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Topological triple phase transition in non-Hermitian quasicrystals
with complex asymmetric hopping
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The triple phase transitions or simultaneous transitions of three different phases, namely, topological,
parity-time (PT ) symmetry breaking, and metal-insulator transitions, are observed in an extension of the
PT symmetric non-Hermitian Aubry-André-Harper model. In this model, besides the non-Hermitian complex
quasiperiodic on-site potential, non-Hermiticity is also included in the nearest-neighbor hopping terms. More-
over, the nearest-neighbor hopping terms are also quasiperiodic. The presence of two non-Hermitian parameters,
one from the on-site potential and another one from the hopping part, ensures PT symmetry transition in
the system. In addition, tuning these two non-Hermitian parameters, we identify a parameters regime, where
we observe the triple phase transition. Following some recent studies, an electrical circuit based experimental
realization of this model is also discussed.
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I. INTRODUCTION

In quantum mechanics, the Hermitian property of any ob-
servable not only ensures the measurement outcomes of that
observable to be real, but it also preserves the total proba-
bility of all the outcomes. Over the past few years, systems
with non-Hermitian Hamiltonians have become an impor-
tant field of research [1–4]. The non-Hermitian Hamiltonians
effectively represent quantum systems which exchange par-
ticles and/or energy with their environment [2,5]. The
non-Hermiticity in the Hamiltonians leads to the complex en-
ergy spectra which is a signature of nonconservative systems.
However, the non-Hermitian Hamiltonians with parity-time
(PT ) symmetry have real eigenvalues [6–8]. Therefore, the
PT symmetric Hamiltonians are considered as a more gen-
eral class of Hamiltonians which allows loss and gain in the
systems.

The spectral properties of the non-Hermitian systems show
some strange behaviors under the presence of different sym-
metries, which has no Hermitian counterpart. One prominent
example is that non-Hermitian Hamiltonians with PT sym-
metry host a typical special degeneracy, known as exceptional
points, where the eigenvalues and the eigenvectors coalesce
and thus the corresponding non-Hermitian matrices do not
have a full basis of eigenstates [9–14]. Furthermore, the skin
effect in non-Hermitian systems emerges from their inherent
topology. This phenomenon refers to the localization of eigen-
states near the system’s boundary. This localization is a mani-
festation of the nontrivial topological properties of the system,
which can be characterized using mathematical tools such
as topological invariants [15,16]. Specifically, under open
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boundary conditions, the bulk states concentrate at the edges
of the lattice, giving rise to the non-Hermitian skin effect.
This phenomenon breaks the conventional bulk-boundary
correspondence observed in Hermitian systems [17–19].

Previous investigations in the field of non-Hermitian quan-
tum mechanics have provided valuable insights into the
intriguing phenomena that arise when quantum-mechanical
particles encounter randomness and non-Hermitian systems.
A notable and extensively studied example in this realm
is the non-Hermitian version of the celebrated Anderson
model [20]. The non-Hermitian Anderson model has also
been studied extensively [21–28]. Notably, Hatano and
Nelson were pioneers in exploring the localization tran-
sitions in quantum-mechanical particles described by the
non-Hermitian Anderson model with asymmetric hopping
[21–23]. Their groundbreaking study revealed a localization-
delocalization transition induced by the presence of the
random potential, characterized by the emergence of complex
eigenvalues in the system. Subsequently, the investigation
of the non-Hermitian Anderson model expanded to include
two-dimensional [25] and three-dimensional cases [26,28],
providing further insights into the localization properties of
the eigenstates. These models, unlike the Hatano-Nelson
model, incorporated non-Hermiticity by introducing complex
on-site random potentials.

In addition, there is another class of non-Hermitian models
in one dimension, known as Aubry-André-Harper (NH-AAH)
models [29–33]. The NH-AAH model physically represents
one-dimensional (1D) quasicrystals with loss and gain pro-
cesses. The quasicrystalline property and the non-Hermiticity
are introduced into the system through an on-site quasiperi-
odic potential by a complex phase factor. The Hermitian
counterpart of this model shows metal-insulator (MI) tran-
sition determined by a fixed ratio of the strength of the
on-site quasiperiodic potential and the nearest-neighbor hop-
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ping strength [34]. Besides this ratio, the MI transition in
the NH-AAH model with PT symmetry also depends on the
imaginary part of the complex phase. Very interestingly, a
recent study has found that the NH-AAH model preserves PT
symmetry when the system is in the metallic phase. This im-
plies that at the MI phase transition point, the PT symmetry
in the NH-AAH model spontaneously breaks down via excep-
tional points and complex energy eigenvalues start appearing
[21,22,35]. Moreover, it is worth noting that at the dual tran-
sition point where both the MI phase transition and the PT
symmetry breaking occur, the NH-AAH model exhibits an
additional topological phase transition [36]. This combina-
tion of three simultaneous phase transitions, often referred
to as the “triple” phase transition, has attracted significant
interest in the field. Furthermore, experimental realizations
of this triple phase transition have been reported [37], pro-
viding further validation of the theoretical predictions. These
three phase transitions have completely different underlying
physics: (a) The MI transition is determined by the strength of
disorder in the system; (b) the PT symmetry breaking leads
to a real to complex energy spectrum, and (c) the topolog-
ical phase transition is determined by the loss of adiabatic
connection of the Hamiltonian at the transition point. The non-
Hermiticity is responsible for this rare event in the NH-AAH
Hamiltonian.

Recently, a non-Hermitian version of the AAH model with
PT symmetry is proposed [38]. In this model, the non-
Hermiticity is introduced via asymmetric complex hopping.
This model shows concurrent transitions of MI and PT sym-
metry. These phase transitions are robust against the system’s
size and the on-site disorder represented by incommensurate
(quasiperiodic) potential. In Ref. [39], another version of the
non-Hermitian AA model was proposed. In this model, the
non-Hermiticity was introduced at on-site quasiperiodic po-
tential, as well as at the nonreciprocal hopping. Here, the
interplay of the non-Hermiticity and the disorder captures
a new physical aspect. For any values of the system’s pa-
rameters, this model is not PT symmetric. The presence of
two non-Hermitian parameters is responsible for this non-PT
symmetric nature of the model. As a consequence, the triple
phase transition cannot be observed in this model.

The aim of this paper is to propose a NH-AAH model
with PT symmetry while incorporating two non-Hermitian
parameters. The two non-Hermitian parameters are introduced
in two ways: the standard on-site quasiperiodic potential with
a complex phase factor, and an incommensurately modulated
complex asymmetric hopping. Remarkably, this system ex-
hibits a triple phase transition within a specific regime of the
system’s parameters.

This paper is organized as follows: Section II provides an
introduction to the model, including its general properties.
Section III focuses on the phase diagram and analyzes the
triple phase transition. Specifically, it examines the topolog-
ical transition, PT symmetry breaking, and MI transitions.
Section IV delves into the eigenspectra analysis, focusing on
the triple phase transition for a specific chosen value of the
non-Hermitian parameter. In Section V, the paper discusses
the experimental realization of the model, providing insights
and information on relevant references. Finally, we summarize
the work in Sec. VI.

II. MODEL HAMILTONIAN AND PROPERTIES OF ITS
EIGENSTATES

The tight-binding Hamiltonian of this NH-AAH model is

H =
L∑

j=1

V cos(2πβ j + φ1 + φ2)ĉ†
j ĉ j

+ [t + iγ sin(2πβ j + φ1)]ĉ†
j+1ĉ j

+ [t + iγ sin(2πβ( j + 1) + φ1)]ĉ†
j ĉ j+1, (1)

where the phase factors are φ1 = π − πβ (mod 2π ) and
φ2 = θ − ih. The number of lattice sites is L. With this choice
of the parameter φ1 [38] and setting θ = 0, the above Hamil-
tonian becomes PT symmetric. The space-reflection operator
P̂ and the time-reversal operator T̂ have the following effects:
P̂−1ĉ j P̂ = ĉL+1− j , and T̂ −1i T̂ = −i. We have provided a
detailed analytical demonstration of the PT symmetry of
our model in the Supplemental Material (SM) [40]. Here,
the parameters h and γ respectively determine the strength
of the non-Hermiticity at the on-site potential and hopping.
Here, the on-site potential is modulated by a cosine function
of strength V with periodicity 1

β
. The second and third

terms of the Hamiltonian describe the complex asymmetric
hopping.

We chose to set the parameter β in our study to be equal
to σG, which is the inverse of the golden mean. This choice
of β is a popular and commonly used option in research on
the AAH model. The golden mean, as well as its inverse σG,
satisfy diophantine condition. The best diophantine (rational)
approximation of σG is the ratio of two consecutive numbers
of the Fibonacci series { fn} and the approximation becomes
better with increasing n, i.e., |σG − limn→∞( fn−1/ fn)| → 0.
The Fibonacci series is obtained from the recursion relation
fn = fn−1 + fn−2, with initial values f0 = 0 and f1 = 1. The
above diophantine approximation of σG allows us to consider
the following standard practice for the numerics. We set β =
fn−1/ fn with a sufficiently large n and assume the number of
lattice sites L = fn. This approximation not only ensures the
quasiperiodicity of the on-site potential for a finite number
of lattice sites, but also makes the dual transformation to the
Fourier transformed space exact [41]. Therefore, in our study,
we set β = 144

233 , where 144 and 233 are consecutive Fibonacci
numbers, and fix the number of lattice sites L = 233 through-
out this study.

The Hermitian version of our model (i.e., when γ = h =
0) with irrational β shows the MI transition at the critical
point V = 2t . For V < 2t , the system is metallic, whereas for
V > 2t the system becomes an insulator. In the case of the
single parameter non-Hermitian case with γ = 0 and h �= 0,
the system is self-dual. This self-duality is manifested by
the eigenfunctions having identical distributions in both real
and momentum spaces, indicating an effective mapping be-
tween the Hamiltonian and its Fourier transform. Exploiting
this self-duality, the critical point of the MI transition was
analytically calculated as h = ln( 2t

V ) for the NH-AAH model
with a complex on-site potential [36]. As mentioned earlier
that this critical point is the triple phase transition point, i.e.,
the simultaneous transition point for the MI transition, the
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FIG. 1. Typical nature of the eigenstates corresponding to the
Hamiltonian given in Eq. (1) with the OBC (top) and the PBC
(bottom) are compared for the number of lattice sites L = 233.
(a),(b) The top row shows three randomly picked eigenstates under
the OBC that are all localized at some lattice site for both h = 0.4
and h = 1.2, respectively. (c),(d) The same eigenstates are presented
in the bottom figure with the PBC, where all the eigenstates are
extended for h = 0.4, but are localized at different lattice sites for
h = 1.2.

PT transition, and the topological phase transitions. Unlike
the NH-AAH model, where the non-Hermiticity is introduced
solely through a complex on-site potential, our model de-
scribed by the Hamiltonian given in Eq. (1) incorporates both
complex sinusoidal asymmetric hopping terms and complex
on-site potential. As a result, non-Hermiticity arises in two
distinct parameters. Due to this additional complexity, our
model does not exhibit self-duality. Hence, analytically we
cannot find the transition point for this model. Therefore, the
phase transition and other properties of this model are studied
numerically. Furthermore, unlike the Hatano-Nelson model
with non-Hermiticity in the off-diagonal disorder [21,22] and
the NH-AAH model with non-Hermitian on-site quasiperiodic
potential [37], our model has non-Hermiticity in both on-site
potential and in nearest-neighbor hopping.

The prime focus of this paper is to explore the existence of
triple phase transition in the presence of two non-Hermitian
parameters. The eigenstates of this system are presented in
Fig. 1. The eigenstates have revealed interesting insights about
the behavior of the NH-AAH model. Here, we set the parame-
ters γ = 0.05, t = 1.0, and V = 1.0. Specifically, we observe
that the eigenstates of the system are primarily localized when
open boundary condition (OBC) is imposed. This is illustrated
for h = 0.4 in Fig. 1(a), and for h = 1.2 in Fig. 1(b). However,
for the periodic boundary condition (PBC), we observe the
effect of MI transition in the system. Here, in the metallic
regime when the parameter h = 0.4, we observe extended
eigenstates as shown Fig. 1(c). On the other hand, in Fig. 1(d),
we show that in the insulating regime with h = 1.2, all the
eigenstates are localized. These extreme boundary-condition-
sensitive behaviors of the eigenstates are attributed to the
interplay of the disorders due to the on-site quasiperiodic po-
tential and the presence of the non-Hermiticity in the system.

III. ANALYSIS OF PHASE TRANSITIONS

First we study the variation of the transition point with
the parameters γ and h, while the parameters V and t are
fixed at unity, i.e., V = t = 1.0. We tune γ and h to identify

FIG. 2. The phase diagrams are presented for the topological,
PT symmetry, and the MI transitions as the function of the param-
eters γ and h. (a) The topological phases are characterized by the
calculation of the winding number w given in Eq. (2). The colors
from black to white represent w = 0 to 1 values. The fluctuations
in the winding number are less for γ < 0.1 (refer to color bar). In
this region, the phase transition occurs at hc = 0.68 as marked in
the figure. (b) The largest value of imaginary parts of the energy
eigenvalues are presented to observe the PT symmetry transition.
The different color palettes separate the real and complex regions
of the energies (refer to color bar). The PT symmetry is preserved
in the regime γ < 0.5. A common transition point is observed at
hc = 0.68 for γ < 0.1. (c) The maximum values of the inverse
participation ratio are shown to track the MI transitions. The MI
transitions are observed for the whole range of γ , but at different
values of the parameter h. For γ < 0.3, the MI transition occurs at
hc = 0.68. The vertical yellow lines in all the figures are describing
the parameter regime γ < 0.1, where the triple phase transition is
possible to observe. The horizontal cyan line at h = hc = 0.68 marks
the triple phase transition points.

whether the triple phase transition is possible in our model.
These results are shown in Fig. 2. In Fig. 2(a), the topological
phase transition is presented using a winding number as the
topological invariant. The winding number is calculated from
the following relation [5,36,42]:

w(h, γ ) = lim
L→∞

1

2π i

∫ 2π

0
dθ

∂

∂θ
ln

[
det H

(
θ

L
, h, γ

)
− EB

]
.

(2)

The winding number w(h, γ ) counts the number of times
the complex spectral trajectory encircles the base energy EB,
when the real phase θ varies from 0 to 2π . Here, the Hamil-
tonian H with the PBC is considered and L is as usual the
number of lattice sites. For our analysis, we have chosen
EB = 0 as the base energy. The strengths of the non-Hermitian
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FIG. 3. The phase argument of det(H − EB) versus θ is shown
for h = 0.6 (left) and h = 0.76 (right) for γ = 0.05 and the number
of lattice sites L = 233. As θ increases from 0 to 2π , the spectral
trajectory does not encircle the base energy (left). Effectively, the
spectrum of H does not wind. However, for h = 0.76, the spectral
trajectory encircles the base energy once and the corresponding
winding number is 1.

parameters decide the values of the winding number. We
observe smooth topological phase transition identified by the
transition of the winding number 0 ↔ 1 in the parameter
region γ < 0.1 marked by the vertical dashed-yellow line.
For the non-Hermitian parameter γ > 0.1, fluctuations in the
winding numbers are observed in the topologically trivial re-
gion. However, the topologically nontrivial region is still very
well protected from the fluctuation in this parameter regime.
In the parameter regime γ < 0.1, we find the critical point
for the topological phase transition also at hc = 0.68, which
is shown by the horizontal solid cyan line.

This behavior of the winding number is further validated
in Fig. 3, where we set the parameter γ = 0.05. Following
Ref. [42], in this figure, the argument of determinant of the
Hamiltonian 	 ≡ arg[det(H − EB)] with respect to EB is plot-
ted as a function of the cyclic parameter θ while traversing θ

for a full cycle of 0 to 2π . Here, we have selected two values
of the parameter h: one is h = 0.6, less than the critical value
hc; and the other value is h = 0.76, larger than hc. For h = 0.6,
presented in Fig. 3(a), the winding number w = 0. Here, we
observe that the trajectory of 	 does not enclose EB while θ

traverses a complete loop. On the other hand, for h = 0.76
where w = 1, the trajectory of 	 encircles EB once as shown
in Fig. 3(b).

Besides topological transition, we observe a simultaneous
transition of the PT symmetry breaking as well as the MI
phase transition. In Fig. 2(b), we show the PT symmetry tran-
sition. Here, we consider the largest value of the imaginary
part of energy |Im(E )|LV as an indicator of the PT symmetry
and study it as a function of the parameters γ and h. We find
that, only in the regime γ < 0.5 (shown in black), the system
has pure real eigenenergies. However, here the transition point
varies with γ . Furthermore, we observe that, in the γ < 0.1
regime, the PT symmetry transition point is also at hc = 0.68.

In Fig. 2(c), the MI transition is studied in the sys-
tem investigating localization to delocalization transition of
the eigenstates. We use the maximum inverse participation
ratio (IPR) of the eigenstates as the measure of localization-
delocalization transition. The IPR of a state is defined as

IPR =
∑

n

|ψn|4
/(∑

n

(|ψn|2
)2

. (3)

For the localized case, the IPR is larger and close to unity.
On the other hand, for the delocalized or extended states, the
IPR is proportional to the inverse of the dimension, where the
dimension is the number of lattice sites L = 233. Therefore,
for the extended or delocalized states (i.e., in the metallic

regime), the IPR is very small. In the phase diagram, the
metallic phase is represented by the black region and the
(strongly) insulating phase region is represented by the white
region. The other colors represent the critical regime. Here, we
observe that the MI transition can occur for the whole range
of γ , but at different values of hc values. However, again for
γ < 0.1, the transition point is at hc = 0.68.

We infer from the phase diagrams of Fig. 2 that, in the
regime γ < 0.1 and at hc = 0.68, the system shows the triple
phase transition. Thus, here we observe that, even in the
presence of two non-Hermitian parameters, the system can
show triple phase transitions. Based on these results, besides
V = t = 1.0, we fix the parameter γ = 0.05 and continuously
tune the parameter h to monitor the topological, PT symmet-
ric, and MI transitions.

IV. ANALYSIS OF EIGENSPECTRA AND TRIPLE-PHASE
TRANSITION

In Fig. 4(a), we display the real and imaginary parts of
the eigenvalues for different values of h. Here we set the
parameter γ = 0.05 to observe PT symmetry transition. For
h = 0.1 and h = 0.6, eigenvalues are real and these show PT
symmetry in the system. At the critical point h = hc = 0.68,
we observe the appearance of a tiny [O(10−13)] nonzero
imaginary part in the eigenvalues, which indicates breaking
of the PT symmetry. For h > hc, multiple looplike struc-
tures begin to form in the eigenvalues spectra. In the case of
h = 0.76, we observe three loops in the spectrum that display
the (multi)fractal property [43–48] as discussed in the SM
[40]. As we further increase h = 1.0, 1.5, we observe grad-
ual coalescence of multiple loops and the eventual formation
of a single larger loop enclosing the origin. This presence
of a single loop structure surrounding the origin indicates a
tendency towards localization of the eigenstates. However, it
does not necessarily imply full localization of all the states, as
there might still be some degree of delocalization or spread
in the system. As the value of h increases, the eigenstates
gradually become fully localized. The localization property
of the eigenstates is again calculated by the IPR, and these
are shown by the color coding. Moreover, this formation of
loops and their coalescence with the increment of the param-
eter h indicate an emergence of nontrivial topology in the
system, which is identified by a nonzero winding number.
Thus Fig. 4(a) itself indicates that the system is simultane-
ously making three different phase transitions or triple phase
transitions. The presence of triple phase transitions is more
obvious in Figs. 4(b)–4(e).

In Figure 4(b), we show the real and imaginary parts of
the eigenvalues as a function of h, and the corresponding
IPR values are shown by the color. All the eigenstates before
the critical point (h < hc) are extended, resulting in the
robust spectrum for real and imaginary parts of the spectrum.
After the critical point, the eigenvalues diverge and become
complex. Here, once again, this spectral phase boundary
simultaneously marks the transition of PT symmetry and
MI. From the phase diagrams, given in Fig. 2 and Figs. 4(a)
and 4(b), we get an indication that, for γ = 0.05, the system
shows the triple phase transition at h = hc = 0.68. We are
now going to show this decisively in Figs. 4(c)–4(e). In
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FIG. 4. The figure shows the eigenspectra, MI transition, PT transition, and topological transition by varying the parameter h, for V = t =
1.0, and γ = 0.05. We observe three simultaneous phase transitions. Panel (a) displays the real and imaginary parts of eigenvalues (on the
complex plane) and IPRs (in color scale) under the PBC for six typical values of h. With an increase in the value of h, the eigenstates tend
to get localized, which is shown by color. We observe that the eigenspectra form a loop for h > 0.68, encircling the origin of the complex
energy plane, indicating a topologically nontrivial phase with nonzero windings. Also, we observe that the eigenvalues are real for h < 0.68,
but the PT symmetry tends to break completely for h � 0.68, and thus we observe complex eigenvalues. Panel (b) shows the real parts of
the eigenenergies of the Hamiltonian under PBC, where the overall energy becomes on average constant, for h < hc. The bottom part of the
panel displays the imaginary parts of the eigenenergies with increasing h. The color coding is done according to the IPR, where the red-dashed
line corresponds to the phase boundary. Panel (c) shows the winding number versus the complex phase shift h. The winding number makes a
transition from 0 to 1 as we vary h < hc to h > hc. Panel (d) represents the largest value of the imaginary part of energy versus the complex
phase shift h. For h < hc, the system changes to the unbroken PT phase, where the spectrum becomes real. For h > hc, there is a broken
PT phase owing to the appearance of complex eigenvalues. Panel (e) represents the maximum value of IPRs contrasted to the complex phase
shift h. For h < hc, we observe the delocalized phase, marked by a zero IPR value. For h > hc, all eigenstates become exponentially localized,
which is marked by an increase in the IPR value. The length of the lattice is chosen to be L = 233 for all the panels.

Fig. 4(c), the topological phase transition is shown by the
transition in winding number w. The winding number is
computed using Eq. (2). We observe that w = 0 when h < hc,
and it becomes w = 1 for h � hc. The red dashed line shows
the transition point hc = 0.68. Figure 4(d) shows the PT
symmetry transition, which is observed by studying the largest
imaginary part of the energy eigenvalues as a function of the
complex phase shift h. Here, we again observe PT symmetry
transition at hc = 0.68. Finally, in Fig. 4(e), the maximum
value of IPR with respect to h is shown. According to our
expectation, here we observe from the behavior of max(IPR)
that the system makes the MI transition also at hc = 0.68.
These results are in agreement with the phase diagram
presented in Fig. 2. Thus we have clearly shown the triple
phase transition for γ = 0.05 at hc = 0.68. Surprisingly,
we can control the transitions and can obtain double and
sequential phase transitions for this model by simply varying
the parameters. We have discussed this point in the SM [40].

V. EXPERIMENTAL REALIZATION

The prototype model, which is studied extensively in this
paper, can be simulated in electric circuits using basic com-
ponents such as capacitors, resistors, inductors, op-amp, etc.

[49–51]. In this model, the on-site potential and the hop-
ping between neighboring sites are both non-Hermitian as
well as quasiperiodic. In a recent paper, an electrical circuit
is proposed to simulate non-Hermitian quasiperiodic on-site
potential [52]. An electric circuit design for the quasiperiodic
hopping is proposed in another recent paper [53]. Our model
can similarly be simulated by combining the above-mentioned
electrical circuits.

VI. SUMMARY

We study a non-Hermitian extension of the AAH model,
which is PT symmetric. Here, the non-Hermiticity is consid-
ered at the on-site potential, as well as in the nearest-neighbor
hopping term. The localization properties of the eigenstates
of this model depend strongly on the boundary condi-
tions. The system exhibits primarily localized eigenstates
for the open boundary conditions. On the other hand, the
MI transition occurs for the periodic boundary conditions.
The disorder due to the on-site quasiperiodic potential and
the non-Hermitian nature of the system contribute to these
boundary-condition-sensitive behaviors. Very importantly, be-
sides the PT symmetry and the MI transitions, we also
observe the topological phase transition in this model. The
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overall behaviors of these phases and their transitions are
shown via various phase diagrams. Interestingly, these phase
diagrams indicate a parameters regime, where we may see the
triple phase transition. Later, we decisively show the presence
of the triple phase transition or simultaneous transitions of
the three phases. Based on some recent proposals, an electric
circuit based experimental simulation of this non-Hermitian
model is also proposed.
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