is determined using self-consistent phonon calculations. We investigate
the magnetocrystalline anisotropy energy (MAE) using self-consistent and non-self-consistent (force theorem)
calculations with spin-orbit interaction (SOI) along with the Hubbard U correction. Then, we find that the
orthorhombic phase has MAE, orbital moment, and orbital moment anisotropy values that are similar to those
of the hexagonal phase when the self-consistent calculation with SOI is performed. Since the orthorhombic
phase still gives magnetic properties comparable to those found in experiments, the orthorhombic distortion is
potentially realized in the low-temperature region, which awaits experimental exploration.

DOI: 10.1103/PhysRevB.108.014304

I. INTRODUCTION

CaCu5-type RCo5 (R = rare earth) intermetallic com-
pounds have emerged as promising permanent magnets owing
to their high Curie temperature, high saturation magnetiza-
tion, and strong coercivity [1–5]. The coercivity is related
to the intrinsic properties of a material, namely, the magne-
tocrystalline anisotropy energy (MAE), which can be obtained
by measuring the energy difference along different direc-
tions of magnetization with respect to the crystal axes [6–9].
Among the members of the RCo5 family, the magnetic prop-
erties of YCo5 have been extensively studied both from
experiments and using first-principles methods based on
density functional theory (DFT) [4,10]. A saturated magne-
tization of ∼910 emu/cm3, a magnetocrystalline anisotropy
constant of 7.38 × 107 erg/cm3 at 4.2 K, and a Curie tem-
perature of 977 K were obtained in Ref. [8]. Previous studies
indicate that DFT calculations at the level of the local density
approximation (LDA) or the generalized gradient approxima-
tion (GGA) significantly underestimate the orbital magnetic
moments of Co atoms and the MAE in comparison with ex-
perimental values. These underestimation problems have been
tackled by including the orbital polarization scheme [11,12]
or by using DFT+U [13,14] or LDA + dynamical mean-field
theory (LDA+DMFT) [15] approaches.

All of the previous theoretical calculations have been per-
formed using the CaCu5-type structure [Fig. 1(a)], which
displays a layered hexagonal lattice (space group P6/mmm)
with two different kinds of Co atoms labeled as Co2c and Co3g

[16]. However, a recent first-principles study has shown that a
phonon at the L point of the first Brillouin zone is dynamically
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unstable at 0 K [17], indicating that the hexagonal phase
distorts into a lower-energy phase, as schematically illustrated
in Fig. 1(d). Indeed, Ref. [17] has reported that the distorted
orthorhombic phase (space group Imma) is energetically more
stable than the hexagonal phase. Given the presence of the
double-well potential energy surface of the unstable phonon
mode [Fig. 1(d)], there should be a structural phase transition
induced by the soft phonon excited at finite temperatures.
Since the magnetic properties, such as the MAE, are sensitive
to the crystal structure, understanding the temperature evolu-
tion of the crystal structure is crucial for reliably comparing
the magnetic properties of YCo5 obtained from theory and
experiments.

Here, by using the state-of-the-art anharmonic phonon
calculation method, we demonstrate that the orthorhombic-
to-hexagonal phase transition of YCo5 can take place with
heating. We first show that the orthorhombic phase is
predicted to be energetically more stable than the hexag-
onal phase at 0 K with various exchange-correlation (XC)
functionals, including GGA, GGA+U , the strongly con-
strained and appropriately normed meta-GGA (SCAN), and
the Heyd-Scuseria-Ernzerhof hybrid functional (HSE06). As
the temperature rises, the hexagonal phase becomes ther-
modynamically more stable than the orthorhombic phase at
∼165 K, which is estimated from the Helmholtz free energies
computed using the self-consistent phonon method [18,19].
The MAE values of both phases computed using the force
theorem, which is a non-self-consistent calculation with the
spin-orbit interaction (SOI), within GGA underestimate the
experimental values, whereas a self-consistent calculation
with the SOI under the GGA+U scheme yields larger MAE
values comparable to experiments. By contrast, the MAE val-
ues in the orthorhombic phase obtained by the force theorem
within GGA+U still fall short of experimental values for all
the applied U values. We attribute this to the fact that both the
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FIG. 1. Crystal structure of the hexagonal (a) and orthorhombic (b) phases of YCo5. The Y and Co atoms are represented by the large
and small spheres, respectively. The atomic Wyckoff position for different atoms is marked with the corresponding colors. (c) Top view of the
crystal structures of hexagonal (top panel) and orthorhombic (lower panel) YCo5. (d) Schematic diagram of the double-well potential obtained
by displacing atoms along the direction of the L-point soft phonon mode of the hexagonal phase. QL is the normal coordinate amplitude, and
�E represents the static energy difference between the two phases.

orbital moment of ∼0.1 μB and the orbital moment anisotropy
(OMA) with a value of ∼0.03 μB, which is proportional to
the MAE, at the Co site were significantly underestimated by
the force theorem compared with the corresponding experi-
mentally measured values of ∼0.2 μB [15] and ∼0.06 μB [8],
respectively.

The structure of this paper is as follows. The theoretical
approach to calculate the MAE and the computational details
are described in Secs. II A and II B, respectively. The main
results are shown in Sec. III. The orthorhombic-to-hexagonal
phase transition induced by lattice anharmonicity is discussed
in Sec. III A. In Sec. III B, we evaluate the MAE for both
phases using both the force theorem and self-consistent meth-
ods within the GGA+U . Finally, we summarize the study in
Sec. IV.

II. METHODS

A. MAE from DFT calculation

The MAE at 0 K was evaluated based on DFT as

KDFT
u = E0,⊥ − E0,‖, (1)

where E0,⊥ and E0,‖ are the ground state total energies with
the magnetic moment m being aligned along the hard and
easy axes, respectively. These energies were computed by
performing DFT calculations with the SOI using the force the-
orem [20] (a non-self-consistent approach) and self-consistent
approaches. The easy axis for both phases was found along
the [001] direction (m ‖ c). To determine the hard axis, we
calculated the total energy by varying the azimuthal angle φ

in the basal plane (m ⊥ c) from 0 to 2π with a step of π
6 . The

energy difference between different φ in the hexagonal phase
was negligible. In the orthorhombic phase, the maximum en-
ergy difference was ∼0.4 MJ/m3 with the lowest energy at

φ = π
2 ([010] direction). Therefore we employed the hard axis

along the [100] direction for the hexagonal phase and along
the [010] direction for the orthorhombic phase to obtain KDFT

u .
Although the choice of the hard axis may slightly affect the
MAE, the small energy difference does not affect the overall
conclusion.

According to the Bruno relation [21], MAE is proportional
to the OMA defined as

�mo = mCo
o,‖ − mCo

o,⊥, (2)

where mCo
o,‖ and mCo

o,⊥ are the orbital magnetic moment at the
Co site along the easy and hard axes, respectively.

B. Computational details

The DFT calculations in this paper were performed mainly
by using the projector augmented wave (PAW) method [22],
as implemented in the Vienna ab initio simulation package
(VASP) code (version 6.2.1) [23]. The recommended set of
PAW potentials, which accounts for the scalar relativistic ef-
fect, was used. A kinetic-energy cutoff of 400 eV and a k-point
mesh density of ∼450 Å3 were employed. We adopted the
second-order Methfessel-Paxton [24] (MP) smearing method
with a width of 0.2 eV for structural optimization. A much
denser k-mesh density of ∼6000 Å3 and the tetrahedron
method with the Blöchl correction [25] were employed to
calculate the static energy difference �E = Eorth

0 − Ehex
0 be-

tween the orthorhombic and hexagonal phases, the MAE,
the density of states (DOS), and the crystal orbital Hamil-
ton populations (COHPs). For these calculations, the initial
local moments of 3 μB and −0.3 μB were used for the Co
and Y atoms, respectively. The SOI was also included in the
MAE calculation. The subsequent phonon calculations were
performed within the GGA by Perdew, Burke, and Ernzerhof
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(GGA-PBE) [26] without the Hubbard U correction for the
following reasons. First, as we elaborate below, we confirmed
that the orthorhombic phase is energetically more stable at
0 K, irrespective of the XC functionals. Second, phonon fre-
quencies are sensitive to the employed lattice parameters, and
GGA-PBE yields lattice parameters of the hexagonal phase
that are in accord with experimental values [27] within an
error of ∼1%. Lastly, we encountered technical challenges in
achieving convergences when applying GGA+U functionals
for displaced supercells. Although repeated adjustments to the
mixing parameters could achieve convergence, the calculated
potential energy surface was not smooth enough to obtain
reliable harmonic force constants.

It has been reported that MAE obtained using GGA-PBE
significantly underestimated the experimental values. To ad-
dress the underestimation problem, we employ the GGA+U
scheme [28] to account for the correlation effect of the
Co-3d electrons. To compute the total energies under the
GGA+U scheme with the SOI, we employed two different
approaches: self-consistent (SC) and force theorem (FT) cal-
culations. The main difference is whether the charge density
from the self-consistent spin-polarized calculation is updated
self-consistently or not; in the SC method, the charge density
is optimized again, whereas it is not so in the FT. Additionally,
we employed the full-potential linearized augmented plane-
wave (FLAPW) method [29], as implemented in the WIEN2k
code [30], to investigate the effect of the core electrons on
the MAE and orbital moment of YCo5. The crystal structure
optimized using VASP within GGA-PBE was adopted to cal-
culate the MAE, the OMA, and the orbital moment. We used
atomic sphere radii of 2.015 and 2.115 bohr for Co and Y,
respectively, and a basis set cutoff parameter of RminKmax = 9.

To compute the vibrational Helmholtz free energy Fvib

within the first-order self-consistent phonon (SCP) theory,
second-order and fourth-order interatomic force constants
(IFCs) are required. A 2 × 2 × 2 supercell containing 48
(96) atoms was used for calculating the second-order IFCs
of the hexagonal (orthorhombic) phase. Here, each atom in
the supercell was displaced from its equilibrium position by
0.03 Å, and the atomic forces were calculated using VASP.
From the generated displacement-force data set, we estimated
the second-order IFCs by ordinary least squares. For anhar-
monic IFCs, a supercell containing 48 atoms was adopted
for both phases. We employed the compressive sensing lat-
tice dynamics to extract the anharmonic IFCs [31] from the
displacement-force training data sets. Here, we uniformly
sampled 200 training structures from the last 2500 steps of
an ab initio molecular dynamics calculation (5000 steps in
total) at 10 K for both phases. For each sampled structure, we
further displaced all atoms by 0.1 Å in random directions. We
have confirmed that 200 sample structures were sufficient and
the change in �Fvib = F orth

vib − F hex
vib between the orthorhombic

and hexagonal phases after adding 50 more structures (250
structures in total) was smaller than ∼0.5 meV/f.u. at 500 K.
In our phonon calculations based on GGA-PBE, we found
that the harmonic phonon dispersion of the hexagonal phase
is sensitive to the broadening parameter σ of the MP method
used for the IFC calculations, which is particularly notice-
able when σ � 0.1 eV. Thus we carefully investigated the σ

dependence of the predicted structural transition temperature

TABLE I. Calculated static electronic energy difference (�E ;
see text) between the hexagonal and orthorhombic phases and the
squared frequency of the soft mode at the L point (ω2

L) for hexagonal
YCo5 using different XC functionals.

XC functional �E (meV/f.u.) ω2
L (cm−2)

LDA −44.08 −7826.4
PBE −23.24 −4301.2
PBEsol −23.78 −4425.9
GGA+U (U = 1 eV) −52.39
SCAN −97.31
HSE06 −134.48

Tc and found that σ as small as 0.085 eV was desirable
for obtaining a converged Tc value. We discuss this point in
Sec. III A. All the phonon calculations in this paper were
performed using the ALAMODE code [19,32].

III. RESULTS AND DISCUSSION

A. Phase transition induced by lattice anharmonicity

First, to assess the stability of the hexagonal and or-
thorhombic phases at 0 K, we calculated the ground state
energies using various XC functionals: LDA [33], PBE, its
variant for solids (PBEsol) [34], GGA+U [28] with U = 1 eV,
the strongly constrained and appropriately normed meta-GGA
(SCAN) [35], and the Heyd-Scuseria-Ernzerhof hybrid func-
tional (HSE06) [36]. For each XC functional other than
HSE06, the crystal structures of the two phases were fully
relaxed with the collinear ferromagnetic spin configuration.
The detailed structural parameters are listed in Tables S1 and
S2 of the Supplemental Material (SM) [37]. For HSE06, the
crystal structures from the PBE calculation were used. The
difference of the ground state energies �E = Eorth

0 − Ehex
0 ,

with EX
0 being the energy of phase X per formula unit (f.u.), is

summarized in Table I. It is clear that the orthorhombic phase
is predicted to be energetically more stable at 0 K irrespective
of the employed XC functionals. In the following, the crystal
structures for both phases optimized by GGA-PBE are used
to perform further phonon and magnetic property calculations
except for the squared frequency ω2

L of the soft mode tabulated
in Table I, for which the crystal structures optimized by each
XC functional are used.

Next, we discuss the thermodynamic stability of the two
phases at finite temperatures by comparing the Helmholtz free
energies defined as

F (V, T ) = E0(V0) + Fvib(V, T ) + Fel(V, T ), (3)

where E0(V ) is the static electronic energy obtained from a
conventional DFT calculation and Fel(V, T ) and Fvib(V, T )
are the electronic and vibrational free energies at temperature
T and cell volume V . Since the lattice constants reportedly
increase only by ∼0.04 Å at 600 K [27], we neglect the
thermal expansion effect and use the optimized cell volume
V0 at 0 K for computing the Helmholtz free energy. Also,
since a magnetic phase transition, e.g., an anomaly in the
heat capacity, has never been observed in the low-temperature
region, the magnetic entropy is also omitted in this paper
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assuming that the difference in magnetic entropy between
the two phases is negligible. Then, the electronic free en-
ergy Fel(V0, T ) and vibrational free energy Fvib(V0, T ) play a
central role in determining the thermodynamic stability. Fel

is obtained based on the fixed density-of-states approxima-
tion [38,39]. When all phonon modes are dynamically stable
within the harmonic approximation (HA), it is straightforward
to estimate Fvib(V0, T ). However, for the hexagonal YCo5, the
method based on the HA breaks down due to the presence of
the soft mode at the L point. Hence, in this paper, we employ
the SCP scheme. In this approach, we first compute finite-
temperature phonon frequencies by solving the following SCP
equation [40,41]:

�2
q = ω2

q + 1

2

∑

q1

�(q; −q; q1; −q1)αq1 . (4)

Here, ωq is the angular frequency of the phonon mode
q obtained within the HA, �q is the frequency at fi-
nite temperature renormalized by the anharmonic interaction
�(q; −q; q1; −q1) associated with the fourth-order anhar-
monicity of the potential energy surface, and αq = h̄

2�q
[1 +

2n(�q)] with n(ω) being the Bose-Einstein distribution
function. Once the above equation is solved for �q, the vi-
brational free energy can be evaluated as F (SCP)

vib (V0, T ) =
F̃ (QHA)

vib (V0, T ) + �F corr
vib (V0, T ), which is the sum of the quasi-

harmonic (QH) term computed using �q and the correction
term necessary to satisfy the correct thermodynamic rela-
tionship of −dFvib/dT = Svib [42,43]. More details of the
mathematical expressions for F (SCP)

vib can be found in the
SM [37].

Figures 2(a) and 2(b) show the phonon dispersion curves
of hexagonal and orthorhombic YCo5 within the HA (dashed
curves) and SCP theory (solid curves). The SCP frequencies
from 100 to 300 K in steps of 50 K are shown with different
colors. It is clear that the harmonic phonon of the hexagonal
YCo5 is dynamically unstable with the most unstable mode
occurring at the L points. This instability was also observed
with other XC functionals, as indicated by the negative ω2

L
values in Table I. By contrast, the harmonic phonon is dy-
namically stable for the distorted orthorhombic phase [see
Fig. 2(b)]. The soft modes of the hexagonal phase at the L and
M points mainly involve the in-plane [xy plane in Fig. 1(c)]
displacements of the Co2c atoms together with relatively small
displacements of the other atoms. Recently, it has been shown
that the phonon instability at the L point originates from the
strong antibonding nature of the Co2c-Co2c bond [17], as
evidenced by a sharp peak in the crystal orbital Hamilton
populations (COHPs) [44] near the Fermi level. To see how
the antibonding nature changes with the structural distortion,
we compare the calculated −COHP values in Fig. 3(a). The
originally equidistant Co2c-Co2c bonds split into three differ-
ent Co8h-Co8h bonds labeled as a, b, and c [see bottom panel
of Fig. 1(c)], with the corresponding bond lengths of 2.75,
2.57, and 3.21 Å, respectively. Hence the −COHP values for
the three inequivalent Co8h-Co8h bonds are averaged here.
Compared with the large population of antibonding states [red
curve in Fig. 3(a)] at the Fermi energy in hexagonal YCo5, the
magnitude of −COHP in the orthorhombic phase is reduced
significantly, which can be explained by the smaller projected
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FIG. 2. Temperature-dependent anharmonic phonon dispersion
of hexagonal (a) and orthorhombic (b) phases of YCo5. The color
map shows the self-consistent phonon solutions in the temperature
range 100–300 K, and the dashed curves are harmonic lattice dynam-
ics results. Imaginary frequency is shown as negative. (c) Calculated
difference of the free energies, �F (T ) (see text). The horizon-
tal dashed line is the difference of the static energies −�E =
23.24 meV/f.u. Here, the phonon calculations are performed with
σ = 0.075 eV.

DOS [Fig. 3(b)] of the dx2−y2 orbital at the Co8h sites. Such a
large reduction in the −COHP value by structural distortion
is consistent with the trend of phonon stability we observed.
Interestingly, the projected DOS in Fig. S1 of the SM [37]
shows that the peak of the Co2c dx2−y2 orbital at the Fermi
energy does not change appreciably even when we used the
SCAN functional and GGA+U with various U parameters.
This suggests the presence of phonon instability in the hexag-
onal YCo5 even with XC functionals other than GGA-PBE, in
accord with the trend of �E shown in Table I.

As can be seen in Figs. 2(a) and 2(b), the phonon fre-
quencies significantly increase by the quartic anharmonicity
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FIG. 3. (a) Crystal orbital Hamilton population (COHP) calcula-
tion of the Co2c-Co2c bond in the hexagonal phase and Co8h-Co8h

bond in the orthorhombic phase. (b) Projected density of states
(PDOS) for 3d states at the Co2c and Co8h sites. The solid and
dashed curves represent the minority and majority spin states,
respectively. The data for hexagonal YCo5 are adapted from
Ref. [17].

at finite temperatures, which is particularly notable in the
low-energy optical modes. Since SCP theory postulates the
renormalized phonons to be stable in Eq. (4), we observe that
the finite-temperature phonons are stable irrespective of the
temperature for both phases. Hence the information of the
self-consistent phonon dispersion alone cannot determine
the structural phase transition temperature Tc reliably [45,46].
In this paper, we employ another approach based on Eq. (3),
where Tc is estimated from the difference in the electronic
and vibrational free energies defined as �F (T ) = F orth

vib (T ) +
F orth

el (T ) − [F hex
vib (T ) + F hex

el (T )]. The calculated �F (T ) is
shown in Fig. 2(c). The increase in �F with heating oc-
curs because the electronic and vibrational entropy gradually
enhances the stability of the hexagonal phase. Eventually,
the hexagonal phase becomes more stable when F hex(T ) �
F orth(T ), or equivalently −�E � �F (T ), is satisfied. From
this condition, a Tc value of ∼165 K was obtained when
evaluating �F (T ) using the MP method with the broaden-
ing parameter σ of 0.075 eV, as shown in Fig. 2(c). While
a magnetoelastic study showed the hexagonal phase to be
stable down to ∼100 K under hydrostatic pressure [47,48], a
detailed structure analysis at ambient pressure below ∼165 K
is necessary to test the present prediction.

Here, we discuss the dependency of Tc on the employed
σ value. As shown in Fig. S2 of the SM [37], the harmonic
phonon dispersion of the hexagonal phase was sensitive to
the σ value, particularly noticeable near the A (0, 0, 1

2 ) point
of the Brillouin zone. By contrast, we did not observe such

a significant σ dependence for the phonon dispersion of the
orthorhombic phase. These different behaviors are consis-
tent with the large difference in the projected DOS at the
Fermi level, shown in Fig. 3(b). Interestingly, in the case
of anharmonic phonon calculations, the phonon frequencies
were not so sensitive to σ even for the hexagonal phase.
This occurred presumably because the relatively large and
random displacements we used for computing anharmonic
IFCs lifted the degeneracy and thereby reduced the DOS at
the Fermi level, making the anharmonic IFCs less sensitive
to σ . Because of the observed σ dependency of the phonon
frequencies, the �F (T ) value also changed slightly with σ ,
leading to a sizable shift in Tc, as shown in Fig. S3(b) of
the SM [37]. With decreasing σ from 0.2 to 0.085 eV, Tc

gradually decreased from ∼240 to ∼165 K. In the smaller-σ
region of 0.060–0.085 eV, the calculated Tc value remained
nearly constant at ∼165 K, indicating convergence of the
calculation with respect to σ . We also confirmed that a σ value
as small as 0.085 eV can give a potential energy surface of the
third mode at the A point which agrees almost perfectly with
that computed using the tetrahedron method with the Blöchl
correction, whereas a larger σ overestimated the Hessian, as
shown in Fig. S2(b) of the SM [37].

B. MAE for two phases

In the following, we compare the MAE values of the
two phases obtained from two different approaches: FT [20],
i.e., a non-self-consistent calculation with the SOI, and SC
calculations with the SOI. For the hexagonal phase, the
MAE value, defined as KDFT

u = E0,⊥ − E0,‖, was 0.75 MJ/m3

within GGA-PBE, which significantly underestimates the ex-
perimental values of ∼7.4 MJ/m3 [8] and ∼6.0 MJ/m3 [9].
This underestimation problem could be resolved by adding
the Hubbard U correction. Zhou and Ozoliņš [49] reported
that the GGA+U method does not adequately describe the
orbital ground state for strongly correlated f -electron sys-
tems due to the significant anisotropy in the self-interaction
error (SIE) of the f orbitals. However, in YCo5 without f
electrons, the 3d electrons of Co are more itinerant and less
correlated, and the SIE anisotropy should be less significant
in comparison with the typical energy scale of the crystal field
and bandwidth [11,50]. Therefore the GGA+U method is still
valid for calculating the MAE and orbital moment, which has
been demonstrated in previous GGA+U studies on some Co
compounds [51,52].

For hexagonal YCo5, our FT calculation in Fig. 4(a) nicely
reproduced the U dependence of the MAE from a previous
FT result based on GGA+U [13], and the KDFT

u value became
comparable with the experimental values when U ∼ 1.75 eV.
However, at this U value, the FT still underestimated the
total orbital moments and their anisotropy (OMA), �mo =
mCo

o,‖ − mCo
o,⊥, for all Co sites, as shown in Figs. 4(c) and

4(b), respectively. We observed that the SC approach can
yield MAE and orbital moment results that are much more
consistent with experimental values, as we elaborate below.
The SC scheme enhanced the KDFT

u values at all the U values,
as shown in Fig. 4(a). Consequently, an agreement with ex-
perimental values was obtained for the MAE at U ∼ 0.75 eV,
which is smaller than the U of ∼1.75 eV for the FT approach.
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FIG. 4. Dependence of magnetocrystalline anisotropy energy KDFT
u (a), orbital moment anisotropy �mo (b), and orbital moment mo (c) for

the hexagonal and orthorhombic phases of YCo5 under the GGA+U scheme. The solid and translucent symbols represent the quantities
mentioned above obtained using the self-consistent and force theorem approaches, respectively. The unfilled diamonds show the theoretical
results from Nguyen et al. [13] based on the force theorem, and the horizontal dash-dotted lines, labeled as Expt. 1, and Expt. 2, show the
experimental results from Ref. [8] and Ref. [15], respectively. Note that the �mo and mo of the Y atom are not included in (b) and (c) for
comparison with the experimental data.

At U = 0.75 eV, the SC approach gave an orbital moment
of ∼0.8 μB/f.u., in better agreement with the experimental
value of ∼1 μB/f.u. [15] [see Fig. 4(c)]. Although perfect
agreements in the MAE, orbital moment, and OMA were
not reached simultaneously with a single U value, it is clear
that the SC scheme gives more reliable results than the FT
approach.

For the orthorhombic phase, we obtained U -dependent
MAE, OMA, and orbital moment values which were qual-
itatively similar to those of the hexagonal phase when the
SC approach was used, as shown by the filled markers in
Figs. 4(a), 4(b), and 4(c). One minor difference can be found
in the U value to reproduce the experimental MAE; for the
orthorhombic phase, a slightly larger U value of ∼1.0 eV
appears to give essentially the same magnetic properties as the
hexagonal phase. Even at U = 0.75 eV, which was applied to
the hexagonal phase, the MAE of 6.12 MJ/m3 still reaches
the range of experimental observations (6.0–7.4 MJ/m3). In-
terestingly, we found that the FT failed completely for the
orthorhombic phase, as inferred from the consistently lower
MAE values in Fig. 4(a), which can be attributed to the
underestimation of the OMA [Fig. 4(b)]. In the context of
the GGA+U scheme with the SOI, the FT approach only
modifies the GGA energy due to the Coulomb interaction be-
tween the Co-3d electrons occupying the same ion. However,
the change in occupancy due to the on-site electron-electron
Coulomb interaction is neglected because the charge density
is not self-consistently updated. Therefore it is reasonable
that the FT calculations underestimate the orbital moment,
the OMA, and, consequently, the MAE. We note that the
SC approach could reproduce the experimentally observed
larger orbital moments and OMA at the Co2c and Co8h

sites than at the other Co sites for both of the two phases.
The details of the site dependency are summarized in the
SM [37]. In addition, the total spin and orbital magnetic
moment obtained by the SC calculation with U = 0.75 eV
(U = 1.0 eV) for the hexagonal (orthorhombic) phase is
8.44 μB/f.u. (8.52 μB/f.u.) and agrees well with the

experimental values of ∼8.3 μB/f.u. [8] and ∼8.4 μB/f.u.
[4], while the total moment of 7.80 μB/f.u. (7.73 μB/f.u.) de-
termined without U underestimates the experimental results.
We have confirmed that other GGA+U correction schemes
[53–55] as well as a full-potential all-electron calculation
[29,30] give quantitatively similar MAE values (please see
details in the SM [37]).

IV. SUMMARY

To summarize, we have theoretically demonstrated a pos-
sible orthorhombic-to-hexagonal structural phase transition of
YCo5 induced by heating. We found that the orthorhombic
phase is energetically more stable than the hexagonal phase
at 0 K irrespective of the employed exchange-correlation
functionals. The stable, temperature-dependent phonons of
these phases were obtained by incorporating the anharmonic
renormalization using the self-consistent phonon approach,
and the theoretical phase transition temperature of ∼165 K
was obtained by comparing the calculated Helmholtz free en-
ergies. We compared the MAE, the associated orbital moment
anisotropy, and the orbital moments of the two phases com-
puted using the force theorem and self-consistent calculations
with the SOI based on the GGA+U scheme. We showed that
the magnetic properties of the orthorhombic phase were sim-
ilar to those of the hexagonal phase when the self-consistent
approach was employed. Since the calculated magnetic prop-
erties also agreed well with the available experimental data,
we expect the predicted orthorhombic phase to be existent
in the low-temperature region, which awaits experimental
verification.
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