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Non-Hermitian quasicrystal forms a unique class of matter with symmetry-breaking, localization and topo-
logical transitions induced by gain and loss or nonreciprocal effects. In this work, we introduce a non-Abelian
generalization of non-Hermitian quasicrystal, in which the interplay between non-Hermitian effects and non-
Abelian quasiperiodic potentials create mobility edges and rich transitions among extended, critical and
localized phases. These generic features are demonstrated by investigating three non-Abelian variants of the
non-Hermitian Aubry-André-Harper model. A unified characterization is given to their spectrum, localization,
entanglement and topological properties. Our findings thus add new members to the family of non-Hermitian
quasicrystal and uncover unique physics that can be triggered by non-Abelian effects in non-Hermitian systems.
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I. INTRODUCTION

Quasicrystals represent a type of aperiodic system with
correlated disorder. They could exhibit metal-insulator tran-
sitions at finite amounts of quasiperiodic modulations even
in one spatial dimension [1–5]. In recent years, gain and
loss or nonreciprocal effects have been added to quasiperi-
odic lattices, leading to the discovery of a wide varieties
of non-Hermitian quasicrystals (NHQCs) [6–45]. In typical
situations, an NHQC with PT -symmetry could possess a
PT -breaking transition together with a localization transition
with the change of its non-Hermitian control parameters. This
non-Hermitian localization transition might be further accom-
panied by the quantized change of a spectral winding number
of the system, endowing it with nontrivial topological features
[9,10]. In the presence of long-range hoppings [12], sublat-
tice structures [27], or time-periodic modulations [36], the
extended and localized phases in an NHQC can also be sep-
arated by a critical phase with mobility edges, and reentrant
localization transitions could be generated by non-Hermitian
effects in these cases. Despite great theoretical efforts, phase
transitions in NHQCs have also been observed experimentally
in photonic settings [40,41], motivating further studies of their
intriguing topological and transport properties.

In lattice models, the realization and implication of non-
Abelian gauge fields have attracted continued interest in the
quantum engineering of materials and artificial systems (see
Refs. [46–53] for reviews). Recently, genuine non-Abelian
conditions were considered in different types of Hofstadter-
like models [54], where intriguing forms of butterfly fractal
spectra, localization transitions and gapped or gapless topo-
logical phases were identified [55–68]. Among them, the
interplay between non-Hermiticity and non-Abelian gauge
potential has been found to be able to generate trivial,
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quantum spin Hall and metallic phases in superconducting
circuits [63]. Metal-insulator transitions in quasiperiodic lat-
tices with non-Abelian U(2) and SU(2) gauge fields were
also explored in several studies [56,65]. However, much
less is known about what happens when non-Hermitian and
non-Abelian effects coexist in a quasicrystal. Specially, it is
interesting to know whether the cooperation between non-
Hermiticity and non-Abelian quasiperiodic potentials could
generate unique phases and transitions that are absent in the
Hermitian or Abelian counterparts of the underlying systems.
The resolution of this issue is also of great experimental rel-
evance due to the recent realizations of NHQCs by photonic
quantum walks, where synthetic spin-1/2 degrees of freedom
and SU(2) gauge structures could appear in the dynamics
[40,41]. These settings thus provide natural platforms to de-
tect the potential new features of non-Abelian NHQCs.

In this work, we explore the combined effects of non-
Hermiticity and non-Abelian potentials in one-dimensional
(1D) quasicrystals. Focusing on prototypical settings of
non-Hermitian Aubry-André-Harper (NHAAH) models, we
reveal that the presence of non-Abelian quasiperiodic su-
perlattices could extend a critical point of non-Hermitian
localization into a critical region, in which extended and
localized eigenstates coexist and are separated by mobility
edges. With the change of gain and loss or nonreciprocal
hopping strengths, the system could further enter and leave
this non-Abelian-effect-induced critical phase through two
different localization transitions, which each of them being
characterized by the quantized jump of a spectral topolog-
ical winding number. These properties are expected to be
generic for any 1D non-Abelian NHQCs. In Secs. II and
III, we introduce our non-Abelian NHAAH models, discuss
their non-Abelian conditions, analyze their PT -symmetries
and present our methods of investigating their eigenspectrum,
inverse participation ratios (IPRs), entanglement spectrum
(ES), entanglement entropy (EE), and topological invariants.
In Sec. IV, we uncover the phases and transitions in our
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three representative non-Abelian NHQC models with differ-
ent types of non-Hermitian effects. The physical properties
of all these models are found to be much richer than their
Abelian or Hermitian counterparts. They also form prototypi-
cal setups for the theoretical and experimental study of other
non-Abelian potentials in NHQCs. We summarize our results
and discuss potential future studies in Sec. V.

II. MODEL

In this work, we focus on non-Abelian generalizations of
the NHAAH model. The latter represents a typical system in
the study of NHQC. The Hamiltonian of an Abelian NHAAH
model can usually be defined as

H0 =
∑

n

[JLc†
ncn+1 + JRc†

n+1cn + V cos(2παn + iγ )c†
ncn].

(1)

Here c†
n (cn) is the creation (annihilation) operator of a particle

on the lattice site n. JL (JR) represents the nearest-neighbor
hopping amplitude of a particle from right to left (left to right)
in the lattice. V is the amplitude of the superlattice onsite
potential. iγ represents an imaginary phase factor for γ ∈
R\{0}, which could introduce onsite gain and loss into the lat-
tice. The system described by H0 becomes a 1D quasicrystal
once α is chosen to be an irrational number. When JL = JR =
J , it was shown that the system could undergo a PT transition,
a localization transition and a topological transition all at once
under the periodic boundary condition (PBC) if e|γc| = |2J/V |
[10]. When |γ | < |γc|, all the eigenstates of H0 are spatially
extended with real eigenvalues, and the spectral topological
winding number w = 0. When |γ | > |γc|, all the eigenstates
of H0 are spatially localized with complex eigenvalues, and
the spectral topological winding number w = 1. When JL �=
J∗

R and γ = 0, H0 describes an NHQC with nonreciprocal
hoppings. In this case, a PT , localization and topological
triple phase transition was also found in the system under
the PBC [9]. Assuming JL = Je−β and JR = Jeβ (β ∈ R),
the transition point is determined by e|βc| = |V/(2J )|. When
|β| < |βc|, all the eigenstates are localized with real eigen-
values, and the spectral topological winding number w = 0.
When |β| > |βc|, all the eigenstates are extended with com-
plex eigenvalues, and the spectral topological winding number
w = 1. Such a triple phase transition was recently observed in
nonunitary quantum walks [40]. It is not hard to see that these
two Abelian NHAAH models are dual with each other under
the PBC. Up to the rescaling of some system parameters, one
of them can be mapped to the other under discrete Fourier
transformations [9,10]. Meanwhile, no critical phases with
mobility edges were found in these Abelian NHQCs.

We now introduce an SU(2) extension of H0, which serves
our purpose of studying non-Abelian NHQCs. Based on the
necessary and sufficient condition of non-Abelian potential
for Aubry-André-Harper (AAH) models [66], we define the
Hamiltonian of our system as

H =
∑

n

[
JLc†

nσ0cn+1 + JRc†
n+1σ0cn

+ V c†
n

(
e−iφ�n + eiφ�−1

n

)
cn

]
. (2)

TABLE I. Definitions of model parameters in Eqs. (2) and (3).
J ∈ R is the uniform part of hopping amplitude. β ∈ R controls
the asymmetry of hopping amplitude. γ ∈ R controls the non-
Hermiticity of onsite potential. n ∈ Z represents the unit cell index.
α belongs to R\Q for a quasicrystal. We set α = (

√
5 − 1)/2 in this

work. Other irrational values of α will generate similar results.

Model Hopping amplitude Phase modulation

1 JL = J, JR = 0 θn = 2παn
2 JL = Je−β, JR = Jeβ θn = 2παn
3 JL = JR = J θn = 2παn + iγ

Here, different from H0, c†
n = (c†

n,↑, c†
n,↓) denotes a two-

component creation operator. c†
n,σ creates a particle with spin

σ (=↑,↓) on the lattice site n. σ0 is the two by two identity
matrix acting on the two spin degrees of freedom of the
particle. φ ∈ [−π, π ) represents an Abelian phase factor. V
represents the amplitude of onsite potential. In this work, we
choose

�n = eiθnσy eiθnσz , (3)

where σy and σz are Pauli matrices. This choice could re-
alize the effect of a genuine non-Abelian gauge potential if
[eiθnσy eiθnσz , eiθnσz eiθnσy ] �= 0, which can be satisfied for θn �=
{0, π/2, π, 3π/2} [66]. For the models considered in this
work, the choices of phase modulation θn are summarized
in Table I. The non-Abelian condition is clearly met when
the α in Table I takes irrational values, which is also re-
quired for us to realize a quasiperiodic potential. Note that
the form of non-Abelian potential �n is not unique, and other
types of non-Abelian Hermitian AAH models exist in the
literature [55,56,65]. Nevertheless, the models considered in
this study should be sufficient to capture the general proper-
ties originated from the interplay between non-Hermitian and
non-Abelian effects in 1D NHQCs.

To investigate the spectral and localization properties of
non-Abelian NHQCs, we need to solve the eigenvalue equa-
tion H |ψ〉 = E |ψ〉 for our models. We can first expand the
state as |ψ〉 = ∑

n c†
nψn|0〉, with ψn = (ψn,↑, ψn,↓)T being a

column vector for the two spin components of |ψ〉 on the site
n. Inserting the expanded state into the eigenvalue equation,
we arrive at

JLψn+1 + JRψn−1 + V
(
e−iφ�n + eiφ�−1

n

)
ψn = Eψn. (4)

For a lattice with L sites, we denote the eigenenergies of H by
{Ej | j = 1, 2, ..., 2L − 1, 2L}. The right eigenvector of H with
energy Ej is denoted by |ψ j〉 = ∑L

n=1

∑
σ=↑,↓ ψ

j
n,σ |n, σ 〉,

where |n, σ 〉 = c†
n,σ |∅〉 and |∅〉 represents the vacuum state.

We assume that each right eigenvector |ψ j〉 has been prop-
erly normalized, such that

∑
n,σ |ψ j

n,σ |2 = 1. For JL �= J∗
R or

�−1
n �= �†

n, H is non-Hermitian and its eigenvalues can be
complex.

Models 1–3 defined through Eqs. (2), (3) and Table I could
all possess real spectra due to their PT symmetries. This can
be proved as follows. We first work out the term e−iφ�n +
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eiφ�−1
n in Eq. (4) by inserting Eq. (3) into it as

e−iφeiθnσy eiθnσz + eiφe−iθnσz e−iθnσy

= d0
n σ0 + dx

nσx + dy
nσy + dz

nσz, (5)

where

d0
n = cos φ(cos 2θn + 1),

dx
n = sin φ(cos 2θn − 1),

dy
n = dz

n = sin φ sin 2θn. (6)

The P operator leads to the spatial inversion n → −n in
one dimension and the time-reversal T ≡ UK, where U
is a unitary operator and K takes the complex conjuga-
tion. For θn = 2παn + iγ , the combined action of P and K
leads to (d0

−nσ0)∗ = d0
n σ0, (dx

−nσx )∗ = dx
nσx, (dy

−nσy)∗ = dy
nσy

and (dz
−nσz )∗ = −dz

nσz. Since dy
n = dz

n in Eq. (6), the term
e−iφ�n + eiφ�−1

n is invariant under the combined PT oper-
ation if U could execute a rotation following which σy → σz

and σz → −σy in Eq. (5). This can be achieved by setting
U = e−i π

4 σx , so that UσyU† = σz and UσzU† = −σy. There-
fore, the Hamiltonian of Model 3 is symmetric under the
combined operation of parity P : n → −n and time-reversal
T = e−i π

4 σxK, implying that it could have a real spectrum in
its PT -invariant phase. To see that Models 1 and 2 also share
the same PT -symmetry with Model 3, we take the PBC in
Eq. (4) and perform the Fourier transformation for ψn from
position to momentum spaces as

ψn = 1√
L

L∑
�=1

ϕ�e−i2πα�n. (7)

The eigenvalue equation for the first two models are then
transformed to

��ϕ� + 
ϕ�+2 + 
†ϕ�−2 = Eϕ�, (8)

where

�� =(JLe−i2πα� + JRei2πα� + V cos φ)σ0 − V sin φσx,


 =V

2
cos φσ0 + V

2
sin φσx + V

2i
sin φσy + V

2i
sin φσz.

(9)

Under the combined actions of P : � → −� and T = e−i π
4 σxK

in momentum space, we can directly see that PT �� = ��PT
and PT 
(†) = 
(†)PT . The Hamiltonians of Models 1 and 2
in momentum representations are thus PT -symmetric. There-
fore, our Models 1-3 all have the PT -symmetry. Their spectra
are allowed to be real in the PT -invariant regions. They may
also undergo PT -breaking transitions with the change of their
non-Hermitian parameters. The models we introduced thus
provide typical settings to explore PT transitions in non-
Abelian NHQCs.

III. METHOD

In this section, we introduce relevant tools to character-
ize the spectrum, localization, entanglement and topological
transitions in non-Abelian NHQCs. To capture the spectral

transition of H from real to complex (or vice versa), we
introduce the following quantities:

Emax
I = max

j∈{1,...,2L}
(|ImEj |), (10)

Emin
I = min

j∈{1,...,2L}
(|ImEj |), (11)

ρ = 1

2L

2L∑
j=1

θ (|ImEj |), (12)

where the step function θ (x) = 1 if x > 0 and θ (x) = 0 if
x � 0. For a given set of system parameters, we have Emax

I =
ρ = 0 if all the eigenvalues of H are real. Conversely, if
Emin

I > 0 and ρ = 1, all the eigenvalues of H are complex.
When 0 < ρ < 1, real and complex eigenvalues of H coex-
ist in the spectrum. Therefore, we can use the functions in
Eqs. (10)–(12) to characterize the global spectral properties
of H and distinguish its different spectral regions, i.e., the en-
tirely real, entirely complex, or a mixture of real and complex
eigenvalues.

For the eigenstate |ψ j〉 of H , we can define its IPRs
and normalized participation ratios (NPRs) as IPR j =∑

n,σ |ψ j
n,σ |4 and NPR j = (2L · IPR j )−1, where the factor 2

comes from the two spin degrees of freedom. At a given set
of system parameters, the averages of IPRs and NPRs over all
eigenstates are given by 〈IPR〉 = 1

2L

∑2L
j=1 IPR j and 〈NPR〉 =

1
2L

∑2L
j=1 NPR j . Using these definitions, we can introduce the

following quantities to characterize the localization nature of
states in the system

IPRmax = max
j∈{1,...,2L}

(IPR j ), (13)

IPRmin = min
j∈{1,...,2L}

(IPR j ), (14)

η = log10(〈IPR〉〈NPR〉). (15)

For an extended (a localized) state, we have IPR j ∼ L−1

(IPR j ∼ λ j) and NPR j ∼ 1 (NPR j ∼ L−1) in the limit L →
∞, where λ j is the L-independent localization length of state
|ψ j〉 [69]. Therefore, for a given set of system parameters,
we have IPRmax → 0 if all the eigenstates of H are extended
(a metallic phase) and IPRmin > 0 if all the eigenstates of
H are localized (an insulating phase) in the thermodynamic
limit. The quantity η was first introduced to characterize
critical phases, in which extended and localized eigenstates
coexist and are separated in their energies by mobility edges
[70]. Its applicability to NHQCs was further demonstrated in
Ref. [35]. Due to the scaling properties of IPRs and NPRs
with the system size, we would have η ∼ − log10(2L) for our
non-Abelian NHQCs in the extended and localized phases,
with η → −∞ in both cases in the limit L → ∞. In the
critical phase, 〈IPR〉〈NPR〉 takes a finite value in the thermo-
dynamic limit. η can thus be used to distinguish critical from
metallic and insulating phases. We will use Eqs. (13)–(15)
to characterize phases with different localization properties
and explore localization-delocalization transitions in our non-
Abelian NHQC models.

In Abelian NHQCs, it has been found that PT -breaking
and localization transitions are usually accompanied by topo-
logical transitions, which are depicted by quantized jumps
of spectral topological winding numbers [9,10]. To check
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whether similar results hold in non-Abelian NHQCs, we in-
troduce the definition of spectral winding numbers under the
PBC as

w� =
∫ 2π

0

dϑ

2π i

∂

∂ϑ
ln{det[H (ϑ ) − E�]}, � = 1, 2. (16)

Depending on the explicit form of the model, ϑ may be
interpreted as a synthetic flux going through the 1D ring
formed by the PBC lattice, or a phase shift in the quasiperiodic
superlattice potential. For Models 1 and 2 in Table I, the ϑ-
dependence of H can be introduced by setting JL → JLe−iϑ/L

and JR → JReiϑ/L. For Model 3, we can set 2παn + iγ →
2παn + iγ + ϑ/L in θn. The w� then counts the number of
times the spectrum of H (ϑ ) winds around a chosen base
energy E� on the complex plane when ϑ changes over a period
from zero to 2π [35]. The base energy E� is in general model-
dependent. In our numerical calculations, we choose E1 (E2)
to be the real part of energy of the first (last) eigenstate of
H whose IPR deflects from zero with the change of system
parameters. For Abelian NHAAH models with only extended
and localized phases, we expect E1 = E2 and there is only
a single winding number w = w1 = w2, which is the case
in Refs. [9,10]. For a system that could also possess critical
mobility edge phases, we expect a quantized jump in w1 (w2)
when the system goes through a transition point between the
extended and critical (critical and localized) phases. If the
system only holds critical and extended (localized) phases,
w2 (w1) will be ill-defined and we only expect a quantized
change in w1 (w2) when the system passes through the bound-
ary between the two phases. Therefore, the winding numbers
(w1,w2) could provide us with sufficient information to de-
scribe the topological nature of localization transitions in
non-Abelian NHQCs. Note in passing that in the Hermitian
limit of H , H (ϑ ) is also Hermitian with a real spectrum.
(w1,w2) will then become identically zero, implying that the
definition of winding number w� in Eq. (16) is unique to non-
Hermitian systems. In the meantime, it is better to interpret
the quantized jumps of (w1,w2) as invariants accompany-
ing topological localization transitions in NHQCs, instead of
treating them as topological numbers characterizing a whole
extended, localized or critical mobility edge phase.

The ES and EE could provide us with important informa-
tion about topological and quantum phase transitions from an
information-theoretical perspective. In the context of Abelian
NHQCs, localization transitions and mobility edges have been
identified from the ES and EE [45]. In the absence of mobility
edges, the EE was found to change discontinuously when the
system goes through a localization-delocalization transition.
In the critical phase, the EE of extended and localized states
were found to show clear distinctions around the mobility
edge [45]. For our non-Abelian NHQCs, we introduce the
single-particle biorthogonal eigenvectors |ψR

j 〉 and |ψL
j 〉 of H

as

H
∣∣ψR

j

〉 = Ej

∣∣ψR
j

〉
, H

∣∣ψL
j

〉 = E∗
j

∣∣ψL
j

〉
, (17)

where j = 1, ..., 2L. The binormalization condition
〈ψL

j |ψR
j′ 〉 = δ j j′ is satisfied and the completeness relation

is expressed as
∑

j |ψR
j 〉〈ψL

j | = 1. Assuming that a collection
of energy levels {Em} ⊆ {Ej | j = 1, ..., 2L} is populated
each by a fermion, the many-particle wave function

of the system can be expressed as |�R〉 = ∏
m ψ

†
Rm|∅〉

and |�L〉 = ∏
m ψ

†
Lm|∅〉, where ψ

†
Rm (ψ†

Lm) creates a
single-particle eigenstate |ψR

m〉 (|ψL
m〉) whose energy belongs

to the set {Em}. The many-particle density matrix of the
system then takes the form ρ = |�R〉〈�L|. To investigate the
bipartite entanglement, we consider a partition of the system
into two equal parts A and B in real space [71]. Tracing
out the degrees of freedom belonging to the subsystem
B, we obtain the reduced density matrix of subsystem A
as ρA = TrBρ, and the EE is given by S = −Tr(ρA ln ρA)
[72]. For noninteracting fermions, ρA represents a Gaussian
state and we can express it as ρA = 1

Z e−HA , where Z is a
normalization factor. The eigenspectrum {ξ j | j = 1, ..., L}
of the entanglement Hamiltonian HA forms the ES, which
can be related to the eigenvalues {ζ j | j = 1, ..., L} of the
single-particle correlation matrix C as ξ j = ln(ζ−1

j − 1)
[73–80]. Here the matrix elements of C in real-space take the
form of

Cnn′ = 〈�L|c†
ncn′ |�R〉 = 〈n′|P|n〉, (18)

where n, n′ ∈ A. The projector P = ∑
m |ψR

m〉〈ψL
m|, and the

sum is taken over all occupied states. Due to the one-to-one
correspondence between the spectra of C and HA, we will
also refer to the spectrum {ζ j | j = 1, ..., L} of the correlation
matrix C as the ES. Meanwhile, the EE can be expressed in
terms of the correlation matrix spectrum as

S = −
L∑

j=1

[ζ j ln ζ j + (1 − ζ j ) ln(1 − ζ j )]. (19)

Therefore, both the ES and EE can be obtained from the spec-
trum of correlation matrix C restricted to the subsystem A.
The tools introduced in this section allow us to investigate the
physics of non-Abelian NHQCs from different and comple-
mentary perspectives. We expect these tools to be applicable
to non-Abelian NHQC models beyond those considered in
this work.

IV. RESULTS

In this section, we reveal the spectrum, localization, entan-
glement, and topological properties of non-Abelian NHQCs
with the methods presented in the last section. We start with a
relatively simple case, in which the non-Hermiticity is intro-
duced by allowing particles to hop along only one direction
of the lattice (Model 1 in Table I). We then consider two
more general situations, in which the non-Hermitian effects
are originated from asymmetric hoppings (Model 2 in Table I)
and complex non-Abelian onsite potentials (Model 3 in Ta-
ble I). Rich connections between different physical properties
of non-Abelian NHQCs will be established for all the cases.

A. Unidirectional hopping

We start with a non-Hermitian generalization of non-
Abelian AAH model, in which the hopping terms only allow
particles to jump from right to left between neighboring sites.
According to Eqs. (3), (4) and Table I, the eigenvalue equation
of this Model 1 takes the form

Jψn+1 + V
(
e−iφ�n + eiφ�−1

n

)
ψn = Eψn, (20)
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FIG. 1. Realness of the spectrum, IPRs and winding numbers of
Model 1 versus the unidirectional hopping amplitude J [81]. Other
system parameters are chosen as V = 1, φ = π/10, and α = (

√
5 −

1)/2. The length of lattice is L = 2584.

where �n = ei2παnσy ei2παnσz . Referring to the last section, the
system described by Eq. (20) possesses the PT -symmetry,
which implies that it could have real spectra under the PBC.
This should happen when the unidirectional hopping am-
plitude J , which induces the non-Hermitian effect, is small
compared with the other energy scales of the system. With the
increase of J , we expect a transformation of the spectrum from
real to complex when J goes beyond a critical value, which
characterizes the PT -breaking transition of the system. In the
meantime, when J → 0, the state profiles in the system are
controlled by the non-Abelian onsite potential, and we expect
all the eigenstates to be localized for an irrational α. In the
opposite limit J → ∞, the structures of states are dominated
by the unidirectional hopping term. We expect all the eigen-
states to be extended in this limit for a finite V . In between
these two limits, there must be a delocalization transition for
the eigenstates with the increase of J . In the Abelian case,
such a transition happens at Jc = V/2 [18]. All the eigenstates
change from localized to extended when J goes from below
to above Jc, with their eigenvalues changing from real to
complex. The localization and PT -breaking transitions in the
corresponding Abelian model thus go hand in hand with each
other [18]. In Eq. (20), the non-Abelian potential introduces
internal structures to each lattice site, which may transform
the critical point Jc into a critical region J ∈ (Jc1, Jc2) with
coexisting extended and localized eigenstates that are sep-
arated by mobility edges. The presence of such a critical
phase in our system, which is due to the interplay between
non-Hermitian and non-Abelian effects, will be revealed in the
following calculations. Besides, the PT transition point shall
be modified and only parts of eigenvalues in the spectrum may
become complex after the transition first happens, as will be
discussed below.

In Fig. 1, we present the maximal imaginary part of
eigenenergies [Eq. (10)], the density of states with complex
eigenvalues [Eq. (12)], the maximal [Eq. (13)] and minimal

[Eq. (14)] values of IPRs, the smoking gun function of criti-
cal phase [Eq. (15)], and the winding numbers [Eq. (16)] of
Model 1 versus the hopping amplitude J for a typical case.
We observe that when J is small (J < Jc1 � 0.3 in Fig. 1),
all the eigenstates are indeed localized (IPRmin > 0) and their
energies are real (Emax

I = ρ = 0), implying that the system
is in a PT -invariant localized phase in this region. When J
is large enough (J > Jc2 � 0.8 in Fig. 1), all the eigenstates
become extended (IPRmax → 0) with complex eigenvalues
(ρ → 1), which means that the system is in a PT -broken
extended phase in the large-J region (we assume V = 1 as
the unit of energy). With the increase of J from zero to a
finite value Jc1, the system first undergoes a PT -breaking
transition signified by the emergence of complex eigenval-
ues (Emax

I , ρ > 0). This is accompanied by a delocalization
transition through which certain eigenstates become extended
(IPRmin → 0). The PT and delocalization transitions at Jc1

are correctly captured by the quantized jump of winding num-
ber w2, which demonstrates their topological nature. Notably,
not all eigenstates become extended following the first transi-
tion at Jc1, after which we still have localized states (IPRmax >

0). Therefore, a critical phase in which extended and lo-
calized eigenstates coexist appear in the intermediate region
(Jc1 < J < Jc2). States with real and complex eigenenergies
are also coexistent in this phase (0 < ρ < 1). When J further
increases up to Jc2, we encounter a second transition, through
which all the eigenstates become extended and the spectrum
is mostly complex. This transition is further characterized by
the quantized jump of winding number w1. Therefore, the col-
laboration between unidirectional hopping and non-Abelian
quasiperiodic potential could create a localized phase with
real spectrum, an extended phase with complex spectrum and
a critical mobility edge phase with mixed spectrum, which are
separated by a PT -breaking transition and two localization
transitions in Model 1. The absence of critical phases in the
Abelian counterpart of Model 1 [18] confirms the importance
of non-Abelian effects in our system.

To gain a deeper understanding about the mobility edges of
the spectrum in the critical phase, we show the eigenenergies
on the complex plane, the ES and the IPRs versus the real
part of energy for three typical cases of Model 1 in Fig. 2. At
each ReE , the ES is obtained by first filling all states whose
real parts of energies are below ReE , and then following the
procedure outlined in Sec. III. We see that when J < Jc1,
all the eigenstates indeed have finite IPRs. The ES is pinned
around ζ = 0 and 1, suggesting vanishing contributions to the
EE according to Eq. (19). This is expected, as each bulk state
in this case is localized around a certain unit cell in either
the subsystem A or B, not both. No signatures of mobility
edges are observed in the spectrum. When J > Jc2, all the
eigenstates are extended with vanishing IPRs, and a large
portion of ES deviates from ζ = 0, 1. The energy spectrum
form two loops on the complex plane and no mobility edges
are observed. The most interesting situation appears when
J = 0.5 ∈ (Jc1, Jc2). From the IPRs in Fig. 2(h), we find lo-
calized states not only below a certain ReE but also at higher
energies. The eigenenergies of these localized states are all
real, as observed in Fig. 2(b). Therefore, the system could
possess multiple mobility edges at different ReE in the critical
phase. These mobility edges show clear signatures in the ES
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FIG. 2. Examples of eigenenergies, ES and IPRs for different
phases of Model 1. The hopping amplitude is set to J = 0.1 for
(a), (d), (g); J = 0.5 for (b), (e), (h); and J = 2 for (c), (f), (i).
Other system parameters are chosen as V = 1, φ = π/10 and α =
(
√

5 − 1)/2 for all panels. The length of lattice is L = 2584.

of Fig. 2(e). In Abelian NHQCs, signatures of mobility edges
have been found in the ES [45]. Our results demonstrate that
more complicated structures of mobility edges in non-Abelian
NHQCs can also be identified from the distribution of ES at
different energies.

To check the spectral and localization transitions in more
general situations, we present the extreme values of ImE
[Eqs. (10) and (11)] and IPRs [Eqs. (13) and (14)] versus
the hopping amplitude J and the Abelian phase factor φ in
Fig. 3. We find that the PT -transition point could vary with
φ in a nonmonotonic manner. Yet it is coincident with the

FIG. 3. The maximum and minimum of the imaginary parts of
eigenenergies and the IPRs versus the hopping amplitude J and the
Abelian phase φ for Model 1. Other system parameters are V = 1
and α = (

√
5 − 1)/2 for all panels. The length of lattice is L = 610.

Panels (c) and (d) share the same color bar.

FIG. 4. The density of states with real energies, the smoking gun
function of critical phase, the EE and the winding numbers versus the
hopping amplitude J and the Abelian phase φ for Model 1 [81]. Other
system parameters are V = 1 and α = (

√
5 − 1)/2 for all panels.

The length of lattice is L = 610. Panels (a) and (b) share the same
color bar.

boundary between extended and critical phases at every φ,
as shown in Figs. 3(a) and 3(c). Similarly, when the minimal
values of ImE start to deviate from zero, the last localized
eigenstate with IPRmax > 0 vanishes and all the states become
extended, as shown in Figs. 3(b) and 3(d). Note in passing that
at φ = 0,±π , the system can be reduced to two equivalent
copies of Abelian unidirectional AAH models. Each of them
has only a single transition point at Jc = V/2 and holding
no critical phases [18]. Therefore, the presence of extended,
critical, localized phases and the transitions among them are
robust to the variation of phase factor φ ( �= 0,±π ) in our
non-Abelian NHQC Model 1.

Finally, we establish the phase diagram of our Model
1 from the entanglement and topological perspectives. In
Fig. 4, we show the density of states with complex eigen-
values [Eq. (12)], the smoking gun function of critical phase
[Eq. (15)], the EE [Eq. (19)], and the phase diagram de-
termined by the winding number [Eq. (16)] of Model 1.
Compared with the results of IPRs in Fig. 3, we clearly see
that ρ → 0 in the PT -invariant localized phase, ρ → 1 in the
PT -broken extended phase, and 0 < ρ < 1 in the critical mo-
bility edge phase highlighted by the η in Fig. 4(b). The EE is
obtained by filling all the eigenstates with real energies at each
given (J, φ) and following the steps in Sec. III. In Fig. 4(c),
the EE is found to vanish throughout the localized phase,
fluctuating in the critical phase while keeping a constant value
S � 4 ln 2 in the extended phase. It can thus be employed as
a good entanglement-based character to distinguish different
phases in non-Abelian NHQCs. In Fig. 4(d), the blue, green,
and yellow regions refer to the localized, critical, and ex-
tended phases, respectively. The boundary between the blue
(green) and green (yellow) regions is the boundary around
which the winding number w2 (w1) takes a quantized jump.
These boundaries are well consistent with the phase bound-
aries identified from ρ, IPRs and S. Therefore, the winding
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numbers (w1,w2) serve as topological order parameters to
characterize the PT and localization transitions in our system.
Putting together, we conclude that the cooperation between
unidirectional hoppings and non-Abelian effects could indeed
create many intriguing phases and transitions in a quasiperi-
odic lattice. In the following subsections, we will demonstrate
that this physical picture holds for more general types of
non-Hermitian effects and non-Abelian potentials.

B. Nonreciprocal hopping

We now consider a non-Abelian NHAAH model with non-
reciprocal hopping amplitudes, which can be viewed as a
generalized version of Model 1. According to Eqs. (4), (3)
and Table I, the eigenvalue equation of Model 2 in position
representation takes the form

Je−βψn+1 + Jeβψn−1 + V
(
e−iφ�n + eiφ�−1

n

)
ψn = Eψn,

(21)

where �n = ei2παnσy ei2παnσz . The non-Hermitian effect is now
introduced by an imaginary phase factor iβ accompanying the
nearest-neighbor hopping amplitude. In the Abelian counter-
part of this model, a PT -transition together with a localization
transition is predicted at βc = ln[V/(2J )] for any irrational
α, which is further characterized by the quantized jump of
a spectral winding number from zero to one [9]. When |β| <

|βc| (|β| > |βc|), all the eigenstates of the Abelian NHQC are
localized (extended) with a real (complex) spectrum under
the PBC [9]. The non-Abelian Model 2 also possesses the
PT symmetry, albeit different from its Abelian cousin in its
explicit form as discussed in Sec. II. Therefore, we expect the
system to reside in a localized (an extended) phase with real
(complex) spectrum in the limit β → 0 (β → ∞) for any ir-
rational α assuming |J| � |V |. PT -breaking and localization
transitions should happen at some finite values of β between
these two limits. Furthermore, the non-Abelian potential may
also help to expand the Abelian transition point βc to a critical
region β ∈ (βc1, βc2), in which extended and localized eigen-
states coexist. This is similar to the situation encountered in
Model 1. The presence of such a critical mobility edge phase
and its properties in the non-Abelian NHQC Model 2 will be
uncovered in the following discussions.

In Fig. 5, we present the maximal imaginary parts of
eigenenergies [Eq. (10)], the density of states with complex
eigenvalues [Eq. (12)], the maximal [Eq. (13)] and minimal
[Eq. (14)] values of IPRs, the smoking gun function of crit-
ical phases [Eq. (15)], and the winding numbers [Eq. (16)]
of Model 2 versus the nonreciprocal hopping parameter β

for a typical case. From the IPRmin and IPRmax, we iden-
tify two transition points at βc1 � 0.5 and βc2 � 2.0. When
β < βc1, all the eigenstates are localized (IPRmin > 0) and the
spectrum is real (Emax

I , ρ = 0). The system thus resides in a
PT -invariant localized phase in this small-β region. When
β > βc2, all the eigenstates are extended (IPRmax → 0) and
the spectrum is complex. The system thus belongs to a PT -
broken extended phase in this large-β region. Interestingly, in
the intermediate region with βc1 < β < βc2, the spectrum is
formed by comparable numbers of real and complex eigen-
values (0 < ρ < 1). Extended and localized eigenstates also

FIG. 5. Realness of the spectrum, IPRs, and winding numbers
of Model 2 versus the nonreciprocal hopping modulation β [81].
Other system parameters are set as J = 1, V = 6, φ = π/2, and
α = (

√
5 − 1)/2. The length of lattice is L = 2584.

coexist in this region (IPRmin → 0 yet IPRmax > 0), yielding
a critical mobility edge phase as signaled by the function
η. This critical phase is originated from the coexistence of
non-Hermitian and non-Abelian potentials in our system. It is
absent in the Abelian limit of our Model 2 [9]. Therefore, with
the increase of β, the system first undergoes a PT -breaking
and delocalization transition at βc1, which is also character-
ized by the quantized change of winding number w2. When
β further increases, we encounter a second delocalization
transition at βc2, which is accompanied by the quantized jump
of another winding number w1. The two separate transitions
and the emerging critical phase are all unique to our non-
Abelian NHQC model. The two transition points will merge
at βc = ln[V/(2J )] � 1.1 and the critical phase will disappear
in the associated Abelian model [9]. These observations again
demonstrate that non-Abelian potentials could induce richer
phases and transition patterns in non-Hermitian quasiperiodic
lattices.

To further decode the structure of mobility edges in the crit-
ical phase, we show the eigenenergies on the complex plane,
the ES and the IPRs versus the real parts of energies for three
typical cases of Model 2 in Fig. 6. At each given ReE , the ES
is obtained by first filling all the eigenstates whose real parts
of energies are below ReE , and then following the procedure
outlined in Sec. II. We find that for the case with β < βc1, all
the eigenstates are indeed localized with finite IPRs and real
energies. The ES is mostly pinned around ζ = 0, 1 and no
signatures of mobility edges are observed. A few ES values
that deviate sufficiently away from ζ = 0, 1 in Fig. 6(d) may
originate from eigenmodes that are localized around the en-
tanglement cuts between the subsystems A and B. In the case
with β > βc2, all the eigenmodes are found to be extended
with vanishing IPRs. The spectrum form two loops on the
complex plane in Fig. 6(c) and the eigenvalues are mostly
complex. The ES contains notable portions that are away from
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FIG. 6. Examples of eigenenergies, ES and IPRs for different
phases of Model 2. The nonreciprocal hopping modulation is set to
β = 0.1 for panels (a), (d), and (g); β = 1.1 for panels (b), (e), and
(h); and β = 2.5 for panels (c), (f), and (i). Other system parameters
are chosen as J = 1, V = 6, φ = π/2, and α = (

√
5 − 1)/2 for all

panels. The length of lattice is L = 2584.

ζ = 0, 1 at every ReE , and no signatures of mobility edges are
observed. In the intermediate case with β = 1.1 ∈ (βc1, βc2),
we observe mobility edges at two different energies E± that
are symmetric along the ReE axis, as shown in Figs. 6(b) and
6(h). Eigenstates whose ReE ∈ (E−, E+) are localized with
real energies, and otherwise extended with complex energies.
These mobility edges can be clearly identified from the ES
as shown in Fig. 6(e). Therefore, we can also use the ES as
an information-based detector to find mobility edges in the
spectrum and separate localized from delocalized states in our
non-Abelian NHQC Model 2.

To check the PT -breaking and localization transitions of
our Model 2 in more general situations, we show the extreme
values of ImE [Eqs. (10) and (11)] and IPRs [Eqs. (13) and
(14)] versus the nonreciprocal hopping parameter β and the
Abelian phase factor φ in Fig. 7. We observe that when the
Emax

I starts to deviate from zero, the IPRmin goes to zero,
which means that the PT -breaking transition and the tran-
sition between localized and critical phases go hand-in-hand
with each other in our system. This is true for every φ ∈
(−π, 0) ∪ (0, π ). At φ = 0,±π , the critical phase vanishes
due to the reducibility of our Model 2 to two identical copies
of Abelian NHQCs [9], as mentioned before. Moreover, the
boundary where Emin

I starts to deviate from zero is coincident
with the boundary across which the IPRmax goes to zero,
which means that most eigenstates have complex energies
after the transition from critical to localized phases. This
second phase boundary has a shape that can vary with φ in
a nonmonotonous manner, and it merges with the first phase
boundary at βc = ln[J/(2V )] when φ = 0,±π . Therefore,
we conclude that our non-Abelian NHQC Model 2 indeed
holds extended, critical and localized phases. It could further
transform among them at different values of β and φ due to
the interplay between nonreciprocal and non-Abelian effects.

FIG. 7. The maximum and minimum of the imaginary parts
of eigenenergies and the IPRs versus the nonreciprocal hopping
modulation β and the Abelian phase φ for Model 2. Other system
parameters are J = 1, V = 6 and α = (

√
5 − 1)/2 for all panels. The

length of lattice is L = 610. Panels (c) and (d) share the same color
bar.

We next build the phase diagram of our Model 2 from its
entanglement and topological features. In Fig. 8, we show
the density of states with complex eigenvalues [Eq. (12)], the
smoking-gun function of critical phases [Eq. (15)], the EE
[Eq. (19)], and the phase diagram decided by the winding
numbers [Eq. (16)] of Model 2. Comparing Fig. 8(a) with
the spectrum and IPRs in Fig. 7, we see that throughout the
considered parameter regime, the density of states ρ → 0 and
ρ → 1 in the real-spectrum localized phase and complex-
spectrum extended phase, respectively. In the critical phase

FIG. 8. The density of states with real energies, the smoking gun
function of critical phase, the EE and the winding numbers versus the
nonreciprocal hopping modulation β and the Abelian phase factor φ

for Model 2 [81]. Other system parameters are J = 1, V = 6 and α =
(
√

5 − 1)/2 for all panels. The length of lattice is L = 610. Panels
(a) and (b) share the same color bar.
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highlighted by η in Fig. 8(b), we have 0 < ρ < 1, implying
that real-energy localized states and complex-energy extended
states coexist in this region. The EE in Fig. 8(c) is obtained
by filling all the eigenstates with real energies at each (β, φ)
and following the recipe discussed in Sec. III. We find the
same EE S = 0 (S � 4 ln 2) in the PT -invariant (PT -broken)
localized (extended) phase, and a fluctuating S in the critical
mobility edge phase. Therefore, we can use the EE to clearly
distinguish phases with different localization nature in our
non-Abelian NHQC Model 2. Finally, by investigating the
boundaries where the winding numbers w2 and w1 get quan-
tized jumps, we obtain the borders of localized-to-critical and
critical-to-extended phase transitions, which are well consis-
tent with the boundaries predicted by the ρ, IPRmax,min and S.
The winding numbers w1,2 can thus be adopted as topologi-
cal order parameters to characterize the PT and localization
transitions in our system. Figure 8(d) yields the phase diagram
of Model 2, in which the blue, green, and yellow regions
correspond to the localized, critical, and extended phases,
respectively. To sum up, we find that the combined efforts
of nonreciprocal hoppings and non-Abelian effects could also
generate multiple intriguing phases with different localization
properties and rich phase transitions in a quasiperiodic sys-
tem. In the next subsection, we further explore the effects of
a non-Abelian non-Hermitian onsite potential in generating
these new phases.

C. Complex onsite potential

In the last example, we consider an NHAAH model with
onsite gain and loss in a non-Abelian quasiperiodic potential.
Following Eqs. (3), (4) and Table I, the eigenvalue equation of
this Model 3 in the lattice representation reads

Jψn+1 + Jψn−1 + V
(
e−iφ�n + eiφ�−1

n

)
ψn = Eψn, (22)

where �n = ei(2παn+iγ )σy ei(2παn+iγ )σz . The hopping amplitude
J is now symmetric and the non-Hermitian effect is introduced
solely by the imaginary non-Abelian phase factor iγ . In the
Abelian counterpart of the model, a PT -breaking and local-
ization transition can happen at γc = ln(2J/V ) under the PBC
for any irrational α, which is signified by the unit jump of a
spectral winding number [10]. All the eigenstates are extended
(localized) with real (complex) eigenvalues when |γ | < |γc|
(|γ | > |γc|), and no critical mobility edge phases are identi-
fied in the Abelian model [10]. Our Model 3 can be reduced
to two equivalent copies of this Abelian model when we
take φ = 0,±π , with a critical point at γ ′

c = (1/2) ln(2J/V ).
Since Model 3 also possesses the PT -symmetry as discussed
in Sec. II, we expect the system to exhibit an extended (a
localized) phase with a real (complex) spectrum in the limit
γ → 0 (γ → ∞) for any irrational α assuming |J| � |V |.
PT -breaking and localization transitions must happen be-
tween these two limits with the increase of γ . However, the
non-Abelian potential may again extend the critical point γ ′

c
into a critical regime γ ∈ (γc1, γc2), in which extended and
localized eigenstates can coexist and are separated by mobility
edges. Eigenstates with real and complex energies may also
survive together in this critical phase. In the following, we un-
veil the existence of such a critical phase and characterize the

FIG. 9. Realness of the spectrum, IPRs and winding numbers
of Model 3 versus the imaginary non-Abelian phase γ [81]. Other
system parameters are set as J = 1, V = 0.5, φ = π/2, and α =
(
√

5 − 1)/2. The length of lattice is L = 2584.

transitions induced by non-Abelian non-Hermitian potentials
between different phases in our Model 3.

In Fig. 9, we present the maximal ImE of all states
[Eq. (10)], the density of states with complex energies
[Eq. (12)], the maximal [Eq. (13)], and minimal [Eq. (14)]
IPRs of all states, the smoking-gun function of critical phases
[Eq. (15)] and the winding numbers [Eq. (16)] of Model 3
versus the imaginary non-Abelian phase shift γ for a typical
example. From the IPRs, we can identify two localization
transition points γc1 � 0.31 and γc2 � 0.94 with the devia-
tions of IPRmax and IPRmin from zero during the increase of
γ , respectively. γc1 is also consistent with a PT -breaking
transition point, after which complex eigenvalues in energy
start to emerge (with Emax

I > 0). When γ < γc1, all the eigen-
states are extended (IPRmax → 0) and carrying real energies
(Emax

I , ρ = 0). The system is thus in a PT -invariant metal-
lic phase in this region. When γ > γc2, all the eigenstates
are localized (IPRmin > 0) with most of them having com-
plex energies (ρ → 1). The system is thus in a PT -broken
insulating phase in this regime. When γ ∈ (γc1, γc2), ex-
tended (IPRmin → 0) and localized (IPRmax > 0) eigenstates
are found to coexist. Real and complex eigenvalues occupy
comparable portions in the spectrum (0 < ρ < 1). This inter-
mediate region thus corresponds to a critical mobility edge
phase, as clearly highlighted by the function η in Fig. 9. More-
over, we observe a quantized jump of the winding number w1

(w2) when γ is swept across the transition point between ex-
tended (critical) and critical (localized) phases. The winding
numbers w1,2 can thus be used as topological order parameters
to characterize the two different localization transitions in our
non-Abelian NHQC Model 3. Note that these two transition
points will merge into a single one at γ ′

c = ln(4)/2 � 0.69 if
φ = 0,±π , for which our Model 3 is reduced to two Abelian
copies of the model considered in Ref. [10]. The two local-
ization transitions and the critical phase are thus all rooted in
the presence of a non-Abelian non-Hermitian quasiperiodic
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FIG. 10. Examples of the eigenenergies, ES and IPRs for differ-
ent phases of Model 3. The imaginary phase is set to γ = 0.1 for
panels (a), (d), and (g); γ = 0.8 for panels (b), (e), and (h); and
γ = 1.5 for panels (c), (f), and (i). Other system parameters are
chosen as J = 1, V = 0.5, φ = π/2, and α = (

√
5 − 1)/2 for all

panels. The length of lattice is L = 2584.

potential in the system, through which richer patterns of
phases and transitions beyond those in the Abelian counterpart
of our Model 3 are generated [10].

To further analyze the structure of mobility edges induced
by the non-Abelian potential, we present the spectrum on the
complex plane, the ES and the IPRs versus the real part of
energy for three typical cases of Model 3 in Fig. 10. At each
given ReE , the ES is obtained by first filling all the eigenstates
whose real parts of energies are below ReE , and then follow-
ing the steps outlined in Sec. III. We find that for γ > γc2, all
the eigenstates are indeed localized with finite IPRs, and the
spectrum is constituted by two loops on the complex plane, as
shown in Figs. 10(i) and 10(c). The ES in Fig. 10(f) is pinned
around ζ = 0, 1 for all ReE , which implies that the states be-
low any energy are localized ether in the subsystem A or B of
the lattice. The system in this case then resides in a localized
phase and no signatures of mobility edges are observable. For
γ < γc1, the spectrum is real and the IPRs of all states are
vanishingly small, as shown in Figs. 10(a) and 10(g). From
the ES in Fig. 10(d), we can see gaps in certain ranges of ReE .
Meanwhile, sufficient parts of ES are away from ζ = 0, 1
in other energy regions. In this case, the system belongs to
a PT -invariant extended phase with no signals of mobility
edges. When γ = 0.8 ∈ (γc1, γc2), the spectrum contains both
real and complex eigenvalues, as shown in Fig. 10(b). Refer-
ring to the IPRs in Fig. 10(h), we realize that the extended
and localized eigenmodes separately have real and complex
eigenvalues. Notably, these two types of states are split not
only by mobility gaps but also by energy gaps at different
ReE , which is distinct from the first two models considered in
this section. In Fig. 10(e), we also observe gaps along the ReE
axis. They separate states whose ES are close to ζ = 0, 1 from
the other states whose ES are distributed throughout the range
ζ ∈ [0, 1]. The energy and mobility gaps of Model 3 are thus

FIG. 11. The maximum and minimum of the imaginary parts
of eigenenergies and the IPRs versus the imaginary phase γ and
the hopping amplitude J for Model 3. Other system parameters are
V = 0.5, φ = π/2, and α = (

√
5 − 1)/2 for all panels. The length

of lattice is L = 610. Panels (a) and (b) [(c) and (d)] share the same
color bar.

clearly identifiable from the ES. Therefore, we can apply the
ES as a detector to seek for the energy and mobility gaps in the
spectrum and distinguish the localized from delocalized states
in our non-Abelian NHQC Model 3. The results presented in
Figs. 2, 6, 10 also revealed the generality of ES as a tool to
characterize the mobility edges in quasicrystals with different
types of non-Hermitian and non-Abelian effects.

In Fig. 11, we report the extreme values of ImE [Eqs. (10)
and (11)] and IPRs [Eqs. (13) and (14)] versus the imag-
inary non-Abelian phase γ and the hopping amplitude J
for our Model 3. In Figs. 11(a) and 11(c), we observe that
when the spectrum changes from real to complex across the
PT -transition boundary, the IPRmax also increases from a
vanishingly small value to a finite value at every given J .
Therefore, the PT -breaking transition of the spectrum hap-
pens together with the localization transition of the states
between extended and critical phases. We have also verified
this observation for different choices of the Abelian phase
φ ∈ (−π, 0) ∪ (0, π ). Similarly, when the Emin

I starts to de-
viate from zero in Fig. 11(b), all the eigenstates become
localized through a second transition as shown in Fig. 11(d).
The energies of eigenstates are mostly complex after the this
transition from the critical to localized phases. Therefore, our
non-Abelian NHQC Model 3 could also possess extended,
critical and localized phases in a broad range of parameter
domains. Moreover, the association between non-Hermitian
and non-Abelian potentials enables interesting patterns of
PT -breaking and localization transitions among these phases.
Together with the previous two models, our results here
uncovered the rich physics that can be brought about by non-
Abelian effects in NHQCs.

Finally, we present the the density of states with com-
plex energies [Eq. (12)], the smoking-gun function of critical
phases [Eq. (15)], the EE [Eq. (19)], and the phase diagram
obtained from the winding numbers [Eq. (16)] of Model 3
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FIG. 12. The density of states with real energies, the smoking-
gun function of critical phase, the EE and the winding numbers
versus the imaginary phase γ and hopping amplitude J for Model
3 [81]. Other system parameters are V = 0.5, φ = π/2, and α =
(
√

5 − 1)/2 for all panels. The length of lattice is L = 610. Panels
(a) and (b) share the same color bar.

versus γ and J in Fig. 12. We observe that in the regions with
ρ = 0 and ρ → 1 in Fig. 12(a), we also have IPRmax → 0
and IPRmin > 0 in Figs. 11(c) and 11(d). These two regions
thus correspond to a PT -invariant metallic phase with real
spectrum and a PT -broken insulating phase with almost all
eigenenergies being complex. The region in between repre-
sents a critical phase with sufficient amounts of coexisting
real and complex eigenenergies in the spectrum (0 < ρ < 1).
This intermediate phase and its two boundaries are clearly
highlighted by the function η in Fig. 12(b). In Fig. 12(c),
the EE is found to vanish (S = 0) both in the extended and
localized phases. In the region of critical mobility edge phase,
the EE fluctuates strongly, as also observed from the EE
of the first two models. The phase diagram of Model 3 is
shown in Fig. 12(d), where the blue, green, and yellow regions
correspond to the extended, critical, and localized phases,
respectively. The left and right boundaries are determined
by the locations where w1 and w2 get quantized jumps, re-
spectively. These boundaries are clearly coincident with the
boundaries of the PT -symmetry breaking and the two local-
ization transitions identified from the results of ρ, IPRmax,min

and S. Therefore, both nonreciprocal hoppings and onsite
gain/loss could collaborate with non-Abelian quasiperiodic
potentials to yield different types of spectral transitions,
topological localization transitions and critical mobility edge
phases in NHQCs. Note in passing that the localization nature
of eigenstates in our models may also be characterized by the
energy-level statistics [82–87]. We give brief accounts of this
issue in the Appendix.

V. CONCLUSION AND DISCUSSION

In this work, we found unique phases and transitions that
could be induced by the interplay between non-Abelian po-
tentials and different types of non-Hermitian effects in 1D

quasicrystals. For an NHQC with either nonreciprocal hop-
pings or onsite gain and loss, we revealed the emergence of
a critical mobility edge phase when a non-Abelian quasiperi-
odic modulation was introduced. Such a critical phase could
be separated from an extended phase and a localized phase by
two topological localization transitions. One of the transitions
could further accompany a real-to-complex spectral transition
if the non-Abelian NHQC also possesses the PT -symmetry.
We expect these features to be generic for any 1D non-Abelian
NHQC models. Our discoveries were further demonstrated
by investigating the energy spectrum, inverse participation
ratios, entanglement spectrum, entanglement entropy and
spectral topological winding numbers for three prototypical
non-Abelian generalizations of non-Hermitian AAH models,
with each of them holding only a single PT -breaking and
localization transition in the absence of non-Abelian effects.
In short, we will have no PT -breaking transitions and topo-
logical spectral windings in the Hermitian limits, no critical
phases in the Abelian limits, and no localization transitions
in the crystal limits (α ∈ Q) of our models. The rich physics
we found are thus originated from the interplay among three
key factors, i.e., the non-Hermitian effect, the quasiperiodic
modulation, and the non-Abelian potential. Our results thus
enriched the study of NHQCs and uncovered the intriguing
phases and transitions that could be brought about by non-
Abelian effects.

The non-Abelian potentials considered in this work could
be employed to induce critical phases in other 1D NHQCs.
Qualitatively, the reason for the expansion of critical points
in the Abelian limits of our models to critical phases in non-
Abelian cases might be understood as follows. Let us consider
Eqs. (4)–(6) in the paper. Without the dx

nσx and dy
nσy terms in

Eq. (5), Eq. (4) can be decomposed into two spin polarized
chains, which are described separately by

JLψn+1,↑ + JRψn−1,↑ + V
(
d0

n + dz
n

)
ψn,↑ = Eψn,↑, (23)

JLψn+1,↓ + JRψn−1,↓ + V
(
d0

n − dz
n

)
ψn,↓ = Eψn,↓. (24)

Referring to Eq. (6) of our three models, Eqs. (23) and (24)
describe two Abelian quasicrystals with the same critical point
between extended and localized phases. There are no critical
phases with mobility edges in these two decoupled chains.
When the interchain coupling terms dx

nσx and dy
nσy in Eq. (5)

are switched on, the system in Eq. (4) becomes genuine
non-Abelian. Moreover, the terms dx

nσx + dy
nσy may induce

an overlap between the extended band of the spin-↑ chain
and the localized band of the spin-↓ chain (or vice versa)
through spin-flip couplings, leading to a critical phase with
mobility edges. In other words, the non-Abelian interchain
couplings split the two initially merged critical points of two
decoupled chains and move them along opposite directions in
the parameter space. The final result is the expansion of crit-
ical points of two originally disconnected chains to a critical
phase of the non-Abelian coupled chain. Such a mechanism
of generating critical phases may not be restricted to systems
with non-Abelian potentials. It may also be used to understand
the origin of critical phases in 1D systems with sublattice
degrees of freedom or long-range hoppings. Nevertheless,
regarding the interest of engineering non-Abelian potentials in
different physical setups, our discoveries may provide further
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FIG. 13. The averages of AGRs versus system parameters for Models 1, 2, and 3 in panels (a), (b), and (c), respectively. Other system
parameters are (V, φ) = (1, π/10) for panel (a), (J,V, φ) = (1, 6, π/2) for panel (b), and (J,V, φ) = (1, 0.5, π/2) for panel (c). We choose
α = (

√
5 − 1)/2 and L = 4181 for all panels. The averages of IPRs, NPRs, and the function η [Eq. (15)] are also plotted to give a better

illustration [92].

motivations for the realization of non-Abelian effects in sys-
tems beyond clean and Hermitian limits.

To the best of our knowledge, the PT -breaking, localiza-
tion and topological transitions have not been simultaneously
explored in non-Abelian NHQCs. Our work thus introduced
typical models and provided initial impetus along this line
of study. It also has great experimental relevance regarding
the recent realizations of NHQCs [40,41]. In experiments,
NHQCs were realized by nonunitary quantum walks in pho-
tonic systems [40,41]. Since an artificial spin-1/2 degree of
freedom is intrinsically present in the discrete time quantum
walk, the existing setups offer natural platforms to explore
the critical phases, PT -breaking transitions and localiza-
tion transitions in non-Abelian NHQCs. The PT -breaking
transition may be revealed by measuring the overall energy
growth [40] or the overall corrected probability [41] for an
initially localized wave packet in nonunitary quantum walks.
Both quantities will stay around their initial values in the
PT -invariant phase and grow over time in the PT -broken
phase. The localization-delocalization transition may be iden-
tified from the second moment of an initially localized wave
packet [40], which will show a monotonic increase (a low
and bounded value) over time in the extended (localized)
phase. The critical phase may be further located by measuring
both the dynamical IPR and NPR for a localized initial state
[41]. Both quantities will deviate clearly from zero in the
critical phase. Finally, a direct measurement of the winding
number could not be achieved in existing experimental se-
tups. An indirect evidence for the winding number may be
provided by the wave localization at a topological interface
between two distinct phases [40]. For example, one may
spatially connect a half-chain in the extended phase with
another half-chain in the localized phase at an interface site
j0. A localized initial state in the extended half-chain will
stop spreading and be trapped around j0 when it reached
the interface during the propagation. For Models 1 and 2,
the chiral transport of wave packets and non-Hermitian skin
effects (NHSEs) may provide further evidences for nontrivial
winding numbers [41]. In Model 3, the hopping amplitudes
are symmetric and no NHSEs are found, even though there
are spectral loops on the complex plane in the critical and
localized phases (see Fig. 10). In this case, we could not asso-
ciate nontrivial winding numbers of the spectrum with NHSEs

and chiral propagations of wave packets. More efforts are
required to identify the direct and generic connection bewteen
the winding numbers and physical observables in non-Abelian
NHQCs.

In future work, it is interesting to explore NHQCs
with other types of non-Abelian effects, in superconducting
systems, in quasi-one dimension [88] or higher spatial dimen-
sions and under time-periodic drivings [89]. Non-Hermitian
localizations and mobility edges were also found in sys-
tems with random disorder [90,91]. Meanwhile, in similar
models with correlated disorder, the critical phase might
be reduced to a critical point. The connection between the
realness of an eigenenergy and the localization nature of
the related eigenstate could also be different under random
and correlated disorders [9,10]. It would thus be interest-
ing to further consider the impact of non-Abelian potentials
on the spectrum, localization, topological and entanglement
transitions in randomly disordered systems. Beyond the
single-particle case, possible many-body localizations and
critical phases originated from the competition between non-
Abelian quasiperiodic potentials and non-Hermitian effects
also deserve to be explored in detail.
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APPENDIX: LEVEL STATISTICS

In this Appendix, we discuss one type of tools based on
the statistics of energy levels, which may provide further
signals about the phases with different localization nature in
our non-Abelian NHQCs. Let us denote the normalized right
eigenvectors of H [Eq. (2)] and its eigenenergies as {|ψ j〉| j =
1, ..., N} and {Ej | j = 1, ..., N}, with N being the total number
of energy levels. Along the real axis, the spacing between the
jth and the ( j − 1)th levels is given by ε j = ReEj − ReEj−1,
from which we find the ratio between two adjacent spacings
of energy levels as g j = min(ε j, ε j+1)/ max(ε j, ε j+1) for j =
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2, ..., N − 1. Here the max(ε j, ε j+1) and min(ε j, ε j+1) yield
the maximum and minimum between ε j and ε j+1. The statis-
tical property of adjacent gap ratios (AGRs) can be obtained
by averaging over all g j in the thermodynamic limit, i.e.,

g = lim
N→∞

1

N

∑
j

g j . (A1)

We will have g → 0 if all the bulk eigenstates are extended.
Comparatively, we expect g to approach a constant gmax > 0 if
all the bulk eigenstates are localized. If g ∈ (0, gmax), extended
and localized eigenstates should coexist and the system should
be in a critical phase. The g may thus be utilized to distinguish

phases with different localization nature in 1D non-Hermitian
systems [35].

In Fig. 13, we report the averages of AGRs g for our three
non-Abelian NHQC models in some typical situations. For
Models 1 and 2, we observe that the g indeed approaches
zero and a finite constant gmax in the extended and localized
phases, respectively, and varying between them in the critical
phase. For Model 3, we also observe different tendencies for g
in different phases. However, the g of Model 3 shows some
oscillations in the localized phase, which indicate that the
level statistics may have more complicated structures when
the non-Abelian potential is also non-Hermitian.
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