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Machine learning for phase ordering dynamics of charge density waves
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We present a machine learning (ML) framework for large-scale dynamical simulations of charge density wave
(CDW) states. The charge modulation in a CDW state is often accompanied by a concomitant structural distor-
tion, and the adiabatic evolution of a CDW order is governed by the dynamics of the lattice distortion. Calculation
of the electronic contribution to the driving forces for large systems, however, is computationally very expensive.
Assuming the principle of locality for electron systems, a neural-network model is developed to accurately and
efficiently predict local electronic forces with input from neighborhood configurations. Importantly, the ML
model enables a linear complexity algorithm for dynamical simulations of CDWs. As a demonstration, we apply
our approach to investigate the phase ordering dynamics of the Holstein model, a canonical system of CDW
order. Our large-scale simulations reveal an intriguing growth of CDW domains that deviates significantly from
the expected Allen-Cahn law for phase ordering of Ising-type order parameter field. This anomalous domain
growth could be attributed to the complex structure of domain walls in this system. Our paper highlights the
promising potential of ML-based force-field models for dynamical simulations of functional electronic materials.
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I. INTRODUCTION

A charge density wave (CDW) is a periodic modulation
of electron charge density, which breaks translational sym-
metries of the system [1–5]. In many materials, the charge
density modulation is accompanied by a structural distor-
tion due to electron-lattice couplings [1,2]. Indeed, while
CDW order could originate from pure electronic mechanisms
[6,7], electron-lattice couplings play a crucial role in the
emergence of the charge modulation in most CDW materi-
als. For example, the well-known Peierls transition, which
describes the instability of a one-dimensional (1D) metal to-
wards the formation of a gapped CDW state, is caused by
a periodic lattice distortion that opens a gap at the Fermi
points of a partially filled band [8]. The collective nature of
charge and lattice dynamics in CDW states leads to several
interesting phenomena such as nonlinear electrical conduc-
tion, giant dielectric response, and multistable conducting
states, to name a few [4,9,10]. A reinvigorated interest in
the CDW physics was recently sparked by the synthesis of
quasi-two-dimensional (2D) materials such as transition metal
dichalcogenides [11–16].

The research on CDW phases has largely focused on their
thermodynamic, electronic, and transport properties, as well
as their interplay with other symmetry-breaking phases, such
as superconductivity. A new frontier of research, enabled by
the advent of ultrafast technology, is the formation and coher-
ent dynamics of CDW orders. Such experiments aim to study
the electronic and structural dynamics of CDW materials un-
der short-pulse excitations with femtoseconds or picoseconds
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resolution [17–21]. Despite enormous interest in the ultrafast
dynamics of CDW systems, their dynamical behaviors in the
adiabatic limit, such as the phase-ordering kinetics, have yet
to be systematically investigated, especially on the theoretical
side. Important issues such as whether the coarsening of CDW
domains follows well-established power laws or exhibits dy-
namical scaling remain open. Understanding the adiabatic
dynamics will not only serve as important references for the
ultrafast dynamics, but also shed light on the morphology
of CDW states, especially in the presence of impurities and
strains [22–24].

A full quantum dynamical simulation of the coarsening
dynamics of CDW is, however, a difficult multiscale task. On
the one hand, large-scale systems are required in order to cap-
ture details of pattern formation processes at the mesoscale.
On the other hand, in order to accurately model the elec-
tronic driving forces, one needs to carry out time-consuming
quantum computations, ranging from exact diagonalization to
more sophisticated many-body techniques, at every timestep
of the dynamical simulation. Indeed, in most large-scale sim-
ulations of CDW phenomena to date, the electronic degrees
of freedom are modeled by an order-parameter field governed
by the phenomenological time-dependent Ginzburg-Landau
(TDGL) equation. More accurate quantum approaches to the
electronic structure calculation of CDW dynamics, however,
are often restricted to small systems or simply neglect spatial
fluctuations or inhomogeneity.

In this paper, we present a solution to the multiscale model-
ing of adiabatic CDW dynamics based on a scalable machine
learning (ML) framework. Our approach utilizes the so-called
nearsightedness of electronic matter [25,26], which assumes
fast decays of electron correlation functions. This in turn
implies that local electronic properties depend predominantly
on the immediate environment. In the case of adiabatic CDW
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dynamics, the locality principle implies that the electronic
driving forces acting on local lattice degrees of freedom of
a CDW order can be accurately determined from structural
information in the neighborhood. A deep-learning neural net-
work model is then developed to encode this complicated
dependence on the neighborhood configurations. Importantly,
our proposed ML force-field model is both transferrable and
scalable, which means that models trained from dataset of
small-scale exact solutions can be directly applied to much
larger systems.

It is worth noting that our ML approach to the adiabatic
CDW dynamics is similar in spirit to ML-based interatomic
potential models that are used to enable large-scale ab
initio molecular dynamics (MD) simulations. In such first-
principles MD methods, the atomic forces are obtained by
solving, e.g., the Khon-Sham equation at every timestep
[27]. ML models are developed to accurately emulate the
time-consuming electronic structural calculations. Again, the
locality principle is implicitly assumed in such linear-scaling
ML-based quantum MD methods. A similar ML framework
has recently been proposed for multiscale dynamical mod-
eling of general condensed matter systems [28]. Large-scale
simulations based on such scalable ML models have also been
demonstrated in itinerant magnets and strongly correlated
electron models [29–34].

In this paper we apply our ML model to investigate the
coarsening of CDW domains in the Holstein model [35], a
canonical system for CDW physics [36–39]. The Holstein
model is a lattice model of itinerant electrons interacting
with scalar dynamical variables, which represent local A1-type
structural distortions associated with each lattice sites. For
bipartite lattices in both 2D and 3D, the half-filled electron
band is unstable towards the formation of a checkerboard
charge-density modulation, which is accompanied by a stag-
gered arrangement of local lattice distortions. The CDW phase
transitions and other phenomena related to electron-phonon
coupling, such as polaron dynamics and superconductiv-
ity, have been extensively studied in the Holstein model
[40–45]. Yet, to the best of our knowledge, the fundamental
phase-ordering dynamics of the CDW order, even in the semi-
classical approximation, has never been investigated.

The study of phase-ordering dynamics concerns the growth
and coarsening of ordered domains when a system is
quenched into a symmetry-breaking phase [46–49]. The evo-
lution of the order-parameter fields is often highly nonlinear
and is characterized by the emergence of complex spatial pat-
terns. The difficulty of large-scale coarsening simulations of
the Holstein model, as alluded to previously, is due to the mul-
tiscale nature of the problem. With the aid of ML force-field
model trained from small-scale exact solutions, we performed
phase-ordering simulations of the Holstein model subject to a
thermal quench on large systems of ∼105 sites. Our results
show that the phase ordering of CDW exhibits dynamical
scaling and power-law domain growth. Yet, the growth ex-
ponents are different from values that are expected from
symmetry consideration and conservation laws. Moreover,
the exponents exhibit intriguing dependencies on tempera-
ture and electron filling-fraction, highlighting the nontrivial
interplay between the electron and the lattice degrees of
freedom.

The rest of the article is organized as follows. The Holstein
model and its adiabatic dynamics are discussed in Sec. II. We
outline the general ML framework for adiabatic CDW dynam-
ics, and present a specific scalable neural-network model for
the dynamical simulation of the Holstein model in Sec. III.
Benchmarks of force prediction and comparison of dynamical
simulations on small-scale systems are also discussed. Re-
sults of large-scale ML-enabled phase-ordering simulations
and analysis of the growth dynamics of the CDW order are
discussed in Sec. IV. Finally, Sec. V concludes the article with
a summary and outlook.

II. ADIABATIC DYNAMICS OF THE HOLSTEIN MODEL

While our ML approach can in principle be applied to
adiabatic dynamics of general CDW orders, as a proof-of-
principle, and for concreteness, here we demonstrate the
method using the Holstein model [35]. We consider a modi-
fied Holstein model with spinless fermions on a square lattice,

H = − tnn
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Here c†
i (ci) is the electron creation (annihilation) operator at

site i, Qi denotes a scalar dynamical lattice degree of freedom
associated at the ith lattice site, and Pi is the corresponding
conjugate momentum. The first term above describes the elec-
tron hopping between a pair of nearest-neighbor sites 〈i j〉,
with tnn being the nearest-neighbor hopping coefficient. The
second term represents a deformation-type electron-lattice
coupling, where g is the coupling constant and c†

i ci is the elec-
tron number operator. The lattice degrees of freedom here are
modeled by a set of simple harmonic oscillators, with effective
mass m and elastic or spring constant k. Finally, the last term
introduces a quadratic interaction κ between nearest-neighbor
harmonic oscillators.

The lattice degrees of freedom {Qi} in the Holstein model
are similar to the Einstein model of dispersionless phonons.
The model could also be used to describe real compounds,
where Qi represent amplitudes of local collective modes of
atomic clusters such as the breathing mode of an octahedron
centered at site i. Partly due to its relative simplicity, the Hol-
stein model and its variants are amenable to quantum Monte
Carlo (QMC) methods, and are widely used as a minimum
model to study the physics of electron-phonon coupling, such
as polaron dynamics and phonon-mediated superconductiv-
ity (SC). At half-filling on a bipartite lattice, including both
square and honeycomb, the model exhibits a transition to the
CDW order at a finite temperature [36–39]. As the system
is doped away from half-filling, SC correlation is enhanced
and quasi-long-range SC order eventually sets in at very low
temperatures [40–45].

The CDW order of half-filled Holstein model on bipartite
lattices is characterized by a checkerboard electron density
modulation: nA/B = (1 ± δ)/2, where the subscript A and B
refers to the two sublattices of the bipartite lattice, and δ

quantifies the charge modulation. Due to the electron-lattice
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coupling, the checkerboard charge modulation is accompa-
nied by a staggered lattice distortion QA/B = ±Q. The CDW
order of the Holstein model thus breaks the Z2 sublattice
symmetry, which is a special commensurate translational
symmetry breaking. On symmetry ground, the CDW transi-
tion is expected to belong to the Ising universality class, which
is indeed confirmed by QMC simulations [36,37]. The CDW
phase of a half-filled Holstein model is thus described by an
Ising-type order parameter field [50].

As numerous other physical systems also exhibit an Ising-
type phase transition, the ordering dynamics of Ising phases
is one of the most studied subjects and has been successfully
used to describe coarsening phenomena in many materials
ranging from magnets with an easy-axis anisotropy to bi-
nary alloys. The phase ordering behaviors of Ising systems
have been thoroughly characterized and classified into several
super-universal classes, which depend on whether the Ising
order is conserved and the presence of quenched disorder.
Despite extensive studies on the equilibrium properties of
Holstein models, it remains unclear whether the transition
dynamics of the CDW order is consistent with these universal
behaviors.

A full quantum treatment of phase transition dynamics
is extremely difficult, even for Holstein models. Since the
system remains out of equilibrium during phase ordering, the
powerful QMC methods cannot be applied in such dynamical
studies. To make numerical simulations tractable, here we
introduce the semiclassical approximation and treat the lattice
degrees of freedom as classical dynamical variables. Unlike
the SC phase, which requires full quantum treatment, the
CDW order remains robust even in the semiclassical approxi-
mation. Indeed, the semiclassical phase diagram of the CDW
order obtained by a hybrid Monte Carlo method agrees very
well with that obtained from DQMC simulations [51].

Within the semiclassical approximation, the dynamics of
the local lattice modes is described by the effective Newton
equation of motion

m
d2Qi

dt2
= −∂〈H〉

∂Qi
− γ

dQi

dt
+ ηi(t ). (2)

Here the Langevin thermostat is used to account for the ef-
fects of a thermal reservoir during the phase ordering; γ is a
damping constant and ηi(t ) is a thermal noise of zero mean
described by correlation functions

〈ηi(t )〉 = 0,

〈ηi(t )η j (t
′)〉 = 2γ kBT δi jδ(t − t ′). (3)

Central to the integration of the above Langevin equation is
the force calculation, which requires the computation of the
expectation value of the Hamiltonian 〈H〉. With the semiclas-
sical approximation, the force term can be separated into the
contribution from electrons and a classical elastic force

Fi ≡ −∂〈H〉
∂Qi

= F elastic
i + F elec

i

= − ∂V
∂Qi

− ∂〈He〉
∂Qi

. (4)

Here the classical potential is V ({Qi}) = k
2

∑
i Q2

i + κ∑
〈i j〉 QiQj , and the resultant force is simply the restoring

force of the simple harmonic oscillator with an additional
coupling term

F elastic
i = −kQi − κ

∑
j

′Qj, (5)

where the prime in the second term indicates the summation
is restricted to nearest neighbors of site i. The electron Hamil-
tonian in Eq. (4) corresponds to a tight-binding model with a
random on-site chemical potential due to coupling to lattice
distortions

He({Qi}) = −tnn

∑
〈i j〉
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2

)
Qi. (6)

The calculation of the electronic force can be simplified us-
ing the Hellmann-Feynman theorem [52–56] ∂〈He〉/∂Qi =
〈∂He/∂Qi〉, which gives

F elec
i = g

(
ni − 1

2

)
, (7)

where ni ≡ 〈c†
i ci〉 is the expectation value of the electron

number. The electron force is proportional to the deviation of
the average local electron density from half-filling.

The domain growth during phase ordering is in general
a slow process compared with the relaxation of electrons.
The evolution of the CDW state can thus be well described
by the adiabatic approximation. Specifically, we assume the
time-scales of the slower lattice dynamics is well separated
from the fast electron relaxation. It is worth noting that this
adiabatic approximation is exactly the same as the Born-
Oppenheimer approximation widely used in quantum MD
simulations [27]. The fast electron relaxation indicates that the
electronic subsystem reaches quasi-equilibrium with respect
to the instantaneous lattice configuration. The expectation
value of, e.g., the electron density, is thus computed from a
Boltzmann distribution

ni = 1

Ze
Tr(c†

i ci e−βHe({Qi}) ), (8)

where Ze = Tre−βHe({Qi}) is the partition function of quasi-
equilibrium electrons. However, even with the adiabatic
approximation, the dynamical evolution of the Holstein
model is still a computationally demanding task. As
the electron Hamiltonian He is quadratic in the fermion
creation/annihilation operators, it can be solved by the exact
diagonalization (ED) in real space. Yet, since the electronic
forces have to be computed at every timestep of the Langevin
dynamics simulation, the O(N3) time complexity of ED can
be overwhelmingly time consuming for large systems.

The ML framework to be discussed in the next section,
on the other hand, provides a linear complexity algorithm
for the force calculation, which is key to large-scale phase-
ordering simulations of the CDW order. We also note that
other linear-scaling numerical techniques, notably the kernel
polynomial method [57,58], have been developed to solve
quadratic fermion Hamiltonians. However, these other O(N )
methods cannot be directly generalized to fermionic models
with electron-electron interactions such as the on-site Hub-
bard repulsion. In this regard, the ML methods offer a general
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FIG. 1. Schematic diagram of the ML force-field model for the Holstein model. The input of the ML model is the lattice configuration
Ci centered at site i, while the output is the force Fi acting on the associated lattice distortion. There are two central components of the ML
model: (i) the descriptor and (ii) a multilayer neural network. The lattice descriptor is introduced to preserve the D4 point-group symmetry of
the model. Essentially eight symmetry-related configurations are mapped to the same feature variables {G�}, which are then fed into the neural
network.

approach to achieve linear scalability even for strongly corre-
lated systems such as the Holstein-Hubbard model [59–61].

III. MACHINE LEARNING FORCE-FIELD
MODEL AND BENCHMARKS

As discussed in Sec. I, the feasibility of linear-scaling
electronic structure methods is fundamentally due to the
assumption of locality, or nearsightedness, of many-electron
systems [25,26]. Modern ML techniques provide an explicit
and efficient approach to incorporate the locality principle
into the implementation of O(N ) methods. Perhaps one of the
most prominent applications in this regard is the ML-based
interatomic potential or force-field models for ab initio MD
simulations [62–74]. Unlike classical MD methods where
empirical formulas are used for the force calculation, a
many-electron Schrödinger equation is numerically solved,
with varying approximations, at every timestep in order
to compute the atomic forces in quantum MD approaches
[27]. Various ML models have been proposed to emulate
the time-consuming electronic structure calculations. Again,
locality is tacitly assumed in such ML-MD methods, which
means that the atomic force only depends on the immediate
surrounding of the atom under consideration.

Generally speaking, there are two different approaches to
the force calculation in the ML-based quantum MD methods.
In the energy-based models, first proposed by Behler and
Barrinello (BP) [62] and by Bartók et al. [63], the total energy
of the system is partitioned into local atomic contributions:
E = ∑

i εi. Assuming locality of these atomic energies, ML
models are developed to accurately approximate their depen-
dence on the neighborhood atomic configurations. The atomic
forces are then computed from the derivatives of the energy
Fi = −∂E/∂Ri. One immediate advantage of this approach
is that the resultant force is conservative, which is important
for quantum MD within the Born-Oppenheimer approxima-
tion. Moreover, by focusing on the energy, which is a scalar
invariant under the rotation group, symmetry constraints can
be more easily incorporated into such ML models.

In the second approach, ML models are used to directly
approximate the global force fields. The most representative

examples of this approach is the gradient-domain machine
learning (GDML) models [72–74]. To ensure energy conser-
vation, a selected set of vector-valued kernel functions are
used to approximate the force fields. As the vector-output is
not invariant under symmetry transformations, special care
has to be taken to preserve symmetries of the molecular sys-
tems. The GDML and its variants have been shown to achieve
high accuracy force prediction with relatively small-size of
training dataset.

The relative simplicity of the lattice degrees of freedom in
the Holstein model suggests a direct force-field ML model.
Indeed, since the effective force acting on local lattice mode
Qi is a scalar, it is already invariant under symmetry trans-
formations of the system, in contrast to vector forces in MD
simulations. By constructing neighborhood feature variables
that are also invariants of the symmetry group, the symmetry
of the Holstein model can be readily incorporated into the
ML model. Finally, since forces in energy-based ML models
have to be obtained through derivatives of the total energy,
additional overhead is required for this calculation. Con-
sequently, both the training and the performance of the
direct-force ML model are computationally more efficient.

As the elastic force Eq. (5) can be trivially obtained analyti-
cally, one is tempted to focus on the modeling of the electronic
forces in Eq. (7), which is proportional to the local electron
number ni. However, when the system approaches an insulat-
ing CDW state, the on-site electron density tends to n ∼1 or
0. The electronic force thus exhibits a strong bimodal distri-
bution corresponding to the fully occupied and empty sites.
Importantly, such bimodal distributed forces with two strong
peaks are very difficult to model even with neural network.
On the other hand, as the electronic forces are nearly balanced
by the elastic forces for systems not too far from equilibrium,
the total force Fi is well characterized by a Gaussian-like
distribution, which can be easily modeled by ML.

A. Neural network model for force predictions

Here we propose a ML model, summarized in Fig. 1, for
the direct prediction of the local total force Fi. As discussed
previously, the locality principle implies that the effective
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force Fi acting on the local lattice mode Qi only depends on
the structural configurations in the immediate neighborhood.
Explicitly, the neighborhood centered at site i is defined as the
collection of lattice distortions within a cutoff radius rc,

Ci = {Qj | |r j − ri| � rc}. (9)

In general, the local environment is characterized by a set
of feature variables G = {G1, G2, · · · }, which are obtained
from the structural environment. For a given set of parameters
for the electron Hamiltonian, the local force depends on the
neighborhood Ci through a universal function of these feature
variables,

Fi = F (G) = F ({G1(Ci ), G2(Ci), · · · }). (10)

Importantly, here the complex dependence on the neighbor-
hood is to be approximated by an ML model, which can be
trained from exact solutions on small systems. It is worth
noting that the ML approach described above essentially is
to produce an effective classical force-field model in the
adiabatic limit. Yet recent advances in ML, especially with
deep-learning neural networks, offer a systematic way to de-
rive this complex function F (·) accurately and efficiently.

As shown in Fig. 1, there are two central components of
our proposed ML model: a descriptor and a deep-learning
neural network (NN). While the universal expressive power of
NN is utilized to achieve accurate approximation of the force
field, the descriptor is introduced to preserve the symmetry of
the original electron Hamiltonian. This is because despite the
powerful approximation capability of NNs, symmetries of the
original electron Hamiltonian can be learnt only statistically,
but not exactly. A descriptor is introduced to provide a proper
representation of the neighborhood configuration in such a
way that the representation is itself invariant under trans-
formations of the relevant symmetry group. By using these
symmetrized feature variables as input to the NN, the ML pre-
diction of the force or energy is guaranteed to be invariant with
respect to the symmetry of the underlying electron models.

Descriptors also play a crucial role in ML-based quantum
MD methods. Most molecular systems are invariant under
translation and rotation operations as well as permutations of
atomic species, representations of atomic neighborhood are
expected to be invariant under these symmetry operations. Nu-
merous atomic descriptors have been proposed over the past
decades to incorporate these basic symmetry properties into
ML interatomic potential models [75–84]. A popular atomic
descriptor used in many ML models is the atom-centered
symmetry functions (ACSFs) built from relative distances and
angles of atomic positions in the neighborhood [62,79]. A
more systematic approach to build invariant feature variables
is based on the so-called bispectrum coefficients, which are
special triple-products of irreducible representations of the
symmetry group [63,75].

For condensed-matter systems, most of which are defined
on specific lattices, the SO(3) rotational symmetry of free-
space is reduced to discrete point-group symmetries. On the
other hand, the dynamical degrees of freedom, such as lo-
cal magnetic moments or order-parameters, are characterized
by additional internal symmetry group. A general theory of
descriptors for ML force-field models in condensed matter
systems is recently discussed in Ref. [28]. In particular, a

descriptor based on group-theoretical approach is presented;
several explicit implementations have also been demonstrated
in well-studied itinerant magnets and correlated electron sys-
tems [29–34]. For application to the Holstein model, there
is no internal symmetry associated with scalar lattice modes
Qi. Yet, the ML force-field model needs to be invariant
with respect to the D4 point-group symmetry. Essentially,
this means that the eight different lattice configurations that
are related by symmetry operations of D4, as shown in the
example of Fig. 1, are to be mapped to exact same feature
variables G = {G�}.

To derive these symmetry-invariant feature variables, first
we note that the neighborhood lattice configuration Ci forms
a high-dimensional reducible representation of the D4 group.
It can then be decomposed into fundamental irreducible
representations (IRs) of the point group. This decomposition
can be highly simplified as the original representation
matrix is automatically block diagonalized, with each block
corresponding to a fixed distance from the center site. We use
f 
 = ( f 


1 , f 

2 , · · · , f 


D

) to denote the basis function of IR of

the symmetry-type 
. For example, the lattice distortions of
the four nearest-neighbor sites in Fig. 1 can be decomposed as
4 = 1A1 + 1B1 + 1E , where f A1 = Qa + Qb + Qc + Qd and
so on; more details can be found in Appendix A. Given these
IR coefficients, one immediate class of invariants is their am-
plitudes p
 = | f 
|2, which is called the power spectrum of the
representation. However, the descriptor also needs to account
for crucial information on the relative phases of different IRs.

A more general set of invariants, which include relative
phase information is the so-called bispectrum coefficients
[85]. These are special triple-products of IR coefficients with
Clebsch-Gordan coefficients introduced to compensate the
different transformation properties of the IRs. The collection
of all bispectrum coefficients in principle provide a com-
plete invariant description of the environment, which means
they can be used to faithfully reconstruct the neighborhood
configuration up to an arbitrary symmetry transformation.
However, the rather large number of bispectrum coefficients
implies a large set of feature variables, and often with huge
redundancy. To circumvent this issue, we introduce the con-
cept of reference IR coefficients f 


ref , which are obtained by
applying similar decomposition procedure to large symmetry-
related blocks of Ci such that they are insensitive to small
variations of the neighborhood [28]. Importantly, the relative
phase of two IRs can be restored from their respective relative
phases to the reference IR, e.g., η
 ∼ f 
 · f 


ref . A complete
set of invariant feature variables is then given by the power
spectrum p
 and the phases η
; see Appendix A for more
details.

The resultant invariant representation of Ci is then fed into
the NN, which in turn produces the scalar force Fi at its
output node. A five-layer NN model is constructed and trained
using PyTorch [86–91]. The training datasets are obtained
from the ED solutions of a mixture of random configurations
and quasiordered CDW states on a small 40 × 40 system.
To properly capture configurations during the relaxation
process, intermediate states obtained from thermal quench
simulations are included in the training dataset. More details
on the NN structure and training process are discussed in
Appendix B.
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δ

f = 0.5

f = 0.4

f = 0.3

histogram
histogram

histogram

FIG. 2. Benchmark of ML force-field model for adiabatic dy-
namics of Holstein model. Panels (a)–(c) on the left show the ML
predicted force FML vs the exact force Fexact for three different
electron filling fractions f = 0.5, 0.4, and 0.3. The corresponding
histograms of the prediction error δ = FML − Fexact are shown on pan-
els (d)–(f) on the right. The standard deviations for the three filling
fractions are σ = 0.010, 0.011, and 0.014 (from top to bottom).

B. Benchmarks of the ML model

We have built three ML models corresponding to different
electron filling fractions f = 0.5, 0.4, and 0.3 of the Hol-
stein model. Assuming dimensionless lattice variables Qi, the
model parameters of the electron Hamiltonian all have unit
of energy. By setting tnn = 1, which serves as the energy unit,
the other parameters of the Holstein model are g = 3.5, k = 1,
and κ = 0.18. The lattice dynamics is characterized by the
fundamental frequency ω = √

k/m of the simple harmonic
oscillator; its inverse ω−1 can thus be used as the time unit.
The dissipation timescale is given by τ = γ /k, and we have
used a damping coefficient γ such that the dimensionless
dissipation in one fundamental cycle is ωτ ∼ 0.09. Finally,
a timestep �t = 0.022 ω−1 is used in all Langevin dynamics
simulations discussed in this paper.

For each model, 600 configurations of Qi on the 40 ×
40 square lattice are used in the training dataset. Of these,
400 are snapshots from the relaxation process of a thermal
quench, while the rest are completely random configurations.
Specifically, the neighborhood configuration Ci and the corre-

nstep = 200

nstep = 1000

nstep = 9000

f = 0.4

n

n

nstep = 1000

nstep = 9000

nstep = 200

f = 0.5

FIG. 3. Comparison of lattice correlation functions Ci j = 〈QiQj〉
obtained from Langevin simulations with the ML force-field model
and the ED method. Thermal quench simulations of a 40 × 40 system
at two different filling fractions f = 0.5 (left) and f = 0.4 (right)
were carried out to produce these correlation functions at various
timesteps after the quench.

sponding force Fi from ED of each lattice site constitutes one
training data in this supervised learning. This means that the
total number of dataset is 1600 × 600 = 960 000. Remark-
ably, even with this moderate size of training dataset, rather
accurate force predictions were achieved for all three models,
as shown in Fig. 2. The distribution of the prediction error
δ = FML − Fexact is shown on the right panels, where a rather
small mean-square error is obtained for all three cases.

Next we incorporated the trained ML models into the
Langevin dynamics method and performed thermal-quench
simulations of the Holstein model. The results were then com-
pared with ED-Langevin simulations to benchmark whether
the ML models can also reproduce the dynamical evolution
of the Holstein model. An initially random state is suddenly
quenched to a temperature T = 0.1 at time t = 0. We com-
puted the correlation function between two local lattice ampli-
tudes Ci j = 〈QiQj〉 at various times after the thermal quench.
Figure 3 shows the comparison of the correlation functions
obtained from ML and ED Langevin simulations for two
different electron filling fractions. To circumvent statistical
fluctuations due to small lattice sizes, each correlation func-
tion was computed by averaging over 30 independent runs.

The correlation functions exhibit a short-period oscillation,
which is enveloped by two gradually decaying curves. The
oscillation is due to the staggered lattice distortions Qi ∼
(−1)xi+yi that accompany the checkerboard charge modula-
tion. A correlation length can be estimated from the two
envelop functions. Interestingly, short-range CDW correlation
emerges rather quickly, e.g., at nstep = 200, after a thermal
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quench to T = 0.1. Yet, comparison of the correlation
functions at large timesteps shows that the build-up of longer-
range checkerboard order is rather slow at this temperature.
As will be discussed in the next section, this is related to a
power-law domain growth with a relatively small exponent.
Importantly, as shown in Fig. 3, excellent agreement between
ML and ED simulations was obtained at different times of
the relaxation process. This provides strong evidence that, in
addition to accurate force predictions, our ML models also
faithfully capture the dynamics of the Holstein model.

While our ML model is designed to predict the total force
Fi, it also serves as a model for computing the local electron
density ni = 〈c†

i ci〉 from the structural environment Ci. This
is because the electronic force Felec is linearly proportional to
ni in the Holstein model as shown in Eq. (7). And since the
elastic contribution can be trivially computed from on-site and
nearest-neighbor Qj using Eq. (5), by subtracting it from the
total force, one can obtain an accurate estimate of the electron
force, hence the local electron density. We note in passing
that, as a predictor of ni, our ML model is transferrable in
the sense that it can be used in different Holstein models with
same electron Hamiltonian, yet different classical parameters.

Finally, as a further comparison, we have also implemented
a BP-type ML model where the output of the NN is the
local energy εi associated with individual lattice sites. The
local force is then computed from the total energy through
automatic differentiation of the NN. We found that, with sim-
ilar descriptor, cutoff radius, hyperparameters of the NN, and
training dataset, the ML model with direct force prediction
gives a much better accuracy than the energy-based BP-
type model. This difference of the two approaches might be
attributed to a better locality of the effective force Fi than that
of the site-energy εi. For example, force is directly observable,
hence is uniquely defined in the model. On the other hand,
more complex NN structure or training dataset might be re-
quired in order to capture the implicit partitioning of the total
energy into local contributions.

IV. MACHINE LEARNING DYNAMICAL SIMULATION
OF CDW COARSENING

As discussed in Sec. I, the high efficiency and linear
scalability are features of ML models that make large-
scale dynamical simulations possible. As a demonstration,
Langevin dynamics simulation based on ED for the force
calculation of a 40 × 40 Holstein model took about 16 hours
for 10 000 steps. On the other hand, Langevin simulations of
exact the same size and timesteps only took ∼1 minute using
the ML force-field model. This corresponds to a 1000-fold
improvement in efficiency. Extrapolating to simulations on a
200 × 200 lattice to be discussed below based on the O(N3)
scaling, the ML-based Langevin simulation is expected to be
roughly 106 times faster than that based on the ED method.

Here we apply the ML-Langevin dynamics to study the
phase ordering of CDW order of the Holstein model. To this
end, we performed the thermal quench simulations where
an initially state with random local distortions was suddenly
cooled to a low temperature T = 0.1 at time t = 0. The
Langevin simulations were carried out on a 200 × 200 system
with the same model parameters as those used to generate

the training dataset discussed in the previous section. Three
different filling fractions f = 0.5, 0.4, and 0.3 are consid-
ered in order to investigate the effects of hole doping on
the domain structures and growth laws. As discussed above,
the low-temperature CDW phase of the Holstein model is
characterized by a broken Z2, or sublattice, symmetry. The
checkerboard charge modulation of a perfect CDW order can
be described by a parameter δ,

ni = 1
2 [1 + δ exp(iQ · ri )] (11)

where Q = (π, π ) is the ordering wave vector, and the phase
factor exp(iQ · ri ) = ±1 for the A and B sublattices, re-
spectively. The Z2 symmetry transform a CDW order with
parameter +δ to one with −δ. As the system relaxes toward
the equilibrium state after the quench, multiple CDW domains
of opposite signs of charge-modulation develop simultane-
ously. The dynamics of phase ordering is thus dominated by
the merging and growth of these CDW domains. To char-
acterize the inhomogeneous intermediate states during the
relaxation process, we introduce a local CDW order parameter

φi =
(

ni − 1

4

∑
j

′n j

)
exp (iQ · ri ), (12)

where the prime in the second term indicates that the sum-
mation is restricted to the nearest neighbors of site i. This
local parameter essentially measures the difference of the
electron number at a given site and that of its nearest neigh-
bors. A nonzero φi thus indicates the presence of local charge
modulation around site i. The long-range charge modulation
described in Eq. (11) corresponds to a uniform order parame-
ter φi = δ.

Figure 4 shows snapshots of the local CDW order φi at
various timesteps after the thermal quench. As discussed in
Sec. III, the ML model is used to also compute the local
electron density ni form a given snapshot of lattice distortions.
The red and blue regions, corresponding to φi = +1 and −1,
respectively, are CDW domains related by the Z2 symmetry.
The two types of CDW domains are separated by interfaces of
vanishing φi, corresponding to the white regions. The emer-
gence of numerous red and blue domains at small timesteps
indicates that CDW order with strong charge modulation is
quickly established after the quench. Yet the correlation length
of the CDW order is rather short at the early stage of phase
ordering, as evidenced by the relative small sizes of these
CDW domains. As the system relaxes toward equilibrium,
these CDW domains merge into bigger ones, giving rise to
a coarser mixture of the two ordered phases.

To quantify the coarsening of CDW domains, we first com-
pute the structure factor of the CDW state,

S(k, t ) = |ñ(k, t )|2, (13)

where ñ(k, t ) is the Fourier transform of the time-dependent
electron density n(ri, t ) = ni(t ),

ñ(k, t ) = 1

N

∑
i

(n(ri, t ) − n̄ ) exp(ik · ri ), (14)

Here n̄ is the average number of electrons per site, which is the
same as the filling fraction f . The structure factors at various
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FIG. 4. Snapshots of local CDW parameter φi at various timesteps after a thermal quench of the Holstein model. An initially random
configuration is suddenly quenched to a temperature T = 0.1 at time t = 0 (nstep = 0). The ML-Langevin dynamics was used to simulate the
relaxation of the system toward equilibrium. The red and blue regions correspond to CDW domains with order parameter φ = +1 and −1,
respectively. A timestep �t = 0.022 ω−1 is used in the simulations, where ω = √

k/m is the fundamental frequency of the lattice degrees of
freedom.

timesteps after a quench to T = 0.1 are shown in Fig. 5. The
emergence of checkerboard charge patterns corresponds to a
peak at the wave vector Q = (π, π ). However, contrary to
Bragg peaks that are characteristic of long-range order, the
quenched states here exhibit a broad diffusive peak due to
the coexistence of multiple CDW domains of opposite signs.
As the system equilibrates, the coarsening of CDW domains
results in a stronger and sharper peak at Q. The width of
the diffusion peak thus provides a quantitative estimate of the
average size L(t ) of the CDW domains at time t . Specifically,
it is defined as

L−1(t ) =
∑

k

S(k, t )|k − Q|
/ ∑

k

S(k, t ). (15)

In addition to a measure of typical domain sizes, L(t ) can also
be viewed as the correlation length of the CDW states. By
properly rescaling the time-dependent structure factor and the
wave vector using this characteristic length, the data points
at different times collapse in the vicinity of a hidden curve,
as shown in Fig. 6 for two different quench temperatures.
This indicates that the coarsening of CDW domains exhibits a
dynamical scaling

S(q, t )L2(t ) = G(qL(t )), (16)

FIG. 5. Structure factor S(k, t ) of the electron density distribu-
tion n(ri, t ) = ni(t ) at various timesteps after a thermal quench from
random configurations to a temperature T = 0.1. The system size is
200 × 200 and the filling fraction is f = 0.5.
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T = 0.1 T = 0.3
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FIG. 6. Rescaled structure factor S(q, t )/L2(t ) vs the dimension-
less wave vector qL(t ) at different times for two different quench
temperatures: (a) T = 0.1 and (b) T = 0.3. The filling fraction is
set at f = 0.5. The black line shows the q−3 tail of the 2D Porod’s
law. The red dashed line marks the power-law q−γ , with an exponent
γ ∼ 2.

where q = |k − Q| is the distance from the CDW peak in mo-
mentum space, and G(x) denotes the hidden universal scaling
function. Dynamical scaling has been observed in the phase
ordering of numerous Ising-type transitions. In many cases,
the scaling function exhibits a 1/qd+1 power-law behavior at
large wave vectors, where d is the spatial dimension. This
universal power-law dependence, also known as the Porod’s
law [46,47], can be attributed to the rather sharp interfaces that
separate the two ordered states related by the Z2 symmetry.
For our case of 2D Holstein model, the structure factor seems
to be well described by the q−3 power law for intermediate
values of q; see Fig. 6. However, significant deviation from the
Porod’s law can be seen for large values of the wave vector,
as shown by the red dashed lines in Fig. 6, which denote a
power-law q−γ with an exponent γ ∼ 2. As will be discussed
below, this deviation is related to the complex domain-wall
structures of the Holstein model.

The dynamical scaling Eq. (16) also means that the coars-
ening of CDW order is characterized by a single characteristic
length L(t ). The kinetics of phase ordering can thus be char-
acterized by the time dependence of this length scale. As the
CDW transition belongs to the Ising universality class, the
coarsening of CDW domains is expected to be similar to that
of standard Ising systems. Kinetic Monte Carlo simulations
of the nearest-neighbor ferromagnetic Ising model on various
lattices find a power-law domain growth [46,47]

L(t ) ∼ tα, (17)

where the growth exponent α is a universal value independent
of lattice geometries and dimensionality. The exponent, on the
other hand, depends on whether the dynamics conserve the
Ising order parameter. For nonconserved dynamics as in our
case of CDW ordering, the universal exponent is α = 1/2,
and the corresponding power-law growth is also known as the
Allen-Cahn law [46,47]. More generally, the same power-law
behavior can also be obtained from the relaxational model-A
dynamics of the coarse-grained Ising order parameter φ(r),
which is described by the time-dependent Ginzburg-Landau

(b)

t

(a)

t1/2
T = 0.1
0.2

0.3

L(t)

t

f = 0.5
0.4
0.3

1

2

3

10 100
0.5

10 100

f = 0.5 T = 0.1

t1/2

FIG. 7. The characteristic length L(t ) of CDW order as a func-
tion of time obtained from the ML-Langevin simulations. Panel
(a) shows the L(t ) curves of three different temperatures at the filling
fraction f = 0.5. The power-law growth at late stage is characterized
by an exponent α = 0.059, 0.115, and 0.155 for quench temperatures
T = 0.1, 0.2, and 0.3, respectively. (b) L(t ) curves at filling fractions
f = 0.5, 0.4, and 0.3 for thermal quench to T = 0.1. The late-stage
power-law growth of all three electron fillings can be well approx-
imated by an exponent α = 0.059. Also shown for reference is the
Allen-Cahn growth law with exponent α = 1/2.

(TDGL) equation. Analytical calculation of TDGL assuming
a random initial state leads to an equal-time correlation func-
tion of the scaling form 〈φ(0, t )φ(r, t )〉 ∼ K(|r|/L(t )) [92],
where K(x) is a universal scaling function and the correlation
length L(T ) follows the Allen-Cahn power law.

Coming back to the coarsening of CDW order, the time
dependence of the characteristic length L(t ) computed from
ML-Langevin simulations is shown in Fig. 7(a) for three
different quench temperatures at the filling fraction f = 0.5.
Interestingly, while the growth of the CDW domains at late
stage indeed exhibits a power-law behavior, the dynami-
cal exponent α is nonuniversal and temperature dependent.
Moreover, the extracted exponents at the three simulated
temperatures, αT =0.1 = 0.059, αT =0.2 = 0.115, and αT =0.3 =
0.155, are significantly smaller than the Allen-Cahn exponent
1/2, which is expected for a nonconserved Ising order param-
eter. This indicates a much slower phase ordering than the
conventional Ising transition. On the other hand, for a given
quench temperature, the dynamical exponent α is almost in-
dependent of the electron filling fraction f , as shown in Fig. 7.
However, the growth rate, i.e., the prefactor of the power-law
time dependence, is reduced as the system is doped away from
half-filling.

Since the kernel polynomial methods (KPM) also provides
a O(N ) approach for solving quadratic fermion Hamiltonian
[57,58], as a further benchmark, we have further performed
KPM-based Langevin dynamics simulations to study coarsen-
ing of CDW domains on a 120 × 120 lattice [93]. Importantly,
exactly the same temperature-dependent exponents were ob-
tained using the KPM. This agreement further highlights
the accuracy of our ML models, as well as confirms the
validity of the unusual coarsening dynamics. While KPM
provides an alternative linear-scaling method for the dynami-
cal simulations of the semi-classical Holstein model, the ML
approach is more general in the sense that it can be trained to
learn solutions of models with electron-electron interactions.
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FIG. 8. Snapshots of local electron density ni at the late stage
(nstep = 20, 000) of CDW coarsening. The filling fractions from top
to bottom are f = 0.5, 0.4, and 0.3.

Practically, dynamical simulations using ML force-field mod-
els are one or two orders of magnitude faster even compared
with those based KPM.

To understand the unusual power-law behavior of CDW
coarsening, we note that the expansion of an ordered region
is essentially controlled by the structure and dynamics of
the interface, or domain wall, that separates the two domains
related by the Z2 symmetry. Indeed, the Allen-Cahn power law
can be understood from a domain-wall motion whose velocity
is proportional to the curvature of the interface. Approximat-
ing the velocity by the domain growth rate v ∼dL/dt , and
the curvature by the inverse domain size κ ∼1/L, we obtain
an equation of motion dL/dt ∼ −1/L, from which one can
easily derive a power-law growth with exponent α = 1/2.
A more rigorous derivation based on TDGL gives the same
result.

The interface dynamics in the TDGL theory, or in standard
nearest-neighbor Ising models, is entirely determined by the
conformation of the order-parameter field. In general, the do-
main walls are rather sharp with relatively simple structures,
especially at late stages of phase ordering. On the other hand,
due to the involvement of the electron degrees of freedom, do-
main walls in the CDW states of Holstein model exhibit rather
complex structures. This is demonstrated in Fig. 8, which
shows a close-up view of local electron density of late-stage
CDW states at three different filling fractions. For example, in
the half-filling case shown in the top panel of Fig. 8, the do-
main walls consist of alternating segments of fully-occupied
and empty sites. Consequently, domain-wall motion necessar-
ily requires rearrangements of these segments, giving rise to
complex dynamics that is beyond the Allen-Cahn theory.

For systems with a reduced filling fraction, the doped holes
are expelled from the CDW domains similar to the scenario of

doped Mott insulators. Consequently, the phase ordering of
hole-doped Holstein models can also be viewed as a phase
separation process. It is worth noting that the hole-rich phase
here is mostly confined to the interface region that separates
CDW domains of opposite signs. This is in stark contrast to
phase-separated states in correlated electron systems, such as
the double-exchange or Hubbard models, where the doped
holes aggregate in small clusters, which then merge with each
other as the system equilibrates. Importantly, the expansion of
CDW domains is a complex process that involves the defor-
mation, breaking, and reconnection of the hole-rich interface.
Also contrary to the isotropic interfaces in the TDGL theory,
the hole-rich domain walls of the CDW states in Fig. 8 clearly
favor the diagonal directions of the square lattice.

The CDW coarsening dynamics also depends on the
strength of the electron-phonon coupling. The model pa-
rameters considered above, with a dimensionless coupling
parameter λ = g2/W k ≈ 1.5, correspond to a rather strong
electron-lattice interaction. Here W = 8tnn is the bandwidth
of the electron tight-binding model. Our Langevin dynamics
simulations, with consistent results from both KPM and ML
models, show that a smaller yet still significant deviations
from the expected Allan-Cahn power law for the cases of
smaller electron-lattice coupling, e.g., λ = 0.1. The CDW
coarsening exponents α also exhibit a weaker temperature
dependence compared with those shown in Fig. 7. Moreover,
boundaries of CDW domains are more rounded, less preferen-
tial in the diagonal directions. A more systematic examination
of the effects of electron-lattice coupling on the CDW coars-
ening dynamics will be left in a future study [93].

V. CONCLUSIONS AND OUTLOOK

In summary, we have presented a scalable ML force-field
model for the adiabatic CDW dynamics in electron-lattice
coupled systems. Within the adiabatic approximation, the
dynamical evolution of a CDW state is governed by the
lattice dynamics with a driving force computed from a quasi-
equilibrium electron liquid. Assuming locality principle for
the electronic forces, a multilayer NN model is trained to
accurately approximate the complex dependence of the force
on local lattice configurations. Additionally, a lattice descrip-
tor is developed to incorporate the symmetry of the electron
Hamiltonian into the ML model. We demonstrate our ap-
proach by applying it to study the phase-ordering dynamics
in the semiclassical Holstein model on the square lattice. Our
ML model trained by exact solution of 40 × 40 systems not
only accurately predict the driving forces, but also faithfully
capture the dynamical evolution of the Holstein model. Also
importantly, compared with the exact diagonalization for the
force calculation, significant improvement of efficiency is ex-
pected for dynamical simulations with the trained ML model.

By incorporating the ML model into the Langevin dy-
namics method, we have performed large-scale simulations of
the coarsening dynamics of CDW order in the semi-classical
Holstein model. While numerous studies have firmly estab-
lished the Ising universality class for CDW transition in the
Holstein model, very little is known about its phase-transition
kinetics. Intriguingly, our large-scale simulations uncovered
a nonuniversal power-law domain growth that is contrary to
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the expected Allen-Chan law for nonconserved kinetics of
the Ising order. Instead, the growth exponent is shown to
be temperature dependent, and almost independent of the
electron filling fractions. These unusual behaviors likely can
be attributed to the complex structure of domain-walls of
the CDW order and the nontrivial interplay of the lattice
and electrons during domain coarsening. In fact, the tem-
perature dependence of the growth exponent resembles that
of the random-field Ising model [94,95], despite the absence
of quenched disorder in our simulations. This similarity sug-
gests a self-generated dynamical disorder due to the interplay
between electrons and CDW order. A careful study of this
anomalous coarsening dynamics is left for the future.

Thanks to the relative simplicity of lattice variables in the
Holstein model, our ML model is built to directly predict
the local forces. Nonetheless, our proposed formalism can be
directly generalized to energy-based ML models such as the
Behler-Parrinello scheme. Comparison of the two approaches
based on similar NN structure and training datasets showed
that the direct-force ML model offers a significantly better
accuracy to the energy-based model. However, BP-type ML
methods, which focus on the prediction of a local energy
provide a more general approach for CDW phases with com-
plex lattice distortions, such as doublet Jahn-Teller distortions.
On the other hand, since forces are computed from energy
derivatives in the BP-type scheme, energy-based ML models
are thus restricted to the modeling of conservative forces
[34]. One crucial advantage of the direct-force ML model is
the capability to describe nonconservative electronic forces
arising from driven CDW systems [96–100]. As the model
proposed in this work is only applicable to scalar force field
of Holstein-type models, further development are required for
the ML modeling of multicomponent nonconservative forces.

In our ML approaches, the lattice modes are treated as
classical degrees of freedom. This is expected to be a reason-
able approximation in the adiabatic regime with slow lattice
dynamics. We note in passing that ML methods have also been
adopted to develop cost-effective energy models for DQMC
simulations of the Holstein model with quantum phonons
[101,102]. Within the framework of self-learning Monte Carlo
[103,104], ML models are trained to provide cluster up-
dates in configuration space with high acceptance rates when
combined with standard Metropolis-Hasting algorithm [103].
Scalable neural network models, with local space-time con-
figurations as input, were also developed to improve the
efficiency of DQMC simulations [102]. A challenging task,
which will be left for the future, is the development of scalable
ML approaches for CDW dynamics with quantum phonons.

Finally, the CDW orders in the Holstein model mainly
arise from the electron-lattice coupling. As a result, the lattice
dynamics plays the dominant role in the adiabatic evolution of
CDW order in the Holstein model. For more complicated sys-
tems where charge modulation is at least partially stabilized
by electron-electron interactions, the evolution of the CDW
order parameter, which describe the collective electron behav-
iors, might be described by its own equation of motion. For
example, coupling to a heat reservoir could leads to a dissi-
pative model-A dynamics ∂φi/∂t = −η∂〈HCDW〉/∂φi, which
is coupled to the lattice dynamics. Here HCDW describes an
effective electron Hamiltonian, e.g., as in the Hartree-Fock

approximation, with the introduction of the CDW order pa-
rameter. Consequently, in addition to the force on lattice
variables, an effective force on the CDW order F CDW

i =
−∂〈HCDW〉/∂φi is also required for a complete dynamical
description. The ML framework presented here can be gen-
eralized to include the order-parameter dynamics. Essentially,
the neighborhood configuration Ci now includes both lattice
and local CDW order parameters, which are then used to
predict both forces via a neural network.
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APPENDIX A: LATTICE DESCRIPTOR

As discussed in Appendix B, the goal of a lattice descriptor
is to preserve lattice symmetry of the original lattice Hamilto-
nian in the ML model. In the case of square lattice, the lattice
descriptor maps the eight configurations related by the D4

symmetry operations into a symmetry-invariant generalized
coordinates {G�}. One systematic approach to obtain these
invariants is based on the group-theoretical method [105]. To
this end, we first note that the local distortions {Qi} in a given
environment Ci form a high-dimensional representation of the
D4 point group. This neighborhood representation can then be
decomposed into irreducible representations (IRs) [105]. This
decomposition is considerably simplified due to the lattice
geometry. Essentially, since the distance between a neighbor-
hood site- j and the center site i is invariant under operations
of the D4 group, the neighborhood representation Ci is already
block-diagonalized, with each block corresponding to a layer
of neighbors sharing the same distance to the center.

For the square lattice, these invariant blocks can be clas-
sified into three types illustrated in Fig. 9. The first two
types are both four-dimensional representations of D4, and
can be decomposed as 4 = A1

⊕
B1

⊕
E . However, they are

inequivalent with different basis functions. For type I, the
decomposition is through the transformation

f A1 = a + b + c + d,

f B1 = a − b + c − d,

f E = (a − c, −b + d ),

while the transformation for type-2 block is

f A1 = a + b + c + d,

f B1 = a − b + c − d,

f E = (a + b − c − d, a − b + c − d ).

The type-III block is an eight-dimensional representa-
tion of D4 group and can be decomposed as 8 = A1

⊕
A2

⊕
B1

⊕
B2

⊕
E

⊕
E through the transformation

f A1 = a + b + c + d + e + f + g + h,

f A2 = a − b + c − d + e − f + g − h,

f B1 = a + b − c − d + e + f − g − h,
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FIG. 9. Schematic diagram showing the invariant blocks of the
neighborhood representation. Due to the lattice geometry, the neigh-
bors of a given site at the center can be grouped into many layers
by their distances to the center. Different layers are outlined by the
dashed circles in the figure. The local distortions {Qi} in the neigh-
borhood Ci form a high-dimensional basis for the D4 point group.
The basis functions in each layer correspond to a reducible represen-
tation, there are three types that the representations are inequivalent.

f B2 = a − b − c + d + e − f − g + h,

f E
1 = (a + b − e − f , −c − d + g − h),

f E
2 = (c − d − g + h, a − b − e + f ).

Feature variables that are invariant with respect to the point
group symmetry can now be derived from the basis functions
for the IRs. First, a set of invariants called the power spectrum
can be readily obtained,

p

r ≡ ∣∣ f 


r

∣∣. (A1)

Here 
 denotes the IR and r enumerates the multiple occur-
rence of 
. However, the power spectrum alone is incomplete
in the sense that it cannot distinguish different configurations
that are not related by the point group operations. For instance,
the power spectrum is invariant under independent rotations of
each layer of the neighborhood. Formally, this spurious sym-
metry is due to the ambiguity of the relative “angle” between
two IRs of the same type, cosθ12 = ( f 


1 · f 

2 )/(| f 


1 || f 

2 |),

which is also an invariant. Different θ12 correspond to distinct
configurations that are not related by the point group symme-
try. The power spectrum should be supplemented by feature
variables that encode the relative phases.

A systematic approach to include all relevant invariants,
including both amplitudes and relative phases, is the bispec-
trum method [75,85]. The bispectrum coefficients are triple
products of IR basis defined as

b
,
1,
2
r,r1,r2

=
∑
κ,μ,ν

C
;
1,
2
κ,μ,ν f 


r,κ , f 
1
r1,μ

f 
2
r2,ν ,

where C
;
1,
2
κ,μ,ν are the Clebsch-Gordan coefficients of the

point group, which are introduced to account for the different
transformation properties of the three IR basis. For a local en-
vironment of M neighboring sites, the number of bispectrum
coefficients scales roughly as O(M3). The rather large number

of bispectrum coefficients is also due to the fact that many of
them are redundant.

For practical implementation, we present a method that
is modified from the bispectrum method. We introduce the
reference basis f 


ref for each IR of the point group. Although
the choice of the reference can be any of the f 


r from
the eight-site blocks, it is more desirable to build them by
applying similar decomposition procedure applied to large
symmetry-related blocks of Ci such that they are insensitive to
small variations of the neighborhood [28]. We then define the
“phase” of an IR basis as the projection of its basis functions
onto the reference basis,

η

r = 〈

f 

r

∣∣ f 

ref

〉 ≡ (
f 


r · f 

ref

)
/
(∣∣ f 


r

∣∣∣∣ f 

ref

∣∣), (A2)

where f 

r 	= f 


ref. Importantly, the relative phases between
two neighborhood IR of the same type can be obtained
through the reference.

Finally, for a complete representation, the relative phases
between different IR types should also be included in the
descriptor. This can be provided simply by the bispectrum co-
efficients of the reference IRs f 


ref themselves. However, even
this reduced set of bispectrum coefficients is highly redundant.
A more practical approach is to introduce a standard form
of the reference representation. To this end, we first identify
the symmetry transformation T of the D4 group such that the
angle between the rotated doublet IR T f E

ref and the unit vector
e1 = (1, 0) is within [0, π/4]. The resultant angle thus serves
as a unique phase of the reference double IR

ηE
ref = 〈

T f E
ref

∣∣e1
〉/∣∣ f E

ref

∣∣. (A3)

Note that the ambiguity due to the eightfold symmetry of D4

is essentially removed in this process. With the aid of T , the
phase of singlet IR in the reference is defined as

η

ref = sign

(
T f 


ref

)
, 
 = A1, A2, B1, B2. (A4)

The generalized coordinates of the neighborhood Ci are given
by {G�} = {p


r , η

r , η


ref}.

APPENDIX B: NEURAL NETWORK MODEL

The NN model used to predict the force is constructed
and trained on PyTorch [86–91]. A total of six layers is used
in our NN model, with the number of neurons 45 × 512 ×
256 × 64 × 16 × 1. The number of nodes of the input layer
is determined by the number of feature variables in {G�}. The
output layer is a single neuron that gives the force. The loss
function is defined as the mean square error (MSE) of the local
forces,

L = 1

N

N∑
i=1

(
F ML

i − F exact
i

)2
. (B1)

Three models are trained corresponding to three different elec-
tron filling fractions at 0.3, 0.4, and 0.5. For each model, 600
configuration snapshots from a 40 × 40 square lattice are used
in the training dataset, including 200 snapshots of random
configurations and 400 snapshots of equilibrium configura-
tions at a low temperature T = 0.1 from the simulation. In
the training, the training dataset batch size is set as 1, and 500
epoches are applied to train the model. Adam optimizer [91]
with an adaptive learning rate 0.001 is used for this process.

014301-12
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